Схема дежурки сварочного инвертора на uc3843
Добавь схему в статью, в виде картинки.
Странно, что мосфеты греются. Потери на сопротивлении канала при таком токе невелики, контроллер вроде способен отдать вполне неплохой ток в затвор — до ампера, резистор затворный тоже вполне разумный. R4 вроде влиять не должен — если бы напряжение на C6 серьезно просаживалось, микросхема бы скорее всего неадекватно себя вела.
И еще на стоке транзистора очень уж большие выбросы. Неплохо бы туда сапрессор поставить, вольта на 24 параллельно транзистору.
Это не сток, это исток+токововый шунт. Кстати из-за них может и греется резистор и транзистор. Предполагаю, что выбросы с дросселя. Сток вторая осциллограмма, первая гейт.
Нда, откуда такие выбросы на истоке — еще менее понятно. Трассировка, быть может…
Кстати, о трассировке. На первом варианте транзисторы через термобарьеры поставлены. Нафига? Они же через фольгу охлаждаются, а так ты их радиатора лишил. Да и полигоны для них желательно отвести побольше. Тогда глядишь и грелось бы меньше.
Еще можно попробовать поставить драйвер мосфетов, возможно UC3843 таки не справляется с их быстрым переключением и они на фронтах греются.
Это тестовый вариант все равно был. А по фронтам — хз. Осциллограмма по гейту вроде ровная, хотя на приближении может что и покажет. Про драйвер думал, но по скольку затягов по фронтам нет — решил не заморачиваться.
Осциллограмма особой уверенности в отсутствии затяга фронтов не дает. Ну и если задаться током 10А (а это порядка сотни ватт) и сопротивлением канала 5мОм (вполне реальная величина для NXP-шных семплов), то на проводимости высадится всего полватта. Этого мало, чтобы существенно разогреть TO220 или D2PAK даже без теплоотвода. А значит — большие потери на переключении. Попробуй все же эксперимента ради воткнуть между мосфетом и контроллером мощный драйвер, ампера на 2-3 хотя бы.
Это уже в другой версии видимо буду реализовывать и эксперементировать. Эта уже ушла заказавшему. Кста там особый нагрев дает не сам транзистор, а шоттки.
Полевик может нагреваться выбросами на стоке. А вообще прежде чем что-то приклеить неплохо бы даташиты почитать…
Что приклеить? Ты про что? Прежде чем кого-то куда-то отправлять почитать что-то, неплохо было бы пару постов выше почитать. Выбросы там на истоке. На стоке проблему решил бы и сам.
а выбросы между чем и чем возникают :)?
на истоке говоришь… да мне хоть на катоде радиолампы, раз справился бы легко :)
Приклеить, имелось ввиду применить те или иные радиокомпонеты…
Какая частота? А то UC3843 транзистор переключает по даташиту за 50-150нс…
Ну и делать DCDC на такие токи на диодах печально…
Ну, со вторым транзистором вместо диодов, тогда нет потерянных 2-5W тепла, которые сейчас выделяются на диодах.
В ATX все по другому, и с ними это сравнивать нельзя — там все-таки изолированный питальник, а не простой DCDC.
Как этот преобразователь выдерживает высоковольтные импульсы (более 100 В или 1000 В как положительной, так и отрицательной полярности, длительностью сотни миллисекунд; ГОСТ 28751-90), присутствующие в бортовой сети автомобиля?
Эээм, пока не скажу. Заказчик еще не забрал и не отписался о тестах в полевых условиях. Возможно дальше будет видно. Хотя, ИМХО, такое за счет фильтров решается.
Пончик он же полупроводниковый ограничитель напряжения. Кстати шоколадками зовем DС/DC преобразователи от Lamba например. Очень похожи на плитки. ПОН симметричный ставь или два навстречу.
Зачем симметричный? Отрицательные импульсы схеме не полезны, пусть на уровне -0.7В режет. А положительные — где-нить на +18В.
И что такое ПОН, собственно? TVS-диод или что-то другое?
Если ты про TVS — то да, сапрессор. Точнее, оно называется Transient Voltage Suppressor. Также известно как «трансил».
Вообщем если особо не заморачивать то имеем. Омическое падение на проводах при КЗ допустим 0.5 Ом. ПОН выбрали на пробивное напряжение 16В. Помеха 100В. Следовательно получим (100В помехи — 16В пона)/0.5 Ом проводов бортовой сети = 68А при тау на уровне 0.5 равной 1 мс. 1.5кВт подходят. В даташите указан максимальный ток при 1 мс 200А Причем в формуле 16В стоит приблизительно, потому что я не знаю какое напряжение ограничения он выдает при 68А в импульсе по току. Могу предположить, где то в районе 20В. Если память не изменят
Нет не накосячил я вспомнил про помеха может вводиться как отрицательно, так и положительно. У нас даже у генераторов есть такой режим. Ставишь 4кВ на 2 Ома и получаешь импульс по току 2кА с длительностью 8/20 мкс. Даже есть генератор весом в 30 кг на единицы миллисекунд. По джоулям этот будет покруче. 1кВ на 1 Ом 1 кА при 1 мс. По факту если испытуемое устройство даже и включает в себя некую защиту, то ее оказываеться недостаточно. Всякие зарядки для ноутбуков, блоки питания ATX и прочая лабуда подыхает только в путь.
Диодная сборка 7.7A*0.55В = 4.24Вт жара. Частота 100кГц для них великовата. У силовых емкость перехода больше. Из-за этого могут быть выбросы.
Я тут макетировал сабж на днях по такой-же схеме…
Я вижу два основных недостатка:
1. нет гальванической развязки, это не всегда допустимо, например, я сделал диагностический адаптер для машины, он тоже без оптронов, поэтому запускаю с ноутом только от батарей…
2. если какой-то сбой и пропадает генерация, на выход идет 12В, а это далеко не всем ноутам полезно. Например, ремонтировал отцу самсунг после левого бп с пониженным напряжением, полетел контроллер зарядки…
В качестве решения можно топологию сепик попробовать применить…
Ну и у меня датчик тока не получилось нормально настроить, так что временно отложил этот проект.
СЕПИК-то чем лучше? В него еще и искать кондер, способный сквозь себя большой ток пропускать. Пуш-пул тогда уж изолированный.
Ну да, это решает все проблемы. Надо подумать в этом направлении. 494+сдвоенный драйвер нижнего плеча+транс+2оптрона(один напряжение, другой ток)?
Если я правильно понял, у сепика 2 преимущества — развязка по пост. току и возможность как понижения так и повышения. Хотя на большие токи, похоже, проблем больше образуется новых, чем решится.
Ток-то зачем? Защиту и в первичке воткнуть можно. 494 можно заменить более новыми микросхемами со встроенным драйвером ключа (мощным, разумеется). В остальном — да, все так. К тому же, труЪ трансформатор обычно компактнее, чем степ-аповский (или флайбэковский, что на самом деле то же самое) дроссель.
Алсо, если домотать на дроссель вторичку и перекинуть диод на нее — получится изолированный флайбэк.
Если я правильно понял, у сепика 2 преимущества — развязка по пост. току и возможность как понижения так и повышения.
Только второе, развязки у него нет. У него при отключенном преобразователе на выходе ноль, из-за включенного последовательно кондера — это актуально в некоторых случаях, но это не развязка. И сильноточные сепики требуют сурового конденсатора, допускающего большой импульсный ток.
ну не знаю как на счет пуш-пула, а вот полумостовой транс считал на такой ток как в преобразователе. По примерным прикидкам размеры одинаковые. в плюсах только гальваническая развязка. разница в размерах будет заметна на более значительных токах.
Ну, обычно при прочих равных накопительные дроссели больше трансформаторов. По крайней мере так получается с флайбэками. Степ-апу, возможно, в плюс идет то, что часть энергии в нагрузку передается прямо с источника, а не только с дросселя.
Импульсный блок питания (60Вт) на базе ШИМ UC3842
Схема представляет собой классический обратноходовый БП на базе ШИМ UC3842. Поскольку схема базовая, выходные параметры БП могут быть легко пересчитаны на необходимые. В качестве примера для рассмотрения выбран БП для ноутбука с питанием 20В 3А. При необходимости можно получить несколько напряжений, независимых или связанных.
Выходная мощность на открытом воздухе 60Вт (длительно). Зависит главным образом от параметров силового трансформатора. При их изменении можно получить выходную мощность до 100Вт в данном типоразмере сердечника. Рабочая частота блока выбрана 29кГц и может быть перестроена конденсатором С1. Блок питания рассчитан на неизменяющуюся или мало меняющуюся нагрузку, отсюда отсутствие стабилизации выходного напряжения, хотя оно стабильно при колебаниях сети 190. 240вольт. БП работает без нагрузки, есть настраиваемая защита от к/з. КПД блока - 87%. Внешнего управления нет, но можно ввести с помощью оптопары или реле.
Силовой трансформатор (каркас с сердечником), выходной дроссель и дроссель по сети заимствованы с компьютерного БП. Первичная обмотка силового трансформатора содержит 60витков, обмотка на питание микросхемы - 10витков. Обе обмотки наматываются виток к витку проводом 0,5мм с одинарной межслойной изоляцией из фторопластовой ленты. Первичная и вторичная обмотки разделяются несколькими слоями изоляции. Вторичная обмотка пересчитывается из расчета 1,5вольта на виток. К примеру, 15вольтовая обмотка будет 10витков, 30вольтовая - 20 и т.д. Поскольку напряжение одного витка достаточно велико, при малых выходных напряжениях потребуется точная подстройка резистором R3 в пределах 15. 30кОм.
Настройка
При необходимости получить несколько напряжений можно воспользоваться схемами (1), (2) или (3). Числа витков считаются отдельно для каждой обмотки в (1), (3), а (2) - иначе. Поскольку вторая обмотка является продолжением первой, то число витков второй обмотки определяется как W2=(U2-U1)/1.5, где 1.5 - напряжение одного витка. Резистор R7 определяет порог ограничения выходного тока БП, а также максимальный ток стока силового транзистора. Рекомендуется выбирать максимальный ток стока не более 1/3 паспортного на данный транзистор. Ток можно высчитать по формуле I(Ампер)=1/R7(Ом).
Сборка
Силовой транзистор и выпрямительный диод во вторичной цепи устанавливаются на радиаторы. Их площадь не приводится, т.к. для каждого варианта исполнения (в корпусе, без корпуса, высокое выходное напряжение, низкое, и.т.д.) площадь будет отличаться. Необходимую площадь радиатора можно установить экспериментально, по температуре радиатора во время работы. Фланцы деталей не должны нагреваться выше 70градусов. Силовой транзистор устанавливается через изолирующую прокладку, диод - без неё.
ВНИМАНИЕ!
Соблюдайте указанные значения напряжений конденсаторов и мощностей резисторов, а также фазировку обмоток трансформатора. При неверной фазировке блок питания заведется, но мощности не отдаст.
Не касайтесь стока (фланца) силового транзистора при работающем БП! На стоке присутствует выброс напряжения до 500вольт.
Замена элементов
Вместо 3N80 можно применить BUZ90, IRFBC40 и другие. Диод D3 - КД636, КД213, BYV28 на напряжение не менее 3Uвых и на соответствующий ток.
Запуск
Блок заводится через 2-3 секунды после подачи сетевого напряжения. Для защиты от выгорания элементов при неверном монтаже первый запуск БП производится через мощный резистор 100 Ом 50Вт, включенный перед сетевым выпрямителем. Также желательно перед первым запуском заменить сглаживающий конденсатор после моста на меньшую емкость (около 10. 22мкФ 400В). Блок включают на несколько секунд, потом выключают и оценивают нагрев силовых элементов. Далее время работы постепенно увеличивают, и в случае удачных запусков блок включается напрямую без резистора со штатным конденсатором.
Ну и последнее.
Описываемый БП собран в корпусе МастерКит BOX G-010. В нем держит нагрузку 40Вт, на большей мощности необходимо позаботиться о дополнительном охлаждении. В случае выхода БП из строя вылетает Q1, R7, 3842, R6, могут погореть C3 и R5.
Схема дежурки сварочного инвертора на uc3843
ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ НА UC3843
Принцип работы ШИМ контроллера UC3843 практически такой же как у UC3845, подробно расписанный в ЭТОЙ СТАТЬЕ. Единственное отличие - в структуре микросхемы UC3843 отсутствует D-триггер, делящий тактовую частоту на два и отсекающий каждый второй импульс внутреннего генератора. Таким образом управляющий импульс может достигать 95-98% от общего периода, а частота преобразования равна частоте задающего генератора.
Подобная схемотехника позволяет использовать данный ШИМ контроллер при проектировании обратноходовых и бустерных источников питания, а довольно мощный выходной каскад (ток до 1 А) легко справляется с сравнительно мощными полевыми транзисторами.
В данной конструкции использовалась почти вся комплектация с Али, поэтому ссылок на Али будет довольно много. Однако кое что покупалось и на Ростовском радиорынке.
При разработке данных блоков питания ставилось две задачи основных + несколько опытов для дальнейших разработок на базе UC3843, поэтому кое что выглядит не совсем так, как должно выглядеть.
Первая версия, впрочем как и третья предназначена для нагрузки 1. 1,5 Ампера долговременно и без принудительного охлаждения.
Сразу оговорка - обратноходовые блоки питания не любят холостой ход и это сказанно как в прямом, так и в переносном смысле. Дело в том, что в момент закрытия силового транзистора первичная обмотка за счет самоиндукции формирует довольно большой выброс напряжения, который без нагрузки может довольно легко убить силовой транзистор. На фото ниже осциллограмма на стоке силового транзистора при питании преобразователя от 220 вольт:
На щупе включен делитель 1/10, при развертке 10 вольт на деление не трудно посчитать, что выбросы превышают 600 вольт. Именно по этой причине важен правильный выбор элементов в цепи клампера блоков питания данного типа.
Итак, принципиальная схема импульсного блока питания №1:
Сразу скажу - резисторов на 0,5 Вт и 1 Вт у меня далеко не вся линейка номиналов, поэтому на плате блока питания предусмотрена установка либо одного резистора на 1 Вт, либо установка двух резисторов на 0,5 Вт:
Ферритовый сердечник покупался ЗДЕСЬ, в тот раз было заказано 3 типоразмера, поэтому на доставке мне 5 баксов скинули. Расчет количества витков производилось в программе Денисенко и первоначально долбанула жадность - расчет делался для выходного напряжения 15В при токе 4А.
В принципе 4 ампера с блока питания получить удалось, но грелся силовой транзистор довольно сильно, да и сам феррит нагревался. В общем данный блок питания был искусственно ограничен по мощности - R16 был установлен комби - 3 штуки по 2,2 Ома в параллель. Выходное напряжение было снижено до 12,6 вольта - посокольку это тестовый вариант и он оказался работоспособным я решил его использовать для питания светодиодов.
В принципе данный импульсник можно использовать, но силовой транзистор я поставил не совсем удачно - лично для меня проблем нет - алюминиевое ухо к радиатору я то приварить смогу, а вот остальные вряд ли.
На фото ниже показан максимальный ток до ограничения. Увеличивая нагрузку дальше напряжение уже начинает проваливаться. При коротком замыкании блок питания пытается стартовать, а поскольку обмотка самозапита не выдает нужного напряжения контроллер затыкает по минимальному напряжению и происходит циклический перезапуск.
На диоды тоже пришлось прикрутить радиатор, благо место под винты оказалось.
В общем поигравшись с данным блоком питания я решил его переработать - использовать диод для вторичного питания в корпусе ТО-220, набор диодов моста первичного питания заменить сборкой и развернуть силовой транзистор
В качестве радиаторов выступал листовой алюминий толщиной 2 мм на всю длину платы. Но этого оказалось маловато, поэтому дополнил его радиатором - крышкой и установил вентилятор:
Наверняка сразу бросится в глаза установка диода вторичного питания по минусовой шине. Для схемы это не принципиально, а вот на плате подобное решение позволило избавиться от не нужных перемычек.
Данный блок питания эксплуатируется уже более трех месяцев. Врать не буду - включается не ежедневно, но если включается, то работает по 6-12 часов подряд. Проблем пока не выявлено:
Ну а теперь несколько слов на тему, почему задействовался усилитель ошибки и что из этого вышло.
На подавляющем большинстве схем блоков питания с использованием этого ШИМ контроллера обратная связь организовывается путем подключения транзистора оптрона на 1-й вывод контроллера, а второй вывод соединяется с минусом первичного питания. Таким образом отключается усилитель ошибки и регулировка выходного напряжения осуществляет TL431. Если же использовать усилитель ошибки возникает режим перерегулирования - условный коф усиления TL431 суммируется с коф усиления усилителя контроллера и реакция на малейшее изменение выходного напряжения слишком большая - попытка удержать на выходе заданное напряжение переходит в релейный режим, при котром вторичное напряжение формируется пачками импульсов. В результате выходное напряжение плавает с амплитудой до 1-го вольта.
Именно по этой причине коф усиления усилителя ошибки снижался до тех пор, пока не было получено устойчивое изенение длительности импульсов от минимальной нагрузки в 0,2 А до состояния ограничения тока. В результате коф усиления составил на разных экземплярах микросхемы от 5 до 10, т.е. номиналы резисторов R5 и R7 отличались в 5-10 раз.
Заморочится с усилителем ошибки заставило две вещи:
1. Двигатель с таходатчиком.
2. Два элемента Пельтье, валающиеся уже два года без дела.
Добавив в схему совсем не большое количество элементов удалось получить прототип СТАБИЛИЗАТОРА оборотов вот такой игрушки:
Двигатель на 12 вольт, усилие на валу развивает до 70 кг, имеет таходатчик (11 импульсов за оборот). Покупалось осенью 18 года, у этого продавца товар не доступен, поэтому РЕЗУЛЬТАТЫ ПОИСКА. Идея заключается в том, чтобы используя только блок питания организовать регулировку и стабилизацию оборотов данного двигателя. В принципе эксперимент прошел удачно, но требуется дополнительный источник питания для контроллера - на минимальных оборотах контроллер соскальзывает на релейный режим работы + самоблокировка по минимальному напряжению питания самого контроллера. Короче говоря самозапит организовать не удалось. В остальном же все отлично отработало.
Однако реализовать идею в ее первозданном виде не получилось и в итоге данный двигатель обрел вот такую ПЛАТУ УПРАВЛЕНИЯ.
Элементы Пельтье задуманы как охладители питьевой воды. В обычном режиме производится стабилизация выходного напряжения в 12 вольт. Как только вода охлаждается до установленной температуры сигнал с терморезистора уменьшает выходное напряжение. Причем за счет плавного уменьшения выходного напряжения и потерь "холода" происходит доохлаждение куллера постоянно и данный источник способен работать даже с самозапитом.
В крайнем случае можно придать иллюзию современного дизайна установив релейный терморегулятор W1209. Но это уже по Вашему усмотрению, мне достаточно крутилки со стрелками БОЛЬШЕ-МЕНЬШЕ.
Поскольку вторичные цели были достигнуты, было решено вернуться к традиционному исполнению и отказаться от использования усилителя ошибки, доверив контроль выходного напряжения только TL431. Так и появился третий вариант схемы импульсного блока питания на UC3843:
Мощность данного блока питания сравнительно не велика, поскольку его основная задача питать подстветку с током потребления 0,45 А и плату управления с потреблением меньше 0,7 ампера. Так тест на нагрузку он отрабоал легко. Однако смущал нагрев феррита. Собственно этот нагрев и заставил снизить частоту преобразования и установить на феррит радиатор.
Кстати, FR207 у меня на нашлось, поэтому снизить скорость диода клампера я решил использованием ферритовых бусин.
Ну и последний вариант - блок питания для реле, электроклапанов и электромагнитов. В этом преобразователе разделено выходное напряжение на 10 и 15 вольт. 15 вольт используется для включения, а 10 вольт для удержания.
На всякий случай напоминаю, что для сработки электромагнита требуется больше энергии, чем для его удержания в сработанном состоянии. Использование одного, номинального напряжения гарантирует довольно большой ресурс, но вызывает лишнее потребление и провоцируте хоть и не большой, но все же нагрев катушки соленоида. Используя два напряжения чуток усложняется управление, но снижается общее потрбелние, снижает нагрев катушек + получаем возможность уменьшения времени пролета контактов реле в момент переключения.
Казалось бы на этом можно было закончить изыскания в области контроллера UC3843, но мне на давал покоя принцип работы DK124 - ПОДРОБНО ЗДЕСЬ. Этот контроллер кроме ШИМ регулировки имеет несколько ступеней регулировки частоты и не попробовать этот же принцип я не мог.
В качестве оптрона СВЕТОДИОД-ФОТОТРАНЗИСТОР использовался самодельный оптрон методика изготовления которого показана здесь:
Регулировку частоты в зависимости от выходных параметров удалось получить не сразу - слишком разные токи свечения светодиода оптрона PC817 и используемого белого светодиода. Пришлось вводить подстроечный резистор регулирующий ток через каждый светодиод.
В итоге удалось получить полноценную регулировку и ШИМ и частотой.
Во время тестов выяснилась еще одна неприятность - используемый в блоке питания супрессор нагревается до температуры выше 100 градусов и естественно, что может стать причиной выхода из строя данного блока питания. Размышлял я не долго - принцип работы супрессора и клампера радикально отличается, но они выполняют одну и ту же задачу - подавляют выбросы обратного напряжения на силовом транзисторе. Поэтому параллельно супрессору я поставил клампер согласно расчетам программы Денисенко.
Таким образом выделяемое тепло я разделил на два элемента не влияющие друг на друга и хотя суупрессор все равно имеет температуру чуть выше, чем мне хотелось, но не выходит за пределы безопсаного режима работы.
Теперь осталось выяснить что собственно дает регулировка выходного напряжения частотой.
Спустя пару часов выяснилось, что она не дает практически ни чего - температура и силового транзистора и супрессора одинаковая и на частоте преобразования 53 кГц и на частоте 105 кГц.
В принципе я тешил слабую надежду на то, что радиакльно что то может измениться - во всех блоках питания в которых использовался принцип стабилизации изменением частоты использовался либо резонанс, либо дроссель рассеивания. Ни того, ни другого в данном блоке питания не было.
В общем разрезав дорожку я установил последовательно первичной обмотке дроссель на 4 мкГн, выпаянный из какого то БП.
В итоге температура супрессора осталось прежней, а вот температура силового транзистора снизилась на 10ºС (!) .
Замеры проводились при входном напряжении 230 вольт, при выходном напряжении 10 вольт протекающий через нагрузку ток составлял 1,5 ампера, что является СРЕДНИМ потреблением для данного источника питания.
В итоге получилась следующая схема источника питания:
На схеме уже подредактированы моточные данные, феррит использовался КИТАЙСКИЙ, зазор 0,3 мм (суммарно получается 0,6 мм).
Регулировка данного инвертора осуществляется следующим образом:
Проделываются все операции описанные в следующем параграфе, при этом движок резистора R1 должен находиться в правом по схеме положении примерно на сопротивлении 400. 500 Ом.
После проверки всех режимов работы блок питания нагружается на величину СРЕДНЕЙ нагрузки и перемещением движка R1 добиваются увеличения частоты преобразования в 2 раза.
Контролируем изменние частоты в зависимости от нагрузки. При МАКСИМАЛЬНОЙ нагрузке частота должна опуститься до расчетной величины - до той, на которую расчитывали трансформатор.
Первое включение свежесобранного блока питания лучше сделать от отдельного источника питания напряжением 12-15вольт. Напряжение подается непосредственно на контроллер и проверяется его работоспособность и частота управляющих импульсов.
Если все нормально, то перемычкой это же напряжение подается и на плюсосвой вывод сетевого конденсатора - проверяется напряжение на первичной обмотке, проверяется вторичное напряжение. Да, да - блок питания будет пытаться вытянуть вторичное напряжение, ведь длительность управляющих импульснов с UC3843 будет достигать максимального значения.
Дальше уже как обычно - вместо сетевого предохранителя лампа накаливания и пробуем включить в сеть. Кстати, на выход БП необходимо повесить хоть какую ни будь нагрузку. Резистора на 150-220 Ом вполне подойдет.
Более подробно пуско-наладочные работы показанны в видео:
Тесты данных блоков питания показаны в этом видео:
Архив с принципиальными схемами блоков питания в формате СПЛАН и чертежами печатных плат в формате СПРИНТ лежат в АРХИВЕ.
Некоторые рекомендации по выбору компонентов приведены ЗДЕСЬ.
Программа для расчетов импульсных блоков питания ЗДЕСЬ.
UC3845
ПРИНЦИП РАБОТЫ
Исходя из приведенной таблицы понятно, что UC3845 далеко не лучший вариант этой микросхемы, поскольку нижний предел по температуре у нее ограничен нулем градусов. Причина довольна проста - не каждый хранит сварочный аппарат в отапливаемом помещении и возможна ситуация, когда нужно что то подварить в межсезонье, а сварочник или не включается или банально взрывается. нет, не в клочья, даже куски силовых транзисторов врядли вылетят, но в любом сварки не будет, да еще и ремонт сварочнику нужен. Проскочив по Али я пришел к выводу, что проблема вполне решаема. Конечно же UC3845 популярней и их в продаже больше, но и UC2845 тоже есть в продаже:
У остальных производителей дела чуточки по другому:
Зависимость частоты от номиналов RC у микросхемы от Fairchild
Зависимость частоты от номиналов RC у микросхемы от STMicroelectronics
Зависимость частоты от номиналов RC у микросхемы от UNISONIC TECHNOLOGIES CO
С тактового генератора получаются довольно короткие импульсы в виде логической единицы. Эти импульсы разбигаются на три блока:
1. Все тот же финальный сумматор DD4
2. D-триггер DD2
3. RS-триггер на DD5
Триггер DD2 имеется только в микросхемах подсерии 44 и 45. Именно он не дает длительности управляющего импульса стать длинее 50% от периода, поскольку он с каждым приходящим фронтом логической единицы с тактового генератора меняет свое состояние на противоположное. Этим он делит частоту на два, формируя одинаковые по длительности нули и единицы.
Происходит это довольно примитивным образом - с каждым приходящим фронтом на тактовый вход С триггер записывает в себя информацию, находящуюся на информационном входе D, а вход D соединен с инверсным выходом микросхемы. За счет внутренней задержки и происходит запись проинвертированной информации. Например на инвертируюющем выходе находится уровень логического нуля. С приходом фронта импульса на вход С триггер успевает записать этот ноль, до того как ноль появится на его прямом выходе. Ну а если ня прямом выходе у нас ноль, то на инверсном будет логическая единица. С приходом следующего фронта тактового импульса триггер уже записывает в себя логическую единицу, которая появится на выходе через какие то наносекунды. Запись логической единицы приводит к появлению логического нуля на инверсном выходе триггера и процесс начнет повторяться со следующего фронта тактового импульса.
Именно по этой причине у микросхем UC3844 и UC3845 выходная частота в 2 раза меньше, чем у UC3842 и UC3843 - ее делит триггер.
Попадая на вход установки единицы RS триггера DD5 первый же импуль переводит триггер в состояние, когда на его прямом выходе логическая единица, а на инверсном - ноль. И пока на входе R не появится единица триггер DD5 будет находится в этом состоянии.
Допустим у нас нет ни каких управляющих сигналов извне, тогда на выходе усилителя ошибки OP1 появится напряжение близкое к опорному напряжению - обратной связи нет, инвертирующий вход в воздухе, а на не инвертирующий подано опорное напряжение, равное 2,5 вольта.
Тут сразу оговорюсь - лично меня несколько смутил этот усилитель ошибки, но более внимательно изучив даташит и благодаря тыканьем носом подписчиков выяснилось, что выход у этого усилителя не совсем традиционный. В выходном каскаде OP1 всего один транзистор, соединяющий выход с общим проводом. Положительное напряжение формируется генератором тока, когда этот транзистор приоткрыт или закрыт полностью.
С выхода OP1 напряжение проходит своеобразный ограничитель и делитель напряжения 2R-R. Кроме этого эта же шина имеет ограничение по напряжению в 1 вольт, так что при любых условиях на инвертирующий вход OP2 больше одного вольта не попадает ни при каких условиях.
OP2 - по сути компаратор, сравнивающий напряжения на своих входах, но компаратор тоже хитроделанный - обычный операционный усилитель не может сравнивать столь низкие напряжения - от фактического нуля до одного вольта. Обычному ОУ нужно либо большее напряжение на входе, либо отрицательное плечо напряжения питания, т.е. двуполярное напряжение. Этот же компаратор довольно легко справляется с анализом этих напряжений, не исключено, что внутри какие то смещающие элементы, но до принципиальной схемы нам как бы особого дела нет.
В общем OP2 сравнивает напряжение приходящее с выхода усилителя ошибки, точнее те остатки напряжения, которые получаются после прохождения делителя с напряжением на третьем выводе микросхемы (корпус DIP-8 имеется ввиду).
Но в данный момент времени на третьем выводе у нас вообще ни чего нет, а на инвертирующий вход подано положительное напряжение. Естественно компаратор его проинвертирует и на своем выходе образует четкий логический ноль, что на состоянии RS-триггера DD5 ни как не отразится.
По итогам происходящего мы имеет на первом сверху вход DD4 логический ноль, поскольку питание у нас в норме, на втором входе у нас короткие импульсы с тактового генератора, на третьем входе у нас импульсы с D-триггера DD2, у которых одинаковая длительность нуля и единицы. На и на четвертом входе у нас логический ноль с RS-триггера DD5. В результате на выхоже логического элемента будут полностью повторяться импульсы, которые формирует D-триггер DD2. Следовательно как только на на прямом выходе DD4 будет появляться логическая единица будет открываться транзистор VT2. На инверсном выходе в это же время будет находится логический ноль и транзистор VT1 будет закрыт. Как только на выходе DD4 появится логический ноль VT2 закрывается, а инверсный выход DD4 откроет VT1, что и послужит поводом для открытия силового транзистора.
Ток, который выдерживают VT1 и VT2 равен одному амперу, следовательно данная микросхема с успехом может управлять сравнительно мощными MOSFET транзисторами без дополнительных драйверов.
Для того, чтобы понять как именно происходит регулировка происходящих в блоке питания процессов был собран самый простой бустер, поскольку он требует наименьшего количества моточных деталей. Было взято первое попавшееся под руки ЗЕЛЕНОЕ кольцо и на нем намотано 30 витков. Количество не вычислялось вообще, просто был намотан один слой обмотки и не более того. За потребление я не переживал - микросхема работает в широком диапазоне частот и если начинать с частот под 100 кГц, то этого уже будет вполне достаточно, чтобы не дать сердечнику войти в насыщение.
Все внешние элементы имеют приписку out, означающую, что это СНАРУЖИ микросхемы деталюшки.
Сразу распишу что на этой схеме и для чего.
VT1 - база по сути в воздухе, на плате запаяны торчки для одевания джамперов, т.е. база соединяется либо с землей, либо с пилой, вырабатываемой самой микросхемой. На плате нет резистора Rout 9 - я чет пропустил его необходимость.
Оптрон Uout 1 задействует усилитель ошибки OP1 для регулировки выходного напряжения, степень влияние регулируется резистором Rout 2. Оптрон Uout 2 контролирует выходное напряжения минуя усилитель ошибки, степень влияния регулируется резистором Rout 4. Rout 14 - токоизмерительный резистор, специально взят на 2 Ома, чтобы не ушатать силовой транзистор. Rout 13 - регулировка порога сработки ограничения по току. Ну и Rout 8 - регулировка тактовой частоты самого контроллера.
Силовой транзистор это что то выпаянное из ремонтируемого когда то автомобильного преобразователя - полыхнуло одно плечо, менял все транзисторы (почему ВСЕ ответ ТУТ), а это так сказать сдача. Так что я не знаю что это - надпись сильно потертая, в общем это что то ампер на 40-50.
Rout 15 типа нагрузка - 2 Вт на 150 Ом, но 2 Вт маловато оказалось. Нужно или сопротивление увеличить, либо мощность резистора - вонять начинает, если поработает минут 5-10.
VDout 1 - для исключения влияния основного питания на работу контроллера (HER104 кажется по руки попался), VDout 2 - HER308, ну это чтоб не сразу бахнуло, если что пойдет не так.
Необходимость резистора R9я понял, когда плата уже была запаяна. В принципе этот резистор нужно будет еще подобрать, но это уже чисто по желанию, кому ОЧЕНЬ хочется избавится от релейного способа стабилизации на холостом ходу. Об этому чуть позже, а пока влепил этот резистор со стороны дорожек:
Первое включение - движки ВСЕХ подстрочников соединены должны быть с землей, т.е не оказывают влияния на схему. Движок Rout 8 установлен так, чтобы сопротивление этого резистора составляло 2-3 кОм, поскольку конденсатор на 2,2 нФ, то частота должна получится порядка 300 с хвостиком кГц, следовательно на выходе UC3845 мы получим где то около 150 кГц.
Снимаем напряжение со светодиода Uout 2 и на всякий случай проверям наличие пилы на верхнем выводе R15 (желтый луч):
Амплитуда чуть больше вольта и этой амплитуды может не хватить, ведь на схеме имеются делители напряжения. На всякий случай выкручиваем движок подстроечного резистора R13 в верхнее положение и контролируем, что у нас происходит на третьем выводе микросхемы. В принципе надежды полностью оправдались - амплитуды не хватает для начала ограничения тока (желтый лучик):
Отличительной чертой UC3845 является то, что протекающий через силовой транзистор он контролирует практически на каждом такте работы, а не среднее значение, как например это делает TL494 и если блок питания спроектирован правильно, то ушатать силовой транзистор не получится ни когда.
Теперь поднимаем частоту до тех пор, пока ограничение тока перестанет вносить свое влияние, впрочем сделаем запас - ставим ровно 100 кГц. Синий лучик у нас по прежнему показывает управляющие импульсы, а вот желтый ставим на светодиод оптрона Uout 1 и начинаем вращать регулятор подстроечного резистора. Некоторое время осциллограмма выглядит так же, как при первом опыте, однако появляется и отличие пройдя порог регулирования длительность импульсов начинает уменьшаться, т.е происходит реальная регулировка посредством широтно-импульсной модуляции. И это как раз один из финтов данной микросхемы - в качестве опорной пилы для сравнения она использует пилу, которая формируется на токоограничивающем резисторе R14 и таким образом создает стабилизированное напряжение на выходе:
Тоже самое происходит и при увеличении напряжения на отпроне Uout 2, правда в мое варианте не получилось получить такие же короткие импульсы, как в первый раз - не хватило яркости светодиода оптрона, а уменьшать резистор Rout 3 я поленился.
В любом случае стабилизация ШИМ происходит и вполне устойчиво, но только при наличии нагрузки, т.е. появление пилы, даже не большого значения, на выводе 3 контроллера. Без этой пилы стабилизация будет осуществляться в релейном режиме.
Теперь переключаем базу транзистора на вывод 4, тем самым принудительно подавая пилу на вывод 3. Тут не большая спотыкачка - для этого финта придется подобрать резистор Rout 9, поскольку амплитуда пыли и уровень постоянной составляющей у меня получился несколько великоват.
Однако сейчас больше интересен сам принцип работы, поэтому проверяем его, опустив движок подстроечника Rout 13 на землю начинаем вращать Rout 1.
Изменения в длительности управляющего импульса имеются, но они не такие значимые, как хотелось бы - сильно сказывается большая постоянная составляющая. При желании использовать такой вариант включения нужно более тщательно продумать как его правильней организовать. Ну а картинка на осциллографе получилась следующая:
При дальнейшем увеличении напряжения на светодиоде оптрона происходит срыв на релейный режим работы.
Теперь можно проверить нагрузочную способность бустера. Для этого вводим ограничение по напряжение на выходе, т.е. подаем не большое напряжение на светодиод Uout 1 и уменьшаем рабочую частоту. На социлограмме отчетливо видно, что желтый лучик не доходит до уровня одного вольта, т.е. ограничения по току нет. Ограничение дает только регулировка выходного напряжения.
Параллельно нагрузочному резистору Rour 15 устанавливаем еще один резистор на 100 Ом и на осциллограмме отчетливо видно увеличение длительности управляющего импульса, что ведет к увеличению времени накопления энергии в дросселе и с последующей отдачей ее в нагрузку:
Так же не трудно заметить, что увеличивая нагрузку увеличивается и амплитуда напряжения на выводе 3, поскольку возрастает протекающий через силовой транзистор ток.
Осталось посмотреть, что происходит на стоке в режиме стабилизации и при ее полном отсутствии. Становимся синим лучем на сток транзистора и убираем напряжение обратной связи со светодиода. Осциллограмма сильно не устойчивая, поскольку осциллограф не может определить по какому фронту ему синхронизироваться - после импульса довольно приличная "болтака" самоиндукции. В итоге получается следующая картинка.
Напряжение на нагрузочном резисторе тоже изменяется, но я не буду делать ГИФку - страница и так получилась довольно "тяжелой" по трафику, поэтому со всей ответственность заявляю - напряжение на нагрузке равно напряжению максимального значения на картинке выше минус 0,5 вольта.
ПОДВОДИМ ИТОГИ
На микросхеме довольно легко организовать стабилизатор тока, причем контроль протекающего тока контролируется на каждом такте, что полностью исключает перегрузку силового каскада при правильном выборе силового транзистора и токоограничивающего, точнее измерительного резистора, устанавливаемого на исток полевого транзистора. Именно этот факт сделал UC3845 наиболее популярной при проектировании бытовых сварочных аппаратов.
UC3845 имеет довольно серьезные "грабли" - изготовитель не рекомендует использовать микросхему при температурах ниже нуля, поэтому при изготовлении сварочных аппаратов будет логичней использование UC2845 или UC1845, но последние находятся в некотором дефиците. UC2845 несколько дороже, чем UC3845, не так катастрофически, как это обозначили отечественные продавцы (цены в рублях на 1-е марта 2017).
Частота у микросхем ХХ44 и ХХ45 в 2 раза меньше тактовой частоты, а коф заполнение не может превышать 50%, то для преобразователей с трансформатором наиболее благоприятно. А вот микросхемы ХХ42 и ХХ43 наилучшим образом подходят для ШИМ стабилизаторов, поскольку длительность управляющего импульса может достигать 100%.
Теперь, поняв принцип работы данного ШИМ контроллера можно вернуться и к проектированию сварочного аппарата на его основе.
Шим-контроллеры серии UC184x, UC284x, UC384x.
В статье "TL494, что это за "зверь" такой?", мы рассматривали шим-контроллер TL494.
В этой статье мы рассмотрим не менее, а наверное даже может быть более распространённые шим-контроллеры серии 184х, 284х, 384х.
Все эти шим-контроллеры предназначены для построения импульсных источников питания РЭА, с регулированием по току и напряжению, для управления ключевым каскадом на n-канальном МОП транзисторе.
В принципе это одни и те же контроллеры, отличающиеся лишь диапазоном рабочих температур, в котором эти контроллеры надёжно работают.
Для контроллеров х842 - КР1033ЕУ10, К1033ЕУ15А, 1114ЕУ7/ИМ.
Для контроллеров х843 - К1033ЕУ15Б, 1114ЕУ8/ИМ.
Для контроллеров х844 - КР1033ЕУ11, К1033ЕУ16А, 1114ЕУ9/ИМ.
Для контроллеров х843 - К1033ЕУ16Б, 1114ЕУ10/ИМ.
По традиции давайте посмотрим, что у него имеется внутри.
Состав.
В его составе имеется:
- источник опорного напряжения на 5В с внешним выводом 8;
- схема защиты от снижения напряжения питания (UVLO).
- генератор пилообразного напряжения (генератор);
- компаратор тока, используется в основном по сигналу ограничения тока;
- усилитель ошибки, используется в основном по напряжению;
- схема управления работой выходного каскада;
Микросхемы UCx844 и UСx845 имеют встроенный счетный триггер (обозначенный пунктиром), который служит для получения максимального рабочего цикла (шим-заполнения), равного 50%. Поэтому для задающих генераторов этих микросхем, нужно установить частоту переключения вдвое выше необходимой. Генераторы микросхем UCх842 и UCх843 устанавливаются на необходимую частоту переключения.
Максимальная рабочая частота задающих генераторов контроллеров семейства UCх842/3/4/5, может достигать 500 кГц.
Чем ещё отличаются друг от друга эти микросхемы. Это разным напряжением питания для этих микросхем.
Смотрим таблицу ниже;
Теперь по маркировке можно определить, что это за микросхема, например UC3843AD;
- это шим-контроллер с пониженным током запуска (500 мкА), с включением в работу при достижении напряжения питания 8,4 вольта и выключением при достижении порога напряжения питания 7,6 вольта, с рабочим циклом до 100% и выполнена в корпусе "SOIC-14".
Назначение выводов микросхемы.
Давайте теперь кратко рассмотрим назначение выводов и работу микросхемы (её блоков), а потом посмотрим это практически;
1. CMP - выход усилителя ошибки. Служит для коррекции АЧХ усилителя ошибки, с этой целью между выводами 1 и 2 обычно подключается конденсатор емкостью около 100 пФ. С помощью этого вывода, можно установить коэффициент усиления усилителя ошибки с помощью дополнительного резистора, который подключается к этим же выводам, что и конденсатор, а так же ещё и управлять работой контроллера.
Если на этом выводе уменьшить напряжение ниже 1-го вольта, то на выходе микросхемы (вывод 6) будет уменьшаться длительность импульсов, уменьшая при этом выходное напряжение (мощность) БП.
2. VFB - вход обратной связи усилителя ошибки. Используется в основном для регулировки (стабилизации) выходного напряжения. Если напряжение на этом выводе превысит 2,5 вольта (подаётся с внутреннего источника на не инвертирующий вход усилителя ошибки), то длительность (скважность) выходных импульсов начнёт уменьшаться, уменьшая тем самым выходное напряжение БП.
3. IS - сигнал обратной связи по току. Этот вывод обычно присоединен к резистору в цепи истока ключевого транзистора. В момент перегрузки МОП транзистора, напряжение на резисторе увеличивается и при увеличении его более 1-го вольта, импульсы на выходе 6 прекращаются и выходной транзистор закрывается.
4. RC - это вход генератора пилообразного напряжения и сюда подключается задающая RC- цепочка, для установки частоты внутреннего генератора.
Резистор от этого вывода подключается к выводу 8 - это вывод опорного напряжения 5 вольт, а конденсатор к общему проводу.
В основном на практике частота задающего генератора выбирается в диапазоне 35…85 кГц, и в RC-цепочке не рекомендуется использовать керамические конденсаторы.
Частота генератора рассчитывается по следующей формуле; - 1,72/R(кОм) * С(мкФ).
5. GND - общий вывод для первичной цепи. Этот вывод не должен быть напрямую соединён с общим выводом вторичных цепей схемы.
6. OUT - выход ШИМ–контроллера, подключается к затвору ключевому транзистору через резистор или параллельно соединенные резистор и диод (анодом к затвору).
7. VCC - вход питания ШИМ-контроллера, на этот вывод микросхемы подаётся напряжение питания в диапазоне от 16 вольт до 34. Более 34 вольт на микросхему подавать не рекомендуется, так как микросхема обладает защитой от перенапряжения, и если напряжение питания на ней превысит 34 вольта - микросхема отключится.
8. REF - выход внутреннего источника стабильного опорного напряжения 5 вольт, ток его нагрузки может достигать 50 мА.
Как это всё работает.
Микросхема работает в диапазоне напряжений, от порога выключения до 30 В. Для её запуска требуется первоначальное превышение питающего напряжения над порогом включения.
Пока напряжение питания не достигнет порога включения, микросхема не работает и потребляет незначительный ток: менее 500 мкА. Как только напряжение превысит порог включения микросхемы, она запускается и начинают работать все её узлы. Ток потребления микросхемой возрастает до 10-12 мА. При понижении питающего напряжения до порога отключения - микросхема отключается, ток её потребления опять падает.
Напряжение на выводе VCC ограничивается встроенным стабилитроном на уровне 34 В. Это дает возможность запустить микросхему от источника высокого напряжения, например выпрямленного сетевого напряжения через высокоомный резистор Rin, что позволяет организовать первоначальный запуск микросхемы (без дежурного блока питания), как показано на рисунке ниже.
Теперь давайте посмотрим на практике, как работает эта микросхема. Для этого на макетной плате соберём вот такую схему. Это более, чем достаточно для проверки её функциональности.
Запитывать нашу конструкцию будем от регулируемого блока питания, выходное напряжение выставим в районе 14-16 вольт, что вполне достаточно. Контроль выходных напряжений и сигналов будем производить с помощью осциллографа.
Выходной сигнал будем контролировать на выводе 6 микросхемы. Сначала поставим на макетную плату микросхему UC3843 и посмотрим работу генератора пилообразного напряжения, и что у неё на выходе.
Первый луч осциллографа подключим на выход МС (вывод 6), второй к генератору пилообразного напряжения (вывод 4). Движки переменных резисторов вниз по схеме, чтобы не оказывалось влияния на работу микросхемы.
Видим, что с каждым импульсом генератора пилообразного напряжения, на выходе присутствует один импульс с коэффициентом заполнения около 100% (несколько процентов мёртвое время). То есть выходная частота соответствует частоте генератора.
Возьмём теперь микросхему UC3845, и сравним выходное напряжение с 3843.
Что мы видим? На один выходной импульс приходится два импульса генератора пилообразного напряжения. То есть выходная частота этой микросхемы будет в два раза меньше частоты задающего генератора. Коэффициент заполнения выходных импульсов здесь около 50%.
Посмотрим теперь как работает токовая защита. Для этого второй луч подключаем к выводу 3 микросхемы (первый на выходе МС и нулевой уровень этого луча на втором делении снизу). Нулевой уровень второго луча находится внизу экрана ниже нулевого уровня первого луча (луч на уровне одного деления).
Чувствительность второго луча ставим 0,5 вольт на деление. На выводе 3 входное напряжение пока отсутствует и импульсы на выходе (вывод 6) присутствуют.
Начинаем поднимать входное напряжение на выводе "3", имитируя увеличение тока через выходной транзистор.
Что мы видим? Как только входное напряжение на выводе "3" достигло порога в 1,0 вольт (луч поднялся на два деления), на выходе микросхемы импульсы прекратились.
Давайте посмотрим теперь, как происходит регулировка выходного напряжения блока питания микросхемой. Второй луч для этого теперь подключим к выводу "2" микросхемы.
На выводе "2" входное напряжение отсутствует. На выводе "6" имеются выходные импульсы. Чувствительность второго луча (нижнего) установлена 1,0 вольт на деление, он в самом низу экрана.
Начинаем потихоньку переменным резистором поднимать входное напряжение на выводе "2" микросхемы до тех пор, пока не будет какого либо изменения на выходе. Нижний луч начал подниматься вверх.
Что мы видим? Как только входное напряжение на выводе "2" поднялось до 2,5 вольт, может чуть повыше (нижний луч поднялся вверх на два с половиной деления), выходные импульсы на выводе "6" прекратились.
Давайте посмотрим теперь, что будет происходить на выходе усилителя ошибки при такой-же ситуации, то есть на выводе "1" микросхемы.
Второй луч подключаем к выводу "1", Чувствительность луча выставим 0,5 вольт на деление, напряжение на входе (вывод "2") опять уменьшаем.
Включаем питание, входное напряжение на выводе "2" минимально, на выводе "1" выходное напряжение в районе 2,5 вольт (нижний луч поднят на пять делений). Начинаем переменным резистором постепенно увеличивать напряжение на "2" выводе микросхемы. Верхний луч пополз вниз, то есть напряжение на выводе "1" начало уменьшаться.
Увеличиваем переменным резистором ещё больше входное напряжение на выводе "2", до каких либо изменений в выходном напряжении на выводе "6".
Всё, импульсы на выходе микросхемы прекратились, первый луч на своей нулевой отметке (второе деление снизу), напряжение на выводе "1" около 0,7 вольта (второй луч поднят чуть больше одного деления от своей нулевой линии).
Теперь всё, что мы увидели на практике, постараюсь теоретически изложить ниже.
В этой микросхеме стабилизация напряжения и токовая защита, происходит не так, как в ранее рассмотренной нами микросхеме TL494. Здесь мы не увидим плавное изменение ширины выходных импульсов от изменения входного напряжения на входе усилителя ошибки (вывод "2"), или на входе компаратора тока (вывод "3"), так как выходными импульсами микросхемы (выходным каскадом) управляет компаратор (компаратор тока), и он при превышении каких либо порогов, просто выключает выходной каскад, а потом при нормализации напряжений и токов - включает.
Инвертирующий вход этого компаратора внутренне смещён на 1,0 вольт. Ограничение (отключение) выходных импульсов происходит, если на выводе "3" компаратора превысить этот порог в 1,0 вольт, или если на выводе "1" уменьшить напряжение так, чтобы оно не превышало падения напряжения на двух последовательно включенных диодах ( у нас получилось около 0,7 вольт). Напряжение на этом выводе достигает такой величины, если входное напряжение на входе усилителя ошибки (вывод "2") превысит 2,5 вольта, потому что на не инвертирующий вход этого усилителя ошибки по внутренним цепям подаётся напряжение 2,5 вольт, то есть что-то похоже на работу TL-431.
Ещё вывод "1" можно использовать, как второй контур регулирования выходного напряжения, если к этому выходу, например подключить транзистор, управляемый светодиодом (оптрон), который связан с выходом БП. Можно так же по этому входу блокировать (аварийно отключить) микросхему, замыкая его транзистором, или ещё чем либо на общий провод.
Если объяснить более понятным языком, то управление выходным напряжением (током) осуществляется здесь тоже усилителями ошибки, как и в ТЛ494, только в той разнице, что в ТЛ494 изменяется скважность выходных импульсов, а здесь управление происходит пачками выходных импульсов.
То есть при включении БП, и на выходе МС появляются импульсы. Напряжение на выходе БП начинает расти, и при достижении установленного порога (например 12 вольт), когда до этого напряжения зарядится конденсатор фильтра - импульсы на выходе МС прекращаются.
Подключенная нагрузка потребляет ток и конденсатор разряжается. Выходное напряжение начинает понижаться и в этот момент (после определённого порога) включается МС и на выход опять поступают импульсы. После нескольких импульсов (пачки импульсов) конденсатор снова подзаряжается до установленного порога и импульсы опять прекращаются.
Если ток нагрузки небольшой, то для подзаряда конденсатора хватает нескольких импульсов (короткая пачка) и соответственно проходит больше времени для подачи на выход следующей пачки импульсов (больше расстояние между пачками импульсов).
При увеличении тока нагрузки, соответственно нужно большее кол-во импульсов в пачке (длинная пачка), чтобы зарядить конденсатор, и соответственно также уменьшается время и между пачками импульсов.
Если мы представим, что пачка импульсов - это один импульс (который может быть и уже и шире), а время (расстояние) между пачками - это время между каждым импульсом - здесь получается полный аналог ШИМ , как и ТЛ494.
Выходной каскад микросхемы выполнен по полу-мостовой схеме и рассчитан на средний ток около 200 мА, пиковый же ток может достигать 1,0 А и на этом уровне ограничивается микросхемой.
Выходной каскад может управлять, как мощным полевым, так и биполярным транзистором.
Ну вот по этим микросхемам, в принципе всё, что хотел сказать. В интернете очень много по ним написано, и есть много технической документации. Если хотите узнать по ним что-то большее и более углубленно, поисковик Вам в руки.
Читайте также: