Режим работы источников питания сварочной дуги

Обновлено: 09.01.2025

Требования к источникам питания. Основное требование к сварному соединению - его качество, т. е. источник питания должен обеспечивать необходимый процесс сварки и обладать высокими технологическими и технико-экономическими показателями.

Технологические показатели источника питания определяют его возможность обеспечивать необходимые характеристики процесса. Это в свою очередь определяется статическими и динамическими характеристиками источника и нелинейного участка цепи (дуги, сварочная ванна).

Статические свойства источника определяются внешней вольтамперной характеристикой (зависимостью выходного напряжения от силы тока нагрузки) и соответствием ее статической вольтамперной характеристике дуги. Устойчивость энергетической системы «источник - дуга - сварочная ванна» (И-Д-В) зависит от взаимного расположения этих характеристик и их видов.

Динамические свойства влияют на протекание переходных процессов в системе И-Д-В при резких изменениях проводимости нагрузки (холостой ход - короткое замыкание, капельный перенос металла, перемещение активных пятен на электродах, колебания напряжения сети (Uc), неравномерность скорости подачи электродной проволоки (Уп.п.) и т. д.).

Технико-экономические показатели:

а) коэффициент полезного действия КПД = Sполезн/Sзатр - отношение полной полезной мощности (выходной мощности) к полной затраченной (потребляемой из электрической сети);

б) коэффициент мощности cosφ = P/S - отношение активной мощности (Вт) к полной мощности (ВА);

д) эргономические показатели (удобство обращения с объектом);

е) соответствие требованиям техники безопасности.

Показатели «а» и «б» существенно влияют на энергопотребление.

Режимы работы источников питания

Любой источник питания рассчитывается на определенную нагрузку, которая не вызывает его нагрев выше допустимого. Источник рассчитывается на работу в номинальном режиме (IH, UH, РН, режим работы), величины записываются на источнике и в паспорте машины.

При работе источник нагревается (обмотки - за счет тепла, выделяющегося при протекании тока по ним, сердечник - от потерь на перемагничивание и вихревых токов ФУКО). Для источников питания определено три режима работы:

1 Длительный (продолжительный). Если мощность Р, потребляемая от сети, после включения источника постоянна в течение длительного времени, то после включения источника температура источника увеличивается пока не достигнет установившейся температуры Ту (рисунок 1.1, пунктирная кривая), когда приход тепла сравняется с отдачей тепла.

Рисунок 1.1 - Режимы работы источников питания а - перемежающийся; б - повторно-кратковременный; в - средняя величина (Тдоп)

При расчете подобных систем делается ряд допущений (весь источник нагревается одновременно, теплоотдача в окружающую среду постоянна).

2 Перемежающийся режим. При работе источника в этом режиме (рисунок 58.а) нагрузка (сварка) чередуется с паузой, в паузе источник не отключается от сети (ручные способы сварки). За время

работы tp температура источника не успевает достигнуть установившейся температуры Ту, а за время паузы tп источник не успевает охладиться до температуры окружающей среды Т0.

По истечении некоторого времени температура источника становится равной средней между максимальным значением Т2 и минимальным Т1 (рисунок 58.в). Обычно эта средняя величина принимается за допустимую температуру Тдоп.

Перемежающийся режим характеризуется параметром «Продолжительность нагрузки, ПН», %. Это относительная продолжительность нагрузки за время цикла (tц = tp+tп).

ПН% = (tp/ tp+tп) *100

Время цикла обычно указывается в паспорте источника, если нет, то для источников ручной дуговой сварки tц = 5 мин, для источников механизированной сварки и универсальных источников - tц = 10 мин.

3 Повторно-кратковременный режим отличается от перемежающегося тем, что во время пауз источник отключается от сети. Режим характеризуется параметром «Продолжительность включения, ПВ», %.

ПН% = (tв/ tв+tп) *100

Так как источники реально редко работают в номинальном режиме, то для определения режимов работы и токов при работе на других режимах используется соотношение, основанное на законе Джоуля-Ленца:

I1 2 *ПН1 = I2 2 *ПН2.

Из этой формулы следует:

1) Если значение ПВ или ПН отличается от номинального ПВн или ПНн (указанного в паспорте источника), то величина сварочного тока, соответствующая этому значению ПВ или ПН, определяется:

2) Для определения режима работы (ПН или ПВ) для токов, отличных от номинального:

Если определяется режим работы для тока, отличного от номинального в меньшую сторону, то формула справедлива. Если в большую сторону, то при этом не нужно забывать, что максимальная величина силы тока ограничивается возможностью источника. На практике максимальная величина силы тока источника обычно не превышает 1,2 от номинальной.

3) Длительные токи, т. е. токи при длительном режиме работы (ПН или ПВ равно 100 %), если известны паспортные (номинальные) параметры источника, можно определить по формулам:

Структура обозначений источников питания. Буквенно-цифровое обозначение источников питания представлено на рисунке 1.2.

Первая буква - сокращенное название изделия (А - агрегат, В - выпрямитель, И - источник питания, П - преобразователь, Т - трансформатор ).

Вторая буква - вид сварки (Д - дуговая, Ш - шлаковая, П - плазменная).

Третья буква (буквы) - способ сварки: Д - ручная штучными электродами; ДО - открытой дугой; ДФ - под флюсом; ДГ - защитные газы (два раза буква Д не ставится).

Дополнительно в буквенной части могут быть: буква «М» - многопостовые (однопостовые не имеют дополнительного обозначения), буквы «Б» или «Д» - вид двигателя (бензиновый или дизельный) для агрегатов с приводом от двигателя внутреннего сгорания, вид внешней характеристики (П, Ж, У ), И - импульсный источник.

Первые одна или две цифры - значение номинального сварочного тока, округленного до сотен ампер, две последние цифры - номер разработки.

Рисунок 1.2 - Структура обозначений источников питания

Далее буквы и цифры - климатическое исполнение и категория размещения по ГОСТ 15150.

Источники, поставляемые в места с умеренным климатом - У, тропическим климатом - Т, умеренно холодным климатом - УХЛ.

Категории размещения, т. е. источники могут эксплуатироваться в:

4 - закрытых помещениях с искусственным микроклиматом;

3 - закрытых помещениях с естественной вентиляцией;

2 - в помещениях со свободным доступом воздуха;

1 - на открытом воздухе.

Пример: ВДМ-1001 У3 (выпрямитель для дуговой сварки, многопостовый, с номинальной силой тока 1000 А, номер разработки - 01, климатическое исполнение У, категория размещения 3).

Классификация источников питания.

Источники питания классифицируются:

1) По роду тока: переменного и постоянного тока.

2) По виду внешних характеристик: с падающей, пологопадающей, жесткой, пологовозрастающей характеристикой (основные виды).

3) По способу получения энергии: зависимые (получающие энергию от стационарной электрической сети) и автономные (используется двигатель внутреннего сгорания).

4) По количеству постов: однопостовые и многопостовые.

5) По применению: общепромышленные (для ручной дуговой сварки и механизированной под флюсом низкоуглеродистых сталей толщиной более 1 мм.) и специализированные (для сварки легких сплавов, особо тонких изделий, сжатыми и импульсными дугами).

Вид внешних характеристик источника определяется особенностями сварочного процесса:

- для РДС штучными электродами, аргонодуговой сварки, механизированной под слоем флюса на автоматах со скоростью подачи проволоки, зависящей от напряжения дуги Уп.п. = f (Цд), используются источники с падающей характеристикой. В этом случае источник работает как регулятор тока.

- при механизированной сварке под флюсом с постоянной скоростью подачи сварочной проволоки используется ЖВХ (пологопадающие). Крутизна характеристик разная: большая - для аргоно-дуговой сварки, более пологие характеристики - для РДС и еще более пологие - для АДФ, жесткие и пологовозрастающие - для механизированной сварки в среде углекислого газа).

Регулирование тока - плавное и ступенчатое (ступенчатое - изменением числа или способа подключения обмоток, плавное - специальными регуляторами).

Необходимое значение рабочего напряжения и тока дуги связаны соотношениями:

РДС: Uд = 20 + 0,04 Iсв;

АДФ (на токах до 1000 А): Uд = 19 + 0,037 Iсв;

(на токах до 2000 А): Uд = 13 + 0,0315 Iсв.

Пример: сила тока при ручной дуговой сварке равна 200 А, тогда необходимое напряжение источника питания должно составлять 20 + 0,04-200 = 28 В.

Рисунок 1.3 - Возможные внешние характеристики сварочных источников питания: 3 - жесткая; 4 - пологовозрастающая; пунктир - с повышенным напряжением холостого хода

Сварочные свойства источников. К ним относятся:

1. Надежность зажигания дуги (влияет на качество начала шва, а при сварке малыми участками - на производительность).

2. Устойчивость и стабильность процесса сварки - способность поддерживать режим сварки при наличии возмущений (изменение длины дуги, капельный перенос, колебания напряжения сети).

3. Эффективность регулирования (скорость и пределы).

4. Характер переноса металла (зависит от скорости изменения тока при коротком замыкании и капельном переносе).

5. Качество формирования шва.

Методы оценки сварочных свойств источников - объективные и субъективные. Объективный метод: разрывная длина дуги может служить оценкой устойчивости процесса при колебаниях её длины. Определяется численно. Субъективный метод предполагает оценку каждого свойства в баллах экспертом-сварщиком по результатам опытной сварки согласно ГОСТ 25616-83 «Источники питания для дуговой сварки. Методы оценки сварочных свойств».

Источники сварочного тока

Источники сварочного тока должны обладать хорошими динамическими свойствами, т. е. мгновенно реагировать на изменения вольтамперной характеристики сварочной дуги, что отличает их от источников тока, питающих силовую и осветительную (бытовую) сети, которые должны обеспечивать постоянное напряжение независимо от нагрузки (величины тока, идущего потребителям). Их внешняя вольтамперная характеристика близка к прямой, параллельной абсциссе и называется жесткой (линия А на рис. 3.6).

Внешней характеристикой источника тока называется зависимость напряжения на его выходных клеммах от тока в сварочной цепи.

Обмотку сварочных генераторов и трансформаторов необходимо предохранить от разрушения токами короткого замыкания при возбуждении дуги. Поэтому внешняя вольтамперная характеристика источников сварочного тока должна быть падающей (кривая Б на рис. 3.6). Напряжение при их работе уменьшается с увеличением тока, а при токе короткого замыкания оно падает до нуля.

Напряжение холостого хода обычно 60–80В, что достаточно для зажигания дуги и относительно безопасно для работы сварщика. Точка 1 на рис. 3.6 соответствует режиму холостого хода в работе источника тока, т. е. в период, когда дуга не горит и сварочная цепь разомкнута. Точка 3 соответствует режиму короткого замыкания при зажигании дуги, когда напряжение стремится к нулю, а ток повышается. Величина тока ограничена, чтобы не допустить перегрева токопроводящих проводов и источников тока.

Режим устойчивого горения дуги определяется точкой 2 на рис. 3.6 при пересечении вольтамперных характеристик дуги (кривая В) и источника сварочного тока (кривая Б).

Рис. 3.6. Внешние характеристики источников питания и электростатическая характеристика дуги

Для питания сварочной дуги применяют источники переменного тока (сварочные трансформаторы) и источники постоянного тока (сварочные генераторы, выпрямители). Источники переменного тока более распространены.

Сварочные трансформаторы проще и надежнее в эксплуатации, долговечнее, у них выше КПД.

Однако устойчивость дуги при использовании постоянного тока значительно выше, чем при применении переменного тока. При питании переменным током нормальной частоты (50 Гц) происходит синусоидальное изменение напряжения и тока; ток в секунду 100 раз меняет свое направление, дуга периодически гаснет и зажигается, а при наличии недостаточной ионизации между электродами может прерваться.

При постоянном токе повышается устойчивость горения дуги, улучшаются условия сварки в различных пространственных положениях, появляется возможность вести сварку на прямой и обратной полярностях. Последнее, вследствие более высокой температуры на аноде, позволяет проводить сварку электродами с тугоплавкими покрытиями и флюсами. Выбор источника питания дуги определяется конкретными условиями производства.

В современной сварочной технике применяют разные системы сварочных трансформаторов.

Трансформатор с отдельной дроссельной катушкой.Падающая вольт-амперная характеристика этого трансформатора (рис. 3.7, б, кривая 1) обеспечивается последовательным включением индуктивного сопротивления дросселя.

Понижающий трансформатор (рис. 3.7, а) состоит из магнитопровода 3 (сердечника), первичной 1 и вторичной 2 обмоток. Он снижает напряжение сети 220 или 380 В до напряжения холостого хода 60–80 В. Дроссель 5 предназначен для получения падающей внешней характеристики и регулирования величины сварочного тока. При прохождении переменного тока через обмотку дросселя 5, установленную на магнитопроводе 4 и представляющую собой катушку с большим индуктивным сопротивлением, в ней возбуждается ЭДС самоиндукции, направленная противоположно основному напряжению.

Причем чем выше величина сварочного тока, тем больше падает напряжение на дросселе и уменьшается величина напряжения на дуге. Этим обеспечивают получение падающей внешней характеристики сварочного трансформатора (рис. 3.7, б).

Регулирование сварочного тока производится изменением воздушного зазора δ в дроссельной катушке с помощью рукоятки 6. Увеличение зазора приводит к увеличению сварочного тока I св 2 и уменьшению кривизны падающей вольтамперной характеристики источника питания сварочной дуги.

Уменьшение зазора соответствует уменьшению сварочного тока Iсв1 и увеличению кривизны вольт-амперной характеристики (рис. 3.7, б).

Рис. 3.7. Сварочный трансформатор с отдельной дроссельной катушкой: а – схема; б – внешние характеристики трансформатора (1) и сварочной дуги (2)

Устойчивость горения дуги достигается сдвигом во времени между нулевыми значениями напряжения и тока на обмотке дросселя. Плавное регулирование величины сварочного тока обеспечивают изменением воздушного зазора рукояткой 6 в сердечнике дросселя. С увеличением зазора индуктивное сопротивление дросселя уменьшается, а сварочный ток увеличивается от Iсв1 до Iсв2, при уменьшении зазора – наоборот (рис. 3.7, б).

Трансформатор с увеличенным магнитным рассеянием и подвижной вторичной обмоткой(рис. 3.8). При работе трансформатора основной магнитный поток Ф0, создаваемый первичной 1 и вторичной 2 обмотками, замыкается через магнитопровод 3. Часть магнитного потока ответвляется и замыкается вокруг обмоток через воздушное пространство, образуя потоки рассеяния ФS1 и ФS2, которые индуктируют в обмотках ЭДС, противоположную основному напряжению. С увеличением сварочного тока увеличиваются потоки рассеяния и, следовательно, возрастает индуктивное сопротивление вторичной обмотки, что создает падающую внешнюю характеристику.

Для обеспечения плавного регулирования сварочного тока изменяют расстояние между обмотками трансформатора. При сближении обмоток (рис. 3.8, б) частично уничтожаются противоположно направленные потоки рассеянияФS1 и ФS2, что уменьшает индуктивное сопротивление вторичной обмотки и увеличивает сварной ток. Минимальный сварочный ток соответствует наибольшему расстоянию между обмотками и максимальному потоку рассеяния.

Рис. 3.8. Трансформатор с увеличенным магнитным рассеянием и подвижной вторичной обмоткой

Сварочные генераторыявляются электрическими машинами постоянного тока и в зависимости от конструктивных особенностей могут иметь падающие, жесткие, пологопадающие и комбинированные внешние характеристики. Наиболее распространены генераторы с падающими внешними характеристиками, работающие по одной из следующих трех схем:

с независимым возбуждением и размагничивающей последовательной обмоткой;

с намагничивающей параллельной и размагничивающей последовательной обмотками возбуждения;

Требования к характеристике источника питания при РДС (эластичность дуги)

В условиях сварки возможно внезапное изменения длины дуги, а также может возникнуть необходимость несколько растянуть дугу (при сварке горизонтальных, вертикальных, потолочных швов), поэтому дуга должна быть устойчивой (не гаснуть или как говорят эластичной) в случае ее удлинения в некоторых пределах.

Критерием устойчивости или эластичности дуги может служить максимальная длина дуги, до которой ее можно растягивать без опасности обрыва. Но существует , при которой дуга гаснет.

Характеристики источника питания и дуги будем изображать линейными, будто бы рассматриваем очень малый диапазон изменения.


Требования к характеристике дуги при механизированной сварке с постоянной скоростью подачи электрода.


- коэффициент плавления по току

- коэффициент плавления по напряжению.


Если длина дуги укоротилась , то при возрастании токов скорость плавления возрастёт пропорционально увеличению тока, и при постоянной скорости подачи на повышенной скорости плавления дуга придёт в исходное состояние.

Очевидно, что при механизированной сварке с постоянной скоростью подачи явление саморегулирования дуги (поддержание оптимальной длины) будет тем эффективнее, чем более пологой будет характеристика источника питания к характеристике дуги. Т.е. требования прямо противоположны требованиям при РДС.

Эти же рассуждения распространяются и на случай сварки в углекислом газе с постоянной подачей скорости электродной проволоки.


Для сварки в применяют жёсткие характеристики с высоким для устойчивого повторного возбуждения дуги в случае короткого замыкания. Но идеальной была бы характеристика возрастающая, но менее круто, чем характеристика дуги .

Состояние неустановившегося равновесия или работы в переходном режиме, когда ток и напряжение изменяют свою величину под влиянием внешних воздействий, называется динамическим режимом, а график – динамической характеристикой.

При горении дуги перенос металла может быть мелко- ,крупнокапельным и струйным.

Рассмотрим самый неблагоприятный случай: крупнокапельный перенос.


Ток, возросший до , будет протекать через жидкую перемычку и очень быстро разогреет её до температуры кипения.

Перегрев жидкой перемычки током - вредный процесс, так как приводит к разбрызгиванию и угару.

Поэтому следует для снижения разбрызгивания снизить скорость нарастания тока при коротком замыкании, т.е. поставить в сварочной цепи дополнительную индуктивность.

Тогда при снижении скорости нарастания тока капля или жидкая перемычка может разорваться за счёт электродинамических сил, сжимающих её, действующих в фокусиальном направлении к центру и сил гравитации поверхностного натяжения, тогда капля с минимальными потерями попадёт в сварочную ванну.

Поэтому при сварке в углекислом газе, сопровождающейся частыми КЗ электрода на изделие, в цепи выпрямленного (постоянного) тока ставят дроссель индуктивности L, который создаёт индуктивное сопротивление и препятствует резкому нарастанию тока и спаду напряжения.


Современные источники питания, имеющие цифровые системы обратной связи. Которые обладают высоким быстродействием (на порядок выше индуктивности) регулирует ток, уменьшая его именно в момент КЗ, что обеспечивает более высокие технологические свойства как источников, так и сварных соединений.


Так как f=50 Гц, то 100 раз в секунду изменяется полярность на электродах, при этом объёмный положительный и отрицательный прикатодные заряды устремляются навстречу друг другу и ионизируются.

Степень ионизации снижается, и дуге нужно время для достижения горения.

Но вследствие деионизации и снижения температуры повторное загорание дуги возможно при

При смене полярности процесс повторится вновь: дуга возбудится при

Возникает время перерыва

Для электродов основного типа, содержащих , подавляющий ионизацию дуги, возбуждение дуги и её горение невозможно на переменном токе (УОНИ 13/45). Это происходит, потому что напряжение зажигания велико и время перерыва горения намного увеличивается, а степень ионизации активных пятен намного снижается, так что повторного возбуждения не происходит.

Для того, чтобы снизить перерыв горения дуги, в обмазку вводят легко ионизирующиеся компоненты: Са, Nа, К и т.д., т.е. щёлочные и щёлочно-земельные металлы. Они хуже защищают сварочную ванну, но обеспечивают устойчивое горение. Можно повысить напряжение на вторичной обмотке, но это опасно для сварщиков. Можно использовать осцилляторы и стабилизаторы, которые дают разряд конденсатора.


Возникает ЭДС; её потенциалы приложены так, что при резком возрастании тока индуктивность препятствует возрастанию, при резком уменьшении препятствует уменьшению.


При наличии индуктивности в сварочной цепи в идеале можно получить непрерывное горение дуги за счёт поддержания необходимого напряжения на дуге с помощью ЭДС, наведённой в индуктивности.

Режим рабыты источника питания. Три режима работы источника питания дуги.

Режим работы источников питания сварочной дуги

Требования к источникам питания. Электрическая дуга по своему характеру отличается от других потребителей электрической энергии. Особенности сварочной дуги предъявляют специфические требования к питающим ее источникам электрического тока. Для обеспечения легкого зажигания дуги напряжение холостого хода должно быть в 2—3 раза выше напряжения дуги, и в то же время оно должно быть безопасным для сварщика при условии выполнения им необходимых правил. При замыкании сварочной цепи в момент касания электрода с изделием возникает короткое замыкание, вызывая резкое увеличение сварочного тока,что может привести к загоранию сварочных проводов. Поэтому источник питания должен ограничивать силу тока короткого замыкания. Изменения напряжения дуги, происходящие вследствие изменения ее длины, не должны вызывать существенного изменения силы сварочного тока, а следовательно, изменения теплового режима сварки. Время восстановления напряжения от нуля до рабочего после короткого замыкания не должно превышать 0,05 с, что обеспечивает устойчивость дуги. Источник питания должен иметь устройство для регулирования сварочного тока.

Устойчивое горение дуги и стабильность режима сварки зависят от условий существования дугового разряда, свойств и параметров источника питания. Основным параметром источника питания является его внешняя статическая вольтамперная характеристика, которая выражает зависимость между напряжением на зажимах источника и сварочным током. Источники питания могут иметь крутопадающую, пологопадающую, жесткую характеристику (рис. 11). В зависимости от способа сварки источник тока выбирают по типу внешней характеристики. Для ручной электродуговой сварки применяют источники с падающей внешней характеристикой, у которых при коротком замыкании напряжение снижается до нуля, что не дает расти силе тока короткого замыкания, а при возбуждении дуги, когда ток очень мал, на дуге обеспечивается повышенное напряжение. Источники питания с падающей внешней характеристикой позволяют удлинять дугу в разумных пределах, не боясь ее быстрого обрыва, или уменьшать ее без чрезмерного увеличения тока.

Рис. 11. Внешние характеристики источника питания
1 — крутопадающая; 2 — пологопа-дающая; 3 — жесткая; 4 — возрас тающая

Рис. 12. Электрическая принципиальная схема трансформатора ТДМ-401У2
С — фильтр защиты от радиопомех; К — переключатель диапазонов токов; — обмотка первичная;

Источники питания переменного тока. Такими источниками являются сварочные трансформаторы, преобразующие электрический ток одного напряжения в электрический ток другого напряжения. Сварочные трансформаторы представляют :обой регулируемое индуктивное сопротивление, необходимое для получения требуемой внешней характеристики, т. е. устойчивого горения сварочной дуги. В старых конструкциях трансформаторов это достигалось с помощью индуктивных дросселей, включаемых последовательно в цепь вторичных обмоток трансформаторов. В современных трансформаторах для обеспечения нормального процесса сварки используется принцип перемещения вторичной обмотки относительно неподвижной первичной,что позволяет изменять индуктивное сопротивление и создавать падающую внешнюю характеристику. В подавляющем большинстве выпускаемых промышленностью трансформаторов применяется этот принцип. Наибольшее распространение при ручной сварке получили трансформаторы типа ТД и ТДМ, в которых для регулирования процесса сварки используют повышенное магнитное рассеяние — индуктивное сопротивление. Это обеспечивает специальная конструкция магнитной цепи и расположение обмоток, искусственно увеличивающие магнитные поля рассеивания, что усиливает индуктивность рассеяния обмоток, а следовательно, их индуктивные сопротивления. Перемещая катушку одной из обмоток, можно плавно регулировать индуктивные сопротивления обмоток и устанавливать необходимый сварочный ток.

На рис. 12 представлена схема сварочного трансформатора ТДМ-401У2. Трансформатор однофазный, стержневого типа. Обмотки имеют по две катушки, расположенные попарно на общих стержнях магнитопровода. Катушки первичной обмотки неподвижные и закреплены у нижнего ярма. Катушки вторичной обмотки — подвижные. Через верхнее ярмо сердечника трансформатора пропущен ходовой винт, который ввинчивается в ходовую гайку, вмонтированную в обойму подвижных вторичных катушек. При вращении ходового винта, осуществляемого с помощью рукоятки, находящейся сверху трансформатора, перемещаются вторичные катушки и тем самым изменяется расстояние между обмотками.

Бесперебойная работа трансформаторов во многом зависит от правильной их эксплуатации. Перед сдачей трансформатора в эксплуатацию его следует тщательно осмотреть, устранить механические повреждения; проверить обмотки на обрыв, изоляцию обмоток от корпуса; правильно заземлить трансформатор. При установке трансформаторов на открытом воздухе их следует защищать от атмосферных осадков, так как при отсыревшей изоляции обмоток возможен пробой изоляции и замыкание между витками. Однако перегрев трансформатора (установка около печи, горна, паропровода) также вредно отражается на изоляции обмоток. В процессе эксплуатации трансформаторы необходимо регулярно осматривать. При плохом уходе слой грязи может достигнуть такой толщины, что нарушит охлаждение рабочих частей и приведет к перегреву обмоток, а это вызовет замыкание токоведущих частей на корпус. Особенно опасной является грязь с металлической пылью. Плохие контакты, особенно в сварочной цепи, вызывают большие падения напряжения и недопустимые перегревы. Значительная часть сварочных трансформаторов выходит из строя из-за небрежного подключения сварочного провода к зажимам и нерегулярной проверки состояния контактов.

Источники питания постоянного тока. К этой группе относятся сварочные преобразователи, выпрямители и агрегаты.

Сварочный преобразователь состоит из коллекторного или вентильного (безколлекторного) генератора постоянного тока и асинхронного двигателя, установленных на общем валу. В коллекторных генераторах переменная э. д. е., индуктируемая в якоре, выпрямляется во вращающемся контактном устройстве, называемом коллектором. Внешние характеристики сварочных генераторов и ограничение тока короткого замыкания достигаются с помощью соответствующих электрических схем генераторов. Коллекторные генераторы выпускают следующих схем: с независимым возбуждением и размагничивающей последовательной обмоткой; с самовозбуждением и размагничивающей последовательной обмоткой (с намагничивающей параллельной и размагничивающей последовательной). Генератор с самовозбуждением менее чувствителен к кратковременным колебаниям напряжения электрической сети, чем гене-патор с независимым возбуждением. У универсальных сварочных генераторов получение падающих и жестких внешних характеристик происходит в зависимости от схемы включения или выключения последовательной размагничивающей обмотки. Вентильный сварочный генератор — генератор с самовозбуждением состоит из индукторного пульсационного синхронного генератора повышенной частоты (200 или 400 Гц) особой конструкции и бесконтактного выпрямительного устройства. Правильный уход за преобразователями во многом предопределяет их надежность и долговечность работы. На строительно-монтажной площадке преобразователи необходимо защищать от дождя и снега. Но при этом нельзя нарушать нормальное охлаждение машины — входные и выходные отверстия для прохода воздуха закрывать нельзя. В противном случае произойдет перегрев обмоток. При эксплуатации сварочного преобразователя в первую очередь нужно следить за коллектором, щетками, щеткодержателями и подшипниками. При нормальном состоянии у коллектора нет следов нагара. Пыль с коллектора следует систематически удалять чистой тряпкой, смоченной в бензине. Шум шарикоподшипников должен быть глухим, ровным, без щелчков и резких звуков. Щетки необходимо регулярно осматривать и изношенные своевременно удалять.

В последние годы сварочные преобразователи вытесняются выпрямителями, у которых отсутствуют вращающиеся части, работают они бесшумно, имеют меньшие потери энергии при холостом ходе, более высокий КПД, более широкие пределы регулирования сварочного тока и напряжения, меньшую массу, равномерную загрузку трехфазной сети. Сварочный выпрямитель состоит из понижающего трансформатора с устройством для регулирования тока или напряжения; выпрямительного блока, включающего селеновые или кремневые вентили; вентилятора для охлаждения выпрямительного блока. Выпускают одно- и многопостовые сварочные выпрямители. Однопостовые выпрямители имеют жесткую и пологопадающую или крутопадающую вольтамперную характеристику. Универсальные выпрямители обеспечивают крутопадающую и жесткую характеристику. Сварочный ток регулируется чаще всего изменением расстояния между обмотками трансформатора. Выпускают передвижные и стационарные выпрямители. В процессе эксплуатации выпрямители необходимо периодически осматривать, чтобы устранить мелкие нарушения, которые могут привести к аварии. Очень внимательно нужно следить за работой вентилятора, так как его неисправность приведет к перегреву полупроводниковых элементов и выходу из строя выпрямителя. Один раз в 3 месяца следует тщательно очищать полупроводниковые элементы от пыли и грязи с помощью сжатого воздуха. Выпрямитель, не эксплуатировавшийся более года, перед работой необходимо включить на 20 мин на напряжение, равное половине номинального, а затем на 4 ч на номинальное напряжение без нагрузки. Это необходимо сделать для подформовки полупроводниковых элементов.

Получение тока от сварочных агрегатов обходится дороже, чем от трансформаторов, преобразователей и выпрямителей. Поэтому применять их целесообразно только при отсутствии электрической сети. Сварочный агрегат состоит из сварочного генератора и дизельного двигателя, установленных на общей раме и соединенных эластичной муфтой. У однопостовых сварочных генераторов при коротком замыкании резко возрастает нагрузка, а при холостом ходе сильно падает. Поэтому для поддержания постоянной частоты вращения двигатели внутреннего сгорания имеют автоматические регуляторы частоты вращения, обеспечивающие быстрое восстановление ее при переходе от короткого замыкания к холостому ходу. При возбуждении сварочной дуги в связи с увеличением нагрузки частота вращения ротора падает. Однако срабатывает автоматический клапан и частота вращения двигателя восстанавливается. При холостом ходе нагрузка уменьшается, и клапан снижает частоту вращения, а затем поддерживает ее уменьшенной.

Читайте также: