Режимы электронно лучевой сварки

Обновлено: 08.01.2025

Электронно-лучевая сварка использует кинетическую энергию потока электронов, движущихся с высокими скоростями в вакууме. Чтобы уменьшить потери кинетической энергии электронов при соударении с молекулами газов воздуха и обеспечить химическую и тепловую защиту катода, в электронной пушке создают вакуум порядка 10-4… 10-6 мм рт. ст.

Техника сварки

При сварке электронным лучом проплавление принимает форму конуса (рис. 1). Плавление металла происходит на передней стенке кратера, а расплавляемый металл перемещается по боковым стенкам к задней стенке, где и кристаллизуется.

Рис. 1. Схема переноса жидкого металла при электронно-лучевой сварке: 1 — электронный луч; 2 — передняя стенка кратера; 3 — зона кристаллизации; 4 — путь движения жидкого металла ​

Проплавление во время электронно-лучевой сварке в основном обусловлено четырьмя факторами:

  • давлением потока электронов;
  • характером выделения теплоты в объеме твердого металла;
  • реактивным давлением испаряющегося металла, вторичных и тепловых электронов;
  • излучением.

Также можно проводить сварку непрерывным электронным лучом. Но при сварке легкоиспаряющихся металлов — например, алюминия или магния — эффективность электронного потока и количество выделяющейся в изделии теплоты уменьшаются из-за потери энергии на ионизацию паров металлов. Тогда лучше вести сварку импульсным электронным лучом с большой плотностью энергии и частотой импульсов 100… 500 Гц.

В результате глубина проплавления повышается. Правильная установка соотношения времени паузы и импульса позволяет сваривать очень тонкие листы. Теплоотвод во время пауз уменьшает протяженность зоны термического влияния. Однако при этом возможно образование подрезов, которые можно устранить сваркой колеблющимся или расфокусированным лучом.

Основные параметры режима сварки

  • сила тока в луче;
  • ускоряющее напряжение;
  • скорость перемещения луча по поверхности изделия;
  • продолжительность импульсов и пауз;
  • точность фокусировки луча;
  • степень вакуумизации.

Таблица 1. Режимы сварки:

Металл Толщина, мм Режим сварки Ширина шва, мм
ускоряющее напряжение, кВ сила тока луча, мА скорость сварки, м/ч
Вольфрам 0,5 18…20 40…50 60 1,0
1,0 20…22 75…80 50 1,5
Тантал 1,0 20…22 50 50 1,5
Сталь типа 18–8 1,5 18…20 50…60 60…70 2,0
20,0 20…22 270 50 7,0
35,0 20…22 500 20 -
Молибден + вольфрам 0,5 + 0,5 18…20 45…50 35…50 1,0

Чтобы перемещать луч по поверхности изделия, можно либо передвигать изделие, либо сам луч с помощью отклоняющей системы. Отклоняющая система позволяет осуществлять колебания луча вдоль и поперек шва или по более сложной траектории. Низковольтные установки используют при сварке металла толщиной свыше 0,5 мм для получения швов с отношением глубины к ширине до 8:1. Высоковольтные установки применяют при сварке более толстого металла с отношением глубины к ширине шва до 25:1.

Основные типы сварных соединений, рекомендуемые для электронно-лучевой сварки, приведены на рисунке 2. Перед сваркой нужно провести точную сборку деталей — при толщине металла до 5 мм зазор не более 0,07 мм, при толщине до 20 мм зазор до 0,1 мм. Также важно поддерживать точное направление луча по оси стыка — отклонение не больше 0,2… 0,3 мм.

Рис. 2. Типы сварных соединений при сварке электронным лучом: а — стыковое (может быть с бортиком для получения выпуклости шва); б — замковое; в — стыковое деталей разной толщины; г — угловые; д и е — стыковые при сварке шестерен; ж — стыковые с отбортовкой кромок

Чтобы предупредить подрезы при увеличенных зазорах, нужен дополнительный металл в виде технологических буртиков или присадочной проволоки. В последнем случае появляется возможность металлургического воздействия на металл шва. Изменения зазора и количества дополнительного металла могут довести долю присадочного металла в шве до 50%.

Преимущества сварки электронным лучом

Высокая концентрация ввода теплоты в изделие. Теплота выделяется не только на поверхности изделия, но и на некоторой глубине в объеме основного металла. Фокусировка электронного луча может создать пятно нагрева диаметром 0,0002… 5 мм — это позволяет за один проход сваривать металлы толщиной от десятых долей миллиметра до 200 мм. Так можно получить швы, в которых соотношение глубины провара к ширине до 20:1 и более. Появляется возможность сварки тугоплавких металлов (вольфрама, тантала и др.), керамики и т.д. Уменьшение протяженности зоны термического влияния снижает вероятность рекристаллизации основного металла в этой зоне.

Малое количество вводимой теплоты. Обычно для равной глубины проплавления при электронно-лучевой сварке нужно вводить теплоты в 4… 5 раз меньше, чем при дуговой. В результате резко снижаются коробления изделия.

Отсутствие насыщения расплавленного и нагретого металла газами. Наоборот, в ряде случаев наблюдается дегазация металла шва и повышение его пластических свойств. Это приводит к высокому качеству сварных соединений на таких химически активных металлах и сплавах, как ниобий, цирконий, титан, молибден и др. Можно также достичь хорошего качества электронно-лучевой сварки на низкоуглеродистых, коррозионностойких сталях, меди и медных, никелевых, алюминиевых сплавах.

Недостатки сварки:

Возможность образования несплавлений и полостей. В корне шва на металлах с большой теплопроводностью и швах с большим отношением глубины к ширине.

Продолжительность приготовлений. Для создания вакуума в рабочей камере после загрузки изделий требуется длительное время.

Для плазменной дуги характерны крайне высокая температура (до 30000 °С) и широкий диапазон регулирования технологических свойств.

Газопламенная обработка металлов — это ряд технологических процессов, связанных с обработкой металлов высокотемпературным газовым пламенем.

Сварка трением это разновидность сварки давлением, при которой нагрев осуществляется трением, вызванным перемещением (вращением) одной из соединяемых частей свариваемого изделия.

При облучении поверхности тела светом энергия квантов (порций) света поглощается этой поверхностью. Образуется теплота, температура поверхности повышается. Если световую энергию сконцентрировать на малом участке поверхности, можно получить высокую температуру. На этом основана сварка световым лучом оптического квантового генератора — лазера.

При сварке токами высокой частоты (ТВЧ) изделие перед сварочным узлом формируется в виде заготовки с V-образной щелью между свариваемыми кромками.

Холодная сварка — способ соединения деталей при комнатной (и даже отрицательной) температуре, без нагрева внешними источниками.

Сварка взрывом — сравнительно новый и перспективный технологический процесс. Он позволяет получать биметаллические заготовки и изделия практически неограниченных размеров из разнообразных металлов и сплавов, включая те, которые сложно сваривать другими способами.

Что такое электронно-лучевая сварка и где она применяется

Метод электронно-лучевой сварки разработан в середине прошлого века. Он используется для соединения тонкостенных и толстостенных деталей из различных сплавов, включая тугоплавкие, сложные, деформирующиеся при нагреве. Лучевая сварка применяется даже для обработки керамики. Метод ЭЛС основан на способности электронов переносить энергию. Для образования потока заряженных частиц необходим вакуум высокой степени разряжения. Из-за этой технологической особенности перспективный метод не получил широкого применения.

Электронно-лучевая сварка

Сущность процесса и область его применения

Электроннолучевую сварку применяют при обработке тугоплавких металлов, легко окисляемых сплавов, которые невозможно варить другими методами. Под электронным лучом образуется расплав, который заполняет стык на всю глубину. Электроны одновременно воздействуют на металл по всей поверхности стыка. Функции сварочного устройства выполняет электронная пушка. Из разогретого тугоплавкого металла в глубоком вакууме до 10 -6 Па вырываются электроны, они ускоряются под силовым воздействием тока, устремляются в рабочую зону. ЭЛС действует аналогично лазерной, только в отличие от светового луча пучок электронов невидим. Энергия его значительно превосходит лазер, площадь воздействия меньше.

Достоинства и недостатки ЭЛС

Как и любой горячий метод соединения деталей, электронно-лучевая сварка имеет ряд преимуществ и недостатков. Сначала о достоинствах:

  • можно соединять детали толщиной от 0,2 мм;
  • во время плавки металла ванна расплава перемещается в нижнюю зону, стык заполняется полностью, затем начинается кристаллизация;
  • глубокое соединение образуется за один проход луча, высокая производительность процесса;
  • пучок электронов генерируется в постоянном или импульсном режиме, при обработке магниево-алюминиевых сплавов применяется импульсное воздействие;
  • вакуумизация улучшает качество шва, металл не реагирует с компонентами воздуха;
  • большой диапазон силы тока луча расширяет возможности установки.
  • сложность технологического оборудования, для работы на нем требуется длительная подготовка;
  • быстрый износ катода, тугоплавкая проволока под воздействием электрического поля разогревается до 2400°C;
  • при генерации электронов возникает рентгеновское излучение, необходимо обеспечить защиту сварщиков.

Технология электронно-лучевой сварки

Обязательным условием считается вакуумизация. Глубина разряжения в пушке обеспечивает беспрепятственное движение электронов. Из рабочей камеры также удаляется воздух с содержащимся в нем кислородом, окисляющим металл. Вакуум действует на шов аналогично флюсу – защищает от коррозии.

Метод сварки электронным лучом основан на способности электронов переносить энергию. Когда движению ничего не мешает, частицы прямолинейно следуют к свариваемой поверхности. Металл плавится под их воздействием. Прогрев идет по всей глубине зазора между деталями.

Область воздействия частиц – площадь в десятые доли микрона. Электроны проникают на глубину до 20 см. При методе электронно-лучевой сварки соотношение толщины зазора к ширине образуемого шва достигает 25. Возможности сварки за счет этого расширяются, электронным лучом соединяют детали из тугоплавких сплавов. Из-за высокой скорости воздействия в металле не создается остаточных напряжений. Хотя по мощности потребляемого тока ЭЛС сварка сопоставима с другими методами, энергозатраты в разы меньше за счет большой скорости варки.

Особенности и режимы сварки электронным лучом

Для сварочных работ соединяемые детали укладывают с минимальным зазором, пространство между двумя частями металла толщиной 20 мм не должен превышать 0,1 мм. Для сварки больших зазоров используется присадочный металл, допустимая доля присадки в шве – не более 50%. Направление луча, выходящего из электронной пушки, строго контролируется, допуск не более 0,3 мм.

В установках варят детали толщиной от 0,2 мм до 200 мм. Регулируемые мощностные параметры электронно-лучевого метода:

  • лучевая сила тока (для вольфрама толщиной 1 мм – до 80 мА, для сталей 35 мм – до 500 мА)
  • ускоряющее напряжение (для тонкостенных металлов используют низковольтные блоки питания, для толстостенного – высоковольтные);
  • скорость движения луча в зоне сварки (для вольфрама толщиной 1 мм – до 50 м/ч, для сталей 35 мм – 20 м/ч).

Степень вакуумизации влияет на плотность электронного луча, вакуум обеспечивает защиту шва от окисления. Из-за высокой скорости сварки, металл, склонный к пластической деформации, не успевает разогреться, на нем не появляются трещины. Сохраняется целостность деталей.

Оборудование ЭЛС

Устройство любой промышленной установки включает несколько обязательных элементов:

  • пушка – генератор плотного луча;
  • блок электропитания, обычно они подключаются к стандартной сети 220 В, дополнительно встраивается трансформатор;
  • электронный блок управления, визуально контролировать процесс варки нельзя, нужна точная контролирующая аппаратура;
  • вакуумная система, различается по мощности.

Схема электронно-лучевой сварки

В зависимости от назначения, установки способны образовывать криволинейные стыки, проваривать металл на всю глубину. Различают:

По типу вакуумирования:

  • камерные установки электронно-лучевой сварки предусматривают размещение деталей в камере, из нее полностью откачивают воздух;
  • локальные – изолируют только зону сварки, вакуум создается в небольшом объеме.

По параметрам разряжения:

  • специализированные установки создают разряжение до 10 -2 Па;
  • универсальные установки ЭЛС рассчитаны на максимальное давление до 10Па;
  • с параметрами так называемого промежуточного вакуума, давление инертного газа – от 10 до 100 Па;
  • ЭЛС с защитной атмосферой, в зону стыка аргон нагнетается под давлением свыше 100 Па.

Электронная пушка во всех установках устроена по одному принципу. Поток электронов создается между:

  • катодом, он бывает двух видов: плазменный (косвенного накала) или прямого накаливания (по сути, катод – это спираль из вольфрама, тантала или другого тугоплавкого сплава);
  • анодом, его делают их меди или стальной.

Поток меняет направление, отклоняется в одну или другую сторону, когда на управляющем электроде меняется потенциал.

На установках ЭЛС проводят сварку тугоплавких сплавов, стык проваривается насквозь за один проход. Метод электронно-лучевой сварки применяется в наукоемких областях, бытового распространения не получил из-за сложности и высокой стоимости оборудования.

Электронно-лучевая сварка

Для узкоспециализированных отраслей промышленности, где используются высокоактивные металлы, часто применяются нестандартные технологии. Это обусловлено тем, что обыкновенными методами очень сложно добиться поставленных результатов требуемого качества. Электронно-лучевая сварка является методом соединения металлических изделий, в котором в качестве основного источника энергии для расплавления и достижения нужной температуры выступает кинетическая энергия электронов. Она появляется в пучке, который выпускается соответствующей установкой, в качестве которой выступает электронная пушка. Также тут нужно обеспечивать защиту при помощи изоляции от внешних факторов путем их устранения, а не замещения, как это происходит в других методиках.

Электронно лучевая сварка

Электронно лучевая сварка

Данная методика далеко не так широко распространена, как остальные. Здесь множество сложностей в использовании самого оборудования, обслуживания и так далее. Тем не менее, это относительно безопасный и экологически чистый метод, почти не подвергающий опасности здоровье сварщика. Данная техника выпускается на протяжении более полувека.

Область применения

Основной сферой применения является сварка тугоплавких металлов, которые применяются в авиационной и космической отраслях. Благодаря своей тонкости работы установки электроннолучевой сварки находят применение в приборостроении. Также ведется работа с активными металлами, сложно переносящими контакт с газами и прочими элементами. Если требуется сварить шов, в котором нужна большая глубина проплавления, то следует использовать именно такой способ.

Крупные металлоконструкции, в которых металл обладает высокими качествами износостойкости и трудно поддается температурной обработке, может быть легко сварен таким методом. Электронно-лучевая сварка справляется со многими сложными работами. Для нее практически нет проблемных металлов, так что все сложные варианты сварки проводятся с ее помощью.

Преимущества

Технология электронно-лучевой сварки обладает рядом существенных преимуществ, если сравнивать ее с другими методиками соединения металла. Среди основных плюсов стоит отметить:

  • Здесь очень высокий коэффициент полезного действия, что позволяет тратить в 10, а то и в 15 раз меньше энергии, чем это требуется для ручной электродуговой сварки;
  • Благодаря высокой концентрации энергии, здесь можно всего за один проход сварить металл толщиной до 20 см, тогда как при использовании других методов потребовалась бы многослойная сварка;
  • Это весьма безопасный способ применения сварки, который не подвергает жизнь человека сильно большой опасности;
  • Здесь отсутствует процесс насыщения расплавленного металла сварочными газами, а также теми, которые находятся в атмосфере.
Недостатки

Несмотря на ряд явных преимуществ, которые существенно выделяют методику среди остальных, здесь есть и свои недостатки:

  • Процесс в рабочей камере невозможен без создания вакуума вокруг места сварки;
  • В корне шва могут образовываться полости и не провары, который приводят к ухудшению эксплуатационных характеристик;
  • Оборудование обладает высокой стоимостью и для многих сфер является недоступным;
  • Настройка происходит очень долго, так что далеко не всегда удобно создавать швы таким способом.
Режимы

Для проведения качественного процесса сваривания, следует учитывать все особенности настроек, а также металла, с которым ведется работа. К основным параметрам, которые определяют режим, относятся:

  • Ускоряющее напряжение;
  • Величина тока в выпускаемом луче;
  • Скорость передвижения пучка по поверхности свариваемой заготовки;
  • Точность фокусирования луча;
  • Продолжительность пауз и импульсов;
  • Степень вакуумизации.

Сами режимы для каждого типа свариваемого металла выглядят следующим образом:

Существует достаточно большое количество различных тугоплавких металлов, которые соединить между собой можно только при применении специальной технологии электронно-лучевой сварки. Ее суть заключается в фокусировании пучка света, который при воздействии на поверхность проводит ее нагрев.

Электронно-лучевая сварка

Электронно лучевая сварка

Сегодня электроннолучевая сварка считается одной из быстро развивающихся технологий. Она применяется для работы с тугоплавкими и химическими активными, разновидными веществами и качественными сплавами. Среди ключевых моментов электронно лучевой сварки можно отнести следующие моменты:

  1. Сваривание проводится за счет использования кинетической энергии летящих электронов, которые при соприкосновении с поверхностью становятся причиной нагрева поверхности.
  2. Развитие подобного метода электронной сварки можно связать с появлением современной вакуумной техникой и электронной оптики. Только после того как стали производить подобное оборудование технология стала часто использоваться в металлургической области.

Установка для электронно-лучевой сварки

Установка для электронно-лучевой сварки

Электронно лучевая сварка может оказывать требуемое воздействие на твердые и тугоплавкие сплавы. За счет локального воздействия температуры можно получить качественное соединение.

Сущность процесса ЭЛС

Электронная пушка применяется в качестве генератора светового пучка. К ее особенностям отнесем следующие моменты:

  1. В качестве генератора пучка и его перенаправления устанавливаются электроды и катоды.
  2. Для того чтобы сфокусировать луч устанавливается оптический элемент. В зависимости от типа оборудования он может изготавливаться из различных материалов.
  3. В качестве питания применяется бытовая сеть. Увеличить напряжение и другие параметры можно за счет встроенного трансформатора.

Технология электронно лучевой сварки предусматривает фокусирование луча за счет магнитной линзы. При касании электроны соударяются на большой скорости с небольшой поверхностью, при возникновении трения вырабатывается тепловая энергия. На этом этапе пучок кинетическая энергия становится тепловой, повышается пластичность обрабатываемого материала, и он плавится.

Процесс электронно лучевой сварки связан с применением специального оборудования. Оно позволяет получить качественное соединение, которое будет выдерживать существенное механическое воздействие и окружающей среды.

Существенно снизить потери энергии можно при проведении рассматриваемого процесса в условиях вакуума. За счет этого исключается вероятность термической деформации. Вакуумная среда выполняет несколько основных функций, которые должны учитываться:

  1. Если сравнивать применение вакуумной среды с газовой или флюсом, то она защищает обрабатываемую поверхность более эффективно.
  2. Обеспечивается высокая химическая защита катода.
  3. Снижается потеря кинетической энергии. Это связано с тем, что частицы сфокусированного луча не соприкасаются с молекулами воздуха.
  4. Повышается эффективность дегазации сварочной ванной. Вакуумная среда исключает вероятность появления оксидной пленки.

Схема ЭЛС

Однако, применение вакуумной среды существенно повышается стоимость процедуры. Это связано с тем, что специальное оборудование обходится достаточно дорого.

Техника ЭЛС

Электронно лучевая сварка характеризуется определенными особенностями, которые нужно учитывать. Среди особенностей выделим следующие моменты:

  1. Плавка проходит по средней стенке углубления. Выполнять сварку нужно с учетом того, что расплавленный металл будет перемещаться к задней части сварочной ванной. После этого он начинает кристаллизоваться.
  2. Можно проводить плавку непрерывным лучом. Исключением можно назвать обработку сплавов из алюминия или магния. Слишком высокая температура становится причиной ионизации паров. Именно поэтому в подобном случае рекомендуется применять импульсный луч.

При применении технологии, которая связана с воздействием на поверхность импульсного луча можно провести обработку заготовок небольшой толщины.

Параметры режима лучевой сварки и типы сварных соединений

Для качественной обработки поверхности материала следует рассмотреть основные параметры проведения электронной лучевой сварки. Они следующие:

  1. Степень вакуумизации. Вышеприведенная информация определяет то, что при сварке в условиях вакуума существенно повышается эффективность процесса.
  2. Показатели подаваемого тока в луче могут варьировать в большом диапазоне. Это связано с тем, что для толстых заготовок повышается показатель силы тока.
  3. Скорость передвижения луча по поверхности определяет производительность технологии. Кроме этого, скорость передвижения увеличивается для исключения вероятности прожига металла.
  4. Точность фокусировки луча также определяет эффективность процедуры. Этот показатель зависит от того, какое применяется оборудование.
  5. Продолжительность пауз. Некоторые технологии предусматривают прерывистое воздействие светового импульса.

Образцы электронно-лучевой сварки

Образцы электронно-лучевой сварки

Основные параметры можно найти в специальных таблицах. Применяемое оборудование позволяет вводить основные параметры.

Особенности сварки лучевого типа

Технология применения сфокусированного луча встречается крайне редко. Рассматривая особенности сварки лучевого типа уделяется внимание следующим моментам:

  1. Получить чистую поверхность и обеспечить максимальную степень дегазации металла можно только в случае проведения работы в условии вакуума.
  2. Нагрев проводится до высокой температуры, за счет обеспечивается плавка металла в зоне контакта. За счет этого получается мелкозернистый шов с привлекательными характеристиками.

Подобный метод не приводит к образованию трещин. Именно поэтому он используется для работы с материалами, которые восприимчивы к сильному нагреванию и могут плавится.

Применение ЭЛС

Примером можно назвать процесс изготовления деталей из различных алюминиевых сплавов. Минимальная толщина обрабатываемых деталей составляет 0,02 мм, максимальный показатель около 100 мм.

Достоинства и недостатки электронно лучевой сварки

Как и у многих других технологий, у рассматриваемой также есть достоинства и недостатки. К положительным сторонам можно отнести:

  1. На поверхность воздействует меньшее количество тепла. Как правило, при дуговой сварке оказывается более высокое тепловое воздействие. За счет этого существенно повышается степень коробления металла. Слишком высокая температура приводит к изменению кристаллической структуры.
  2. Есть возможность провести обработку керамики и некоторых других трудноплавких металлов. При фокусировании луча можно проводить обработку поверхности диаметром менее одного миллиметра.
  3. Высокое качество получаемого шва определяет то, что технология может применяться для получения ответственных изделий и декоративных элементов. Сфокусированный луч приводит к дегазации металлического шва, за счет чего повышается степень пластичности и некоторые другие параметры. Провести электронную сварку можно также и коррозионностойких сплавов.
  4. Применяемое оборудование позволяет проводить регулировку мощности в достаточно большом диапазоне. Поэтому электронно лучевая сварка может использоваться для работы с различными заготовками.
  5. Можно получить узкий, но глубокий шов. За счет этого существенно повышается прочность соединения.
  6. При выборе импульсного режима можно исключить вероятность деформации поверхности из-за воздействия высокой температуры.
  7. Метод может использоваться для термической обработки и перфорации, а также резки металла.

Есть и определенные недостатки. Они следующие:

  1. Для создания вакуумной среды требуется определенное время. Именно поэтому существенно снижается показатель производительности подобной технологии.
  2. В корне шва может появится полое отверстие. Именно поэтому следует проводить контроль качества соединения при применении специального оборудования.

Электронно лучевая сварка оправдана в том случае, если нужно провести обработку труднодоступных мест. Экономичность связана с небольшим показателем потребления энергии.

Виды сварочных лучевых установок

Оборудование для электронно лучевой сварки характеризуется высокой эффективность применения. Однако, сложность конструкции определяет ее высокую стоимость. В продаже встречается:

  1. С элементом прямого накала катодов.
  2. С элементом косвенного накала.

Некоторые установки электронно лучевой сварки могут проводить обработку поверхности по криволинейным траекториям. Для этого проводится установка компьютера, который и контролирует положение исполнительного органа относительно обрабатываемой поверхности.

Электронно-лучевая сварочная установка

Электронно-лучевая сварочная установка

Модели, выпускаемые зарубежными производителями, характеризуются высокой степенью автоматизации. Наибольшей эффективностью пользуется метод полного проплавления соединительного стыка.

Область применения

Как ранее было отмечено, рассматриваемый метод применяется для соединения различных материалов и сплавов, которые характеризуются высокой устойчивостью к воздействию тепла. Область применения следующая:

  1. Обработка алюминия.
  2. Соединение изделий, представленных сплавов из титана.
  3. Обработка бериллиевых металлов.
  4. Работа с танталом, ниобием, цирконием.
  5. Обработка легированных сталей.

Качественные изделия могут получать в ракетостроении и атомной энергетике. Это связано с тем, что лучевая технология позволяет получить однородный шов.

Использование сварки в промышленности

Применение ЭЛС постоянно расширяется несмотря высокую себестоимость процесса и некоторые ее недостатки. Технология характеризуется показателем КПД почти 95%. Этот показатель больше чем у более распространенной дуговой сварки.

Промышленное применение выражено следующим образом:

  1. При работе с активными металлами.
  2. При обработке термоупрачненных металлов.
  3. Для соединения тугоплавких материалов.
  4. При работе с камнем и керамикой.
  5. Для создания ответственных деталей.

Сегодня ЭЛС получила широкое распространение в сфере производства электронных изделий. За счет вакуума можно обеспечить герметизацию микросхем. При этом на поверхность может оказывать воздействие самая различная температура. Производительные установки подходят для работы в сфере авиации. Объем камер может варьировать в большом диапазоне. В заключение отметим, что в последнее время технология активно развивается. Это связано с возможностью получения качественных изделий при небольших затратах.


Сущность процесса состоит в использовании кинетической энергии потока электронов, движущихся с высокими скоростями в вакууме.

Для уменьшения потери кинетической энергии электронов за счет соударения с молекулами газов воздуха, а также для химической и тепловой защиты катода в электронной пушке создают вакуум порядка 10 -4 . 10 -6 мм рт. ст.

Техника сварки

При сварке электронным лучом проплавление имеет форму конуса (рисунок 1). Плавление металла происходит на передней стенке кратера, а расплавляемый металл перемещается по боковым стенкам к задней стенке, где он и кристаллизуется.

Схема переноса жидкого металла при электронно-лучевой сварке

Рисунок 1. Схема переноса жидкого металла при электронно-лучевой сварке: 1 - электронный луч; 2 - передняя стенка кратера; 3 - зона кристаллизации; 4 - путь движения жидкого металла

Проплавление при электронно-лучевой сварке обусловлено в основном давлением потока электронов, характером выделения теплоты в объеме твердого металла и реактивным давлением испаряющегося металла, вторичных и тепловых электронов и излучением. Возможна сварка непрерывным электронным лучом. Однако при сварке легкоиспаряющихся металлов (алюминия, магния и др.) эффективность электронного потока и количество выделяющейся в изделии теплоты уменьшаются вследствие потери энергии на ионизацию паров металлов. В этом случае целесообразно сварку вести импульсным электронным лучом с большой плотностью энергии и частотой импульсов 100 . 500 Гц. В результате повышается глубина проплавления. При правильной установке соотношения времени паузы и импульса можно сваривать очень тонкие листы. Благодаря теплоотводу во время пауз уменьшается протяженность зоны термического влияния. Однако при этом возможно образование подрезов, которые могут быть устранены сваркой колеблющимся или расфокусированным лучом.

Основные параметры режима электронно-лучевой сварки:

Таблица 1. Режимы электронно-лучевой сварки

Для перемещения луча по поверхности изделия используют перемещение изделия или самого луча с помощью отклоняющей системы. Отклоняющая система позволяет осуществлять колебания луча вдоль и поперек шва или по более сложной траектории. Низковольтные установки используют при сварке металла толщиной свыше 0,5 мм для получения швов с отношением глубины к ширине до 8:1. Высоковольтные установки применяют при сварке более толстого металла с отношением глубины к ширине шва до 25:1.

Основные типы сварных соединений, рекомендуемые для электронно-лучевой сварки, приведены на рисунке 2. Перед сваркой требуется точная сборка деталей (при толщине металла до 5 мм зазор не более 0,07 мм, при толщине до 20 мм зазор до 0,1 мм) и точное направление луча по оси стыка (отклонение не больше 0,2 . 0,3 мм).

Типы сварных соединений при сварке электронным лучем

Рисунок 2. Типы сварных соединений при сварке электронным лучем: а - стыковое (может быть с бортиком для получения выпуклости шва ); б - замковое; в - стыковое деталей разной толщины; г - угловые; д и е - стыковые при сварке шестерен; ж - стыковые с отбортовкой кромок

При увеличенных зазорах (для предупреждения подрезов) требуется дополнительный металл в виде технологических буртиков или присадочной проволоки. В последнем случае появляется возможность металлургического воздействия на металл шва. Изменяя зазор и количество дополнительного металла, можно довести долю присадочного металла в шве до 50%.

Читайте также: