Реферат по газовой сварке

Обновлено: 26.01.2025

Сварка - это процесс получения неразъемных соединений посредством установления межатомных связей между соединяемыми частями при их нагреве, пластическом деформировании или совместном действии того и другого. С помощью сварки между собой соединяются однородные и разнородные металлы, их сплавы, некоторые керамические материалы и пластмассы. Сварка является одним из наиболее широко распространенных технологических процессов в машиностроении, строительстве, ремонтном деле. Особое место среди видов термической сварки занимает газовая сварка. Способ газовой сварки был разработан в конце XIX столетия, когда начиналось промышленное производство кислорода, водорода и ацетилена. В тот период газовая сварка являлась основным способом сварки металлов и обеспечивала получение наиболее прочных сварных соединений. В дальнейшем с созданием и внедрением высококачественных электродов для дуговой сварки, автоматической и полуавтоматической дуговой сварки под флюсом и в среде защитных газов (аргона, гелия и углекислого газа и др.), газовая сварка была постепенно вытеснена из многих производств этими способами электрической сварки. Тем не менее, сравнительная простота оборудования и инструментов, большая универсальность позволили использовать газовую сварку для соединения небольших деталей из различных металлов и для всевозможных ремонтных работ в различных отраслях народного хозяйства, особенно в сельском хозяйстве. Физическая свариваемость характеризует принципиальную возможность получения монолитных сварных соединений и главным образом относится к разнородным металлам.

Задачи работы: 1) изучить учебную, научно – популярную литературу по истории развития газовой сварки и резки; 2) расширить знания об истории развития газовой сварки и резки

В 1944г. создан специализированный Всесоюзный научно-исследовательский институт автогенной обработки металлов - ВНИИавтоген (ныне ВНИИавтогенмаш). Деятельность института направлена на научно-теоретическое изучение существующих технологических процессов и разработку новых, их механизацию и автоматизацию. За годы своего существования институт разработал несколько десятков новых прогрессивных технологических процессов и технологических материалов для газотермического напыления, газопламенной сварки, резки, наплавки, пайки, закалки и нагрева. Создал несколько сотен новых газорезательных машин, установок для наплавки, пайки и закалки, генераторов и другого оборудования для производства ацетилена, горелок, резаков, редукторов, металлизационных аппаратов и т.п.

В послевоенные годы создана специальная отрасль промышленности - автогенное машиностроение, в рамках которой был построен одесский завод «Автогенмаш», начавший выдавать продукцию в 1952г. На Воронежском экспериментальном заводе автогенного машиностроения, ранее производивший кислород и ацетилен, был организован выпуск ацетиленовых генераторов и оборудования для получения растворенного ацетилена. Позднее автогенную аппаратуру начал выпускать Кироваканский завод автогенного машиностроения, также построенный в рамках отрасли автогенного машиностроения [1].

В результате проводимых научных изысканий увеличивается количество процессов газопламенной обработки. Помимо кислородной резки и газовой сварки, получили развитие и многие другие процессы газопламенной обработки: металлизация, наплавка, поверхностная закалка, напыление и сварка пластмасс, газопламенная пайка и др. Но доминирующее значение по-прежнему имеет кислородная резка.

В первые послевоенные годы широко стала внедряться резка с использованием пропан-бутана и природного газа, а в конце 40-х годов параллельно фирмой “Union Carbide and Carbon Corp” (США - ФРГ), институтом ВНИИавтоген и кафедрой сварочного производства МВТУ им. Баумана были разработаны и внедрены в производство способы кислородно-флюсовой резки.

Период после 50-х годов характеризуется в основном качественными изменениями в технологии и оборудовании для газопламенной обработки. Особенно интенсивно развивается механизация и автоматизация процессов резки металла. Создаются машины для газокислородной резки, разрабатываются новые разновидности процессов и оборудования для кислородно-флюсовой резки, безгратовой резки, резки кислородом низкого давления, сплошной огневой зачистки проката и резки горячей стали в металлургии, газофлюсовой сварки и наплавки, «низкотемпературной» пайкосварки чугуна и цветных металлов и т.п.

Весьма бурно развиваются механизация и автоматизация процессов газопламенной обработки металлов, в первую очередь это касается процессов газокислородной резки. Наибольших успехов в этом добились такие страны, как Япония, ФРГ, США. С начала 70-х годов прошлого столетия на крупных промышленных предприятиях широко начинают использоваться газорезательные машины с числовым программным управлением. Они позволяют производить высокоточную резку под сварку и механообработку заготовок любой конфигурации и сложности, с постоянной повторяемостью размеров и минимальными отклонениями этих размеров от номинала, а также чистотой поверхности реза, сопоставимой с этими же параметрами при механообработке.

Существенным вкладом в решение проблемы качественных показателей кислородной резки является разработанный в конце 60-х - начале 70-х годов ВНИИавтогенмашем под руководством А. Н. Шашкова новый способ резки «смыв-процессом». На этом принципе разработаны специальные многоструйные резаки, сочетающие в себе преимущества способа скоростной резки с одновременным повышением чистоты поверхности реза. При резке «смыв-процессом» скорость резки в 1,5 - 2 раза выше, чем при обычной резке, а чистота поверхности соответствует 5 - 6 классу чистоты (Ra - 1,6).

В 50-е годы кафедрой сварочного производства Киевского политехнического института проводятся исследования газодинамики кислородной струи, которые привели к разработке новой технологии резки кислородом низкого давления (0,1 - 0,4 МПа), позволяющей резать металл толщиной до 1,5 - 2 м. К началу 70-х этот процесс внедрен на большинстве металлургических предприятий СССР.


  1. Современные технологические процессы термической резки

Сущность кислор одной резки заключ ается в сжиг ании металла в кислороде и выдувании стр уей кислорода проду ктов горения. Дл я успешного проте кания процесса мет алл должен бы ть предварительно наг рет до темпер атуры его восплам енения в кисло роде. Процесс рез ки начинается с нагрева мета лла в начал ьной точке ре за до темпер атуры, достаточной дл я его восплам енения. Направленный н а нагретый учас ток, режущий кисл ород вызывает интенс ивное окисление верх них слоев мета лла, которые, сго рая, выделяют значит ельное количество тепл оты и нагре вают до темпер атуры воспламенения нижеле жащие слои, т. е. проц есс, в опреде ленной степени, вхо дит в реж им автонагрева. Эт о обстоятельство да ет предпосылки доста точно экономного расх ода горючего га за в проц ессе резки

Проц есс резки лег ко поддается механи зации и автомат изации. Машины дл я кислородной рез ки могут рез ать углеродистые ста ли толщиной д о 300 мм нескол ькими резаками, в том чис ле и V- ил и Х-обра зной подготовкой кро мок под сва рку с одновре менной резкой. Он и дешевле плазм енных и лазе рных и бол ее просты в обслуживании. Некот орые специальные маш ины, например дл я металлургического произв одства, позволяют произв одить резку ста лей толщиной д о 1200мм.

Маш ины для газокисл ородной резки осущес твляют разделительную и поверхностную рез ку. Условно и х можно классифи цировать следующим обра зом (Машиностроение. Энцикл опедия в сор ока томах. То м IV-6 Оборудование дл я сварки. М.: Машиностроение, 1999)

Руч ную газокислородную рез ку также подраз деляют на раздели тельную и поверхн остную. Поверхностная рез ка заключается в снятии сл оя (как прав ило - дефектного) с поверхности мета лла, а так же вырезке одино чных канавок, напр имер удаление дефек тного сварного шв а. Разделительной рез ке подвергаются н е только мета ллы, но и некоторые неметалл ические материалы, напр имер бетон. Дл я этих цел ей в насто ящее время вс е более широ кое применение нахо дят газокислородные устан овки для рез ки бетона, устан овки кислородно-порош ковой копьевой рез ки, кислородно-флюс овой резки. В первом прибли жении оборудование дл я ручной газо вой резки мож но классифицировать следу ющим образом [3]

Несм отря на кажущ уюся простоту проц есса, далеко н е все мета ллы поддаются газокисл ородной резке. Эт о, в пер вую очередь, связ ано с те м, что у большинства мета ллов температура плавл ения ниже темпер атуры воспламенения в кислороде, чт о и прив одит к невозмо жности процесса рез ки. Кроме то го, препятствием н а пути это го процесса зача стую становится высо кая температура плавл ения окислов мета лла, их недоста точная жидкотекучесть, высо кая теплопроводность мета лла и д р. факторы.

Эт и ограничения в середине 50-х годов прош лого века прив ели к появл ению новых, бол ее концентрированных, че м газовое пла мя, источников нагр ева. Возникают проц ессы газоэлектрической, плазм енной, электронно-луче вой и (в 70-х год ах) газолазерной рез ки. Осваиваются спос обы обработки неметалл ических материалов высокотемп ературной порошково-кислор одной и термореа ктивной струями га за. Это обусл овило появление в технической литер атуре вместо собират ельного термина «газо вая» или «огне вая» резка, охватыв ающего различные проц ессы кислородной рез ки, нового, объедин яющего названия - «термич еская» резка, приня того Международным инсти тутом сварки.

Лазе рная резка осно вана на тепл овом действии лазер ного луча и происходит пр и непрерывном ил и периодическом переме щении источника теп ла, сформированного специа льной оптической сист емой в пят но с высо кой плотностью мощн ости. В зависи мости от констру ктивных особенностей излуч ателя возможны непрер ывный (газовый лаз ер) и импул ьсный (твердотельный лаз ер) режим рез ки. В насто ящее время наибо льшее распространение дл я резки полу чили лазеры непрер ывного действия.

Дл я повышения эффекти вности резки в зону обраб отки совместно с лазерным луч ом подается стр уя газа, способс твующая удалению проду ктов из зо ны реза, а в некот орых случаях и инициирующая химич ескую реакцию в месте воздей ствия на мет алл (газолазерная рез ка). В пер вом случае испол ьзуют инертные ил и нейтральные га зы (аргон, аз от, углекислый га з), во вто ром - кислород ил и воздух. Наибо льшее распространение полу чил способ рез ки лазерным излуч ением с пода чей струи кисло рода в зо ну реза соо сно с луч ом лазера.

В конце 70-х - начале 80-х годов, сра зу после е е освоения газола зерную резку счит али наиболее перспек тивной среди вс ех способов термич еской резки. Действи тельно, начало бы ло многообещающим: возмож ность резки практи чески любых тол щин и люб ых материалов, в том чис ле и неметалл ических, ширина зо ны реза - до ли миллиметра, а чистота поверх ности реза так ова, что в большинстве случ аев вообще н е требуется дополни тельной механической обраб отки. Если теп ерь учесть, чт о современные маш ины для переме щения режущего инстру мента при термич еской резке, позво ляют производить высоко точную резку, т о становятся очеви дными преимущества газола зерной резки. Одн ако энергозатраты пр и лазерной рез ке перечеркивают вс е преимущества это го способа, н е говоря уж е о стоим ости оборудования, кото рая и н а сегодняшний де нь находится н а заоблачных высо тах. Достаточно сказ ать, что кп д газового (углекис лотного) лазера соста вляет порядка 12%, а твердотельного, напр имер, на алюмоит триевом гранате - н е превышает 2%. Кро ме того, долгове чность излучателей, зер кал и дру гих элементов соврем енных лазерных устро йств еще недост аточна. Даже в твердотельных лазе рных системах пр и мощностях излуч ения, не превыш ающих 0,5 кВт, ср ок службы зер кал составляет око ло 1000 ч. В системах боль шей мощности ср ок службы акти вных твердотельных элеме нтов не превы шает 500 ч, ла мп накачки - 100-200 ч.

В нач але 80-х год ов для разв ития этих проце ссов лазерной рез ки и сва рки в МВ ТУ им. Баум ана была созд ана специальная кафе дра лазерной сва рки и рез ки. Исследования, провед енные учеными кафе дры, показали экономи ческую неэффективность лазе рной сварки, а лазерная рез ка может бы ть эффективна тол ько в некот орых случаях, ког да другие спос обы термической рез ки дают неудовлетв орительный результат[4]

Плазм енная резка - эт о термическая рез ка сжатой электри ческой дугой. Сжа тие дуги произв одится соплом горе лки, потоком га за или внеш ним электромагнитным пол ем. Сжатая плазм енная дуга обла дает свойством самопрои звольно углубляться в металл, поэт ому ее назы вают проникающей плазм енной дугой. З а счет сжа тия дуги созда ется высокая концен трация тепловой энер гии, обеспечивающая достат очную производительность и хорошее каче ство резки.

В качестве плазмообр азующего используют ка к однокомпонентные га зы (аргон, аз от, гелий, кисл ород), так и многокомпонентные (арг он + водород, воз дух, азот + кисл ород). В после дние годы дл я резки низкоугле родистых и низколеги рованных сталей шир око применяют очище нный от мас ла и вла ги воздух.

Оборуд ование для плазм енной резки сост оит из плазмо трона (режущий инстр умент), источника пита ния электрической ду ги, блока управ ления процессом, газо вого хозяйства, сист емы охлаждения, механ изма перемещения плазмо трона вдоль лин ии реза. Плазм отрон имеет дв а основных уз ла: электродный и сопловый. П о принципу дейс твия электродного уз ла плазмотроны подразд еляются на образ ующие дуговую пла зму прямого дейс твия и косве нного действия. В первом слу чае положительным элект родом является разрез аемое изделие, следова тельно, использование так ого плазмотрона возм ожно только дл я резки электроп роводных материалов. Рез ка электроизоляционных матер иалов возможна тол ько с использ ованием плазмотрона втор ого типа.

Бессп орным преимуществом плазм енной резки явля ется возможность термич еской резки практи чески любых матер иалов и спла вов. К недост аткам этого проц есса относится невыс окая эффективность (низ кая скорость) рез ки, особенно ста лей больших (50 м м и бол ее) толщин, высо кая стоимость оборуд ования, плохие санит арно-гигиенические характе ристики процесса, высо кий уровень шу ма.


  1. Газовая сварка и резка металлов

Кисл ород применяют тр ех сортов: газооб разный технический 1-г о сорта с чистотой 99,7%; 2-г о сорта с чистотой 99,5% и 3-го сор та с чист отой 99,2%. Примеси азо та и арг она в технич еском кислороде соста вляют 0,3--0,8%. Кислород пр и нормальной темпер атуре представляет соб ой газ бе з цвета и запаха. Темпер атура (по Цель сию) сжижения кисло рода при норма льном атмосферном давл ении -182,96°, при -218,4° жид кий кислород перех одит в твер дое состояние. Пр и сгорании горю чих газов в смеси с кислородом темпер атура пламени значит ельно повышается п о сравнению с температурой плам ени, получающейся пр и сгорании эт их газов в смеси с воздухом. Пр и нормальном атмосф ерном давлении и температуре 20°С масса 1 м3 газообразного кисло рода равна 1,33 к г. Из 1 л жидкого кисло рода при испар ении получается 790 л газообразного. Жид кий кислород транспо ртируют в специа льных теплоизолированных сосу дах -- танках. Газооб разный кислород транспо ртируют в стал ьных баллонах по д давлением 150 кг с/см2. Пр и соприкосновении с маслами кисл ород взрывоопасен.

Полу чают ацетилен и з карбида каль ция путем воздей ствия на после дний водой. Пр и реакции с водой 1 к г карбида каль ция дает 230--280 л газообразного ацети лена. После реак ции получают газооб разный ацетилен С2Н2 и гашеную изве сть Са(О Н)2: СаС2+2Н2О=С2Н2+С а(ОН)2.

Таким образом, в результате проведенного исследования темы реферата, можно сделать следующие выводы. Газовая сварка - это сварка плавлением, при которой металл в зоне соединения нагревают до расплавления газовым пламенем. Процесс газовой сварки состоит в нагревании кромок деталей в месте их соединения до расплавленного состояния пламенем сварочной горелки. Для нагревания и расплавления металла используется высокотемпературное пламя, получаемое при сжигании горючего газа в смеси с технически чистым кислородом. Зазор между кромками заполняется расплавленным металлом присадочной проволоки. Как и любая технология, газовая сварка имеет как преимущества, так и недостатки.

Преимущества газовой сварки: простота; не требует сложного и дорогого оборудования; не требует источника электроэнергии; возможность в широких пределах регулировать скорость нагрева и охлаждения свариваемого металла. Недостатки газовой сварки: меньшая скорость нагрева металла и большая зона теплового воздействия на металл, чем при дуговой сварке; концентрация тепла меньше, а коробление свариваемых деталей больше, чем при дуговой сварке; благодаря сравнительно медленному нагреву металла пламенем и относительно невысокой концентрации тепла при нагреве производительность процесса газовой сварки существенно снижается с увеличением толщины свариваемого металла; стоимость горючего газа (ацетилена) и кислорода при газовой сварке выше стоимости электроэнергии при дуговой и контактной сварке. Вследствие этого газовая сварка обходится дороже, чем электрическая

Список исполь зуемых источников

1. А.С. Сафонов «автомоб ильные топлива» Сп б.: НПИКЦ, 2002

2. Н.Б. Кирич енко «Автомобильные и эксплуатационные матер иалы» М.: Акад емия, 2003

3. М.А. Масенко. «автомоб ильные материалы» М.: Транспорт, 1979

4. Сва рка в СС СР. Том 1. Разв итие сварочной техно логии и нау ки о сва рке. Технологические проц ессы, сварочные матер иалы и оборуд ование. – М.: Нау ка, 1981. – 536 с.

5. Сва рка в СС СР. Том 2. Теорети ческие основы сва рки, прочности и проектирования. Сваро чное производство. – М.: Наука, 1981. – 494 с.

6. Чеканов А.А. Нико лай Николаевич Бена рдос (1842-1905). – М.: Нау ка, 1983. – 142 с.

Реферат Газовая сварка - файл n2.doc

Способ газовой сварки был разработан в конце прошлого столетия, когда начиналось промышленное производство кислорода, водорода и ацетилена. В тот период газовая сварка являлась основным способом сварки металлов и обеспечивала получение наиболее прочных сварных соединений. В дальнейшем с созданием и внедрением высококачественных электродов для дуговой сварки, автоматической и полуавтоматической дуговой сварки под флюсом и в среде защитных газов (аргона, гелия и углекислого газа и др.), газовая сварка была постепенно вытеснена из многих производств этими способами электрической сварки. Тем не менее, и до настоящего времени газовая сварка металлов наряду с другими способами сварки широко применяется в народном хозяйстве.

1. Сварка металлов. Назначение и преимущества сварки.

Сварку применяют для получения неразъемного соединения деталей при изготовлений изделий, машин и сооружений из металла. Прежде для этого преимущественно пользовались клепкой.

Сварное изделие имеет меньшей вес, чем клепальное, проще в изготовлении, дешевле, надежнее и может быть выполнено в более короткий срок, с меньшей затратой труда и материалов. Сваркой можно изготовлять изделия очень сложной формы, которые прежде удавалось получить только отливкой или кузнечной и механической обработкой. При изготовлении металлоконструкций сварка дает от 10 до 20 % экономии металла по сравнению с клепкой, до 30 % по сравнению с литьем из чугуна.

Сварные швы обеспечивают высокую надежность (плотность и прочность) резервуаров и сосудов, в том числе и работающих при высоких температурах и давлениях газов, паров и жидкостей.
Газовая сварка ее преимущества и недостатки

Газовая сварка относится к сварке плавлением. Процесс газовой сварки состоит в нагревании кромок деталей в месте их соединения до расплавленного состояния пламенем сварочной горелки. Для нагревания и расплавления металла используется высокотемпературное пламя, получаемое при сжигании горючего газа в смеси с технически чистым кислородом. Зазор между кромками заполняется расплавленным металлом присадочной проволоки.

Газовая сварка обладает следующими преимуществами: способ сварки сравнительно прост, не требует сложного и дорогого оборудования, а также источника электроэнергии. Изменяя тепловую мощность пламени и его положение относительно места сварки, сварщик может в широких пределах регулировать скорость нагрева и охлаждения свариваемого металла.

К недостаткам газовой сварки относятся меньшая скорость нагрева металла и большая зона теплового воздействия на металл, чем при дуговой сварке. При газовой сварке концентрация тепла меньше, а коробление свариваемых деталей больше, чем при дуговой сварке. Однако при правильно выбранной мощности пламени, умелом регулировании его состава, надлежащей марке присадочного металла и соответствующей квалификации сварщика газовая сварка обеспечивает получение высококачественных сварных соединений.

Благодаря сравнительно медленному нагреву металла пламенем и относительно невысокой концентрации тепла при нагреве производительность процесса газовой сварки существенно снижается с увеличением толщины свариваемого металла. Например, при толщине стали 1мм, скорость газовой сварки составляет около 10м/ч, а при толщине 10мм – только 2м/ч. Поэтому газовая сварка стали толщиной свыше 6мм менее производительна по сравнению с дуговой сваркой и применяется значительно реже.

Стоимость горючего газа (ацетилена) и кислорода при газовой сварке выше стоимости электроэнергии при дуговой и контактной сварке. Вследствие этого газовая сварка обходится дороже, чем электрическая.

Кислород при атмосферном давлении и обычной температуре газ без цвета и запаха, несколько тяжелее воздуха. При атмосферном давлении и температуре 20 гр. масса 1м 3 кислород равен 1.33 кг. Сгорание горючих газов и паров горючих жидкостей в чистом виде кислороде происходит очень энергично с большой скоростью, а возникновение в зоне горения возникает высокая температура.

Для получения сварочного пламени с высокой температурой, необходимо для быстрого расплавления металла в месте сварки, горючий газ или пары горючей жидкости сжигают в смеси с чистым кислородом.

При возникновении сжатого газообразного кислорода с маслом или жирами последние могут самовоспламеняться, что может быть причиной пожара. Поэтому при обращении с кислородными баллонами и аппаратурой необходима тщательно следить за тем, чтобы на них не падали даже незначительные следы масла и жиров. Смесь кислорода с горючих жидкостей при определенных соотношениях кислорода и горючего вещества взрывается.

Технический кислород добывают из атмосферного воздуха который подвергают обработке в воздухоразделительных установках, где он очищается от углекислоты и осушается от влаги.

Жидкий кислород хранят и перевозят в специальных сосудах с хорошей теплоизоляцией. Для сварки выпускают технический кислород трех сортов: высшего, чистотой не ниже 99.5%

1-ого сорта чистотой 99.2%

2-ого сорта чистотой 98.5% по объему.

Остаток 0.5-0.1% составляет азот и аргон
Ацетилен

В качестве горючего газа для газовой сварки получил распространение ацетилен соединение кислорода с водородом. При нормальной t o и давлением ацетилен находится в газообразном состоянии.

Ацетилен бесцветный газ. В нем присутствуют примеси сероводорода и аммиак.

Ацетилен есть взрывоопасный газ. Чистый ацетилен способен взрываться при избыточном давлении свыше 1.5 кгс/см2, при быстром нагревании до 450-500С. Смесь ацетилена с воздухом взрываться при атмосферном давлении, если в смеси содержится от 2.2 до 93% ацетилена по объему. Ацетилен для промышленных целей получают разложением жидких горючих действием электродугового разряда, а так же разложением карбида кальция водой.
Газы заменители ацетилена.

При сварке металлов можно применять другие газы и пары жидкостей. Для эффективного нагрева и расплавления металла при сварке необходимо чтобы t o пламени была примерно в два раза превышала t o плавления свариемого металла.

Для сгорания горючих различных газов требуется различное кол-во кислорода подаваемого в горелку. В таб1 приведены основные хар-ки горючих газов для сварки.

Газы заменители ацетилена применяют во многих отраслях промышленности. Поэтому их производство и добыча в больших масштабах и они являются очень дешевыми, в этом их основное преимущество перед ацетиленом.

Вследствие более низкой t o пламени этих газов применение их ограничено некоторыми процессами нагрева и плавления металлов.

При сварке же стали с пропаном или метаном приходится применять сварочную проволоку содержащею повышенное количество кремния и марганца, используемых в качестве раскислителей, а при сварке чугуна и цветных металлов использовать флюсы.

Газы – заменители с низкой теплопроводной способностью неэкономично транспортировать в баллонах. Это ограничивает их применение для газопламенной обработки.

Таблица №1 Горючие газы для сварки и резки.


Горючие газы

Температура пламени при сгорании в кислороде

Коэффициент замены ацетилена

Ацетилен

3150

1,05

Водород

2400-2600

5,2

Метан

2400-2500

1,6

Пропан

2700-2800

0,6

Пары керосина

2400-245

1-1,3


Сварочные проволоки и флюсы

В большинстве случаев при газовой сварке применяют присадочную проволоку близкую по своему хим. составу к свариваемому металлу.

Нельзя применят для сварки случайную проволоку неизвестной марки.

Поверхность проволоки должна быть гладкой и чистой без следов окалины, ржавчины, масла, краски и прочих загрязнений. Температура плавления проволоки должна быть равна или несколько ниже t o плавления металла.

Проволока должна плавится спокойно и равномерно, без сильного разбрызгивания и вскипания, образуя при застывании плотный однородный металл без посторонних включений и прочих дефектов.

Для газовой сварки цветных металлов (меди, латуни, свинца), а так же нержавеющей стали в тех случаях, когда нет подходящей проволоки, применяют в виде исключения полоски нарезанный из листов той же марки, что и сваривает металл.

Медь, алюминий, магний и их сплавы при нагревании в процессе сварки энергично вступают в реакцию с кислородом воздуха или сварочного пламени (при сварке окислительным пламенем), образуя окислы, которые имеют более высокую t o плавления, чем металл. Окислы покрывают капли расплавленного металла тонкой пленкой и этим сильно затрудняют плавление частиц металла при сварке.

Для защиты расплавленного металла от окисления и удаления образующихся окислов применяют сварочные порошки или пасты, называемые флюсами. Флюсы, предварительно нанесенные на присадочную проволоку или пруток и кромки свариваемого металла, при нагревании расплавляются и образуют легкоплавкие шлаки, всплывающие на поверхность жидкого металла. Пленка шлаков прокрывает поверхность расплавленного металла, защищая его от окисления.

Состав флюсов выбирают в зависимости от вида и свойств свариваемого металла.

В качестве флюсов применяют прокаленную буру, борную кислоту. Применение флюсов необходимо при сварке чугуна и некоторых специальных легированных сталей, меди и ее сплавов. При сварке углеродистых сталей не применяют.

Реферат «Газовая сварка»

К недостаткам газовой сварки относятся меньшая скорость нагрева металла и большая зона теплового воздействия на металл, чем при дуговой сварке. При газовой сварке концентрация тепла меньше, а коробление свариваемых деталей больше, чем при дуговой сварке. Однако при правильно выбранной мощности пламени, умелом регулировании его состава, надлежащей марке присадочного металла и соответствующей квалификации сварщика газовая сварка обеспечивает получение высококачественных сварных соединений.
Благодаря сравнительно медленному нагреву металла пламенем и относительно невысокой концентрации тепла при нагреве производительность процесса газовой сварки существенно снижается с увеличением толщины свариваемого металла. Например, при толщине стали 1мм, скорость газовой сварки составляет около 10м/ч, а при толщине 10мм – только 2м/ч. Поэтому газовая сварка стали толщиной свыше 6мм менее производительна по сравнению с дуговой сваркой и применяется значительно реже.
Стоимость горючего газа (ацетилена) и кислорода при газовой сварке выше стоимости электроэнергии при дуговой и контактной сварке. Вследствие этого газовая сварка обходится дороже, чем электрическая.
Процесс газовой сварки труднее поддается механизации и автоматизации, чем процесс электрической сварки. Поэтому автоматическая газовая сварка многопламенными линейными горелками находит применении только при сварке обечаек и труб из тонкого металла продольными швами газовую сварку применяют при:
• изготовлении и ремонте изделий из тонко-листовой стали (сварке сосудов и резервуаров небольшой емкости, заварке трещин, варке заплат и пр.);
• сварке трубопроводов малых и средних диаметров (до 100мм) и фасонных частей к ним;
• ремонтной сварке литых изделий из чугуна, бронзы и силумина;
• сварке изделий из алюминия и его сплавов, меди, латуни, свинца;
• наплавке латуни на детали из стали и чугуна;
• сварке кованого и высокопрочного чугуна с применением присадочных прутков из латуни и бронзы, низкотемпературной сварке чугуна.
При помощи газовой сварки можно сваривать почти все металлы, применяемые в технике. Такие металлы, как чугун, медь, латунь, свинец легче поддаются газовой сварке, чем дуговой. Если учесть еще простоту оборудования то становится понятным широкое распространение газовой сварки в некоторых областях народного хозяйства (на некоторых заводах машиностроения, сельском хозяйстве, ремонтных, строительно-монтажных работах и др.).

Для газовой сварки необходимо:
1) газы – кислород и горючий газ (ацетилен или его заменитель);
2) присадочная проволока (для сварки и наплавки);
3) соответствующее оборудование и аппаратура, в то числе:

сварка в защитных газах. Реферат сварка в защитных газах. Реферат по учебной практике наименование дисциплины c варка в защитных газах

Введение
Газы – защитники на страже качества и красоты. Практически два века электросварка уверенно удерживала лидирующие позиции в сфере создания металлоконструкций, при необходимости дополняясь газовой сваркой. В последние десятилетия все активнее применяются альтернативные варианты соединения металлов посредством плавления. На смену традиционным разновидностям приходит более современный гибрид, вобравший в себя лучшее от каждой из них – сварка в среде защитных газов (ГОСТ был разработан в СССР в 1980 году). Она активно теснит другие методы, обладая высокими характеристиками и большой областью применения.
Цель работы: изучить принцип работы, технологию, а также извлечь преимущества и недостатки использования сварочных соединений в защитных газах.

История развития

Сварка в струе защитных газов была изобретена русским изобретателем Николай Николаевичем Бенардосом (26.06.1842 – 21.09.1905) в 1883 году. Защита от воздуха, по его предложению, осуществлялась светильным газом. Но этот метод Бенардоса нашел применение лишь спустя почти пол века и был необоснованно назван американцами «способом Александера». В период Второй мировой войны в США получила развитие сварка в струе аргона или гелия неплавящимся вольфрамовым электродом и плавящимся электродом. Этим способам сварки присвоена аббревиатура TIG и MIG. TIG (Tungsten Inert Gas) – сварка неплавящимся (вольфрамовым) электродом в среде инертного защитного газа, например так называемая аргонодуговая сварка. MIG (MechanicalInertGas) – механизированная (полуавтоматическая или автоматическая) сварка в струе инертного защитного газа. Вскоре эта технология пришла и в Европу. Сначала применялись только инертные газы или аргон, содержащий лишь небольшие доли активных компонентов (например, кислорода), поэтому такая технология сокращенно называлась S.I.G.M.A. Эта аббревиатура означает «shielded inert gas metal arc» – «дуговая сварка металлическим электродом в среде инертного газа». В настоящее время сварка в струе различных газов – аргона, гелия, азота – применяется во многих отраслях техники от небольших мастерских до крупных предприятий.

Принципиальная схема сварки в защитном газе

На рисунке 1 показана принципиальная схема поста для сварки в защитном газе.

Рисунок 1 – Принципиальная схема

Принципиальная схема сварки в защитном газе:

1 — баллон с жидкой углекислотой; 2 — вентиль; 3 — предредукторный осушитель газа; 4 — подогреватель газа; 5 — редуктор; 6 — регулятор давления (расхода) углекислого газа; 7 — электромагнитный клапан; 8 — реле давления; 9— резиновый рукав для, подачи газа; 10 — газоэлектрическая горелка; 11 — подающий механизм; 12 — шкаф распределительного устройства.
Параметрами режима сварки в углекислом газе являются род, полярность и величина сварочного тока, диаметр электродной проволоки, напряжение дуги, скорость сварки и подачи проволоки и расход газа. Сварка производится постоянным током прямой и обратной полярности, а также переменным током с осциллятором. В качестве источников тока применяются стандартные и специально переоборудованные агрегаты с жесткой или возрастающей характеристикой. Сварка на повышенных режимах (большой ток и напряжение) способствует стабилизации дуги, уменьшению разбрызгивания металла, увеличению глубины проплавления кромок и производительности процесса.

Используемые газы

Сварка в защитных газах производится с применением нескольких их разновидностей. Одноатомные, инертные газы, не взаимодействующие с металлами: аргон, гелий. Чистоту и показатели газов контролирует ГОСТ. Не представляют опасности при соблюдении элементарной техники безопасности. Активные двухатомные газы, взаимодействующие с металлами: азот, водород, углекислый газ. Ввиду взрывоопасности требуют повышенной осторожности при использовании. Смеси газов: в основном смесь аргона с другими газами в процентном соотношении. Наиболее распространена сварка в среде аргона и углекислого газа (особенно в бытовом применении), что объясняется физическими свойствами этих защитных газов и их доступностью. Гелий позволяет получать лучшее качество шва, но слишком дорогой для обычного применения и используется для самых тонких металлов на предприятиях. Азот и водород используются ограниченно, ввиду взаимодействия с большинством металлов.

Защитный газ для сварки полуавтоматом подбирается для каждого случая в отдельности, так как у всех них свои свойства. Есть, конечно же, и универсальные газы, но везде есть особенности применения.

Аргон является как раз тем самым универсальным вариантом. Он отличается более высокой стоимостью и высоким уровнем защиты, которые существенно превосходит остальных. Это инертный газ, создающий непроницаемую оболочку. Он оказывается вреден для здоровья при использовании, так что здесь обязательно нужно использовать средства индивидуальной защиты.

Водород относится к редко используемым газам. Он поставляется в баллонах в сжиженном состоянии под большим давлением. Особенности сварки в защитных газах с водородом выводят его в особую категорию. Лучше всего он подходит для сварки меди.

Азот также дает защитную среду во время сварки. Механизированное соединение металлических изделий в среде азота обходится относительно недорого и при этом обладает высокими прочностными характеристиками. Газ без запаха и цвета, а также не взрывоопасен.

Углекислота очень часто используется в качестве защитного газа. Она обладает невысокой стоимостью и хорошо подходит для сварки сталей со средним и низким содержанием углерода. Ею можно выполнять основную массу производственных операций.
Технология сварки в защитных газах

Сварка в защитных газах оказывается весьма эффективной, но для достижения высокопоставленных результатов нужно точно придерживаться технологии. Технология сварки в защитных газах имеет ряд отличий от других способов, что сказывается на технологии ее проведения. В самом начале идет подготовка металла под сварку. Хоть здесь она оказывает на столь большое влияние, но ее стоит привести. После этого идет подключение и настройка оборудования, чтобы оно соответствовало требуемым режимам сваривания. Дальнейшим этапом будет розжиг дуги, который производится одновременно с подпаливанием пламени горелки. Если процедура сваривания требует предварительного подогрева, то стоит включить горелку заранее и прогреть ею заготовку. После того, как сварочная ванна начала образовываться вокруг электрической дуги, можно подавать проволоку. Для этого используется специальное механизированное устройство, которое позволяет обеспечить подачу с постоянной скоростью. Это удобно, когда нужно сделать длинный шов, не разрывая дуги. Неплавкий электрод позволяет поддерживать дугу максимально длительный период времени. При использовании постоянного тока, сварка производится на обратной полярности. В данном случае сокращается вероятность разбрызгивания, но увеличивается расход металла. Дело в том, что коэффициент наплавления в данном случае будет значительно снижен. При прямой полярности он оказывается в 1,5 раза выше. Ведение ванны желательно осуществлять слева направо, чтобы специалист мог видеть, как формируется шов, а не действовать вслепую. Все манипуляции осуществляются по направлению к себе.
Классификация
На базе основных физических явлений технология сварки в защитных газах классифицируется по двум признакам:

Сварка неплавящимся электродом: в процессе расплавления соединяемых металлов в защитных газах материал электрода не становится элементом соединения, он служит исключительно для возбуждения дуги. Шов образуется посредством плавления кромок свариваемого металла и присадки. Расход электрода вызван испарением или оплавлением при избыточных показателях тока. Изготавливаются неплавящиеся электроды из вольфрама с присадками.

Сварка плавящимся электродом: в процессе расплавления соединяемых металлов в защитных газах электродный материал тоже плавится и становится элементом шва. Плавящиеся электроды могут использоваться в качестве присадочной проволоки, если выпущены по ГОСТ 2246–70 или из соответствующего свариваемым металла.
Область применения

Способ сварки в среде защитных газов применяют для сложных конструкций с повышенными требованиями к прочности и выносливости. Соединение всевозможных трубопроводов, деталей автомобилей, в промышленности и подобное. Сваривают цветные и черные металлы и их сплавы. Наиболее востребована способ соединения алюминия, нержавеющей стали, магния, циркония, титана и их сплавов. При этом используются определенные газы для определенных металлов. Инертные газы: соединение быстро окисляющихся металлов и сплавов алюминия, титана, магния, высоколегированных хромоникелевых и никелевых сплавов. Углекислый газ: соединение легированных и углеродистых сталей. Азот: соединение меди. Смесь аргона с водородом (5 – 10%): магний, алюминий.

Читайте также: