Реферат на тему сварка в защитных газах
В 1802 году впервые в мире профессор физики Санкт-Петербургской медико-хирургической академии В.В.Петров (1761-1834гг.) открыл электрическую дугу и описал явления, происходящие в ней, а также указал на возможность её практического применения. В 1881 году русский изобретатель Н.Н.Бенардос (1842-1905гг.) применил электрическую дугу для соединения и разъединения стали. Дуга Н.Н. Бенардоса горела между угольным электродом и свариваемым металлом. Присадочным прутком для образования шва служила стальная проволока. В качестве источника электрической энергии использовались аккумуляторные батареи. Сварка, предложенная Н.Н. Бенардосом, применялась в России в мастерских Риго-Орловской железной дороги при ремонте подвижного состава. Н.Н. Бенардосом были открыты и другие виды сварки: контактная точечная сварка, дуговая сварка несколькими электродами в защитном газе, а также механизированная подача электрода в дугу.
Содержание
Введение 3
1 Разработка процесса сварки в защитных газах 4
2 Сварка неплавящимся электродом в инертном газе 6
3 Сварка плавящимся электродом в инертном газе 8
4 Сварка в углекислом газе 10
Заключение 13
Список использованных источников
Работа состоит из 1 файл
история развития сварки в защ газах.docx
Введение | 3 | |
1 Разработка процесса сварки в защитных газах | 4 | |
2 Сварка неплавящимся электродом в инертном газе | 6 | |
3 Сварка плавящимся электродом в инертном газе | 8 | |
4 Сварка в углекислом газе | 10 | |
Заключение | 13 | |
Список использованных источников | 14 |
В 1802 году впервые в мире профессор физики Санкт-Петербургской медико- хирургической академии В.В.Петров (1761-1834гг.) открыл электрическую дугу и описал явления, происходящие в ней, а также указал на возможность её практического применения. В 1881 году русский изобретатель Н.Н.Бенардос (1842-1905гг.) применил электрическую дугу для соединения и разъединения стали. Дуга Н.Н. Бенардоса горела между угольным электродом и свариваемым металлом. Присадочным прутком для образования шва служила стальная проволока. В качестве источника электрической энергии использовались аккумуляторные батареи. Сварка, предложенная Н.Н. Бенардосом, применялась в России в мастерских Риго-Орловской железной дороги при ремонте подвижного состава. Н.Н. Бенардосом были открыты и другие виды сварки: контактная точечная сварка, дуговая сварка несколькими электродами в защитном газе, а также механизированная подача электрода в дугу.
1 Разработка процесса сварки в защитных газах
Идея сварки в защитном газе была предложена в конце XIX в. Н.Н. Бенардосом. Практическое осуществление данного способа сварки приходится на ХХ в. Дуговая сварка в защитном газе основана на оттеснении воздуха из зоны сварки потоком газа. В качестве защитного газа используют инертные газы: аргон и гелий, активные газы: азот, водород, углекислый газ, а также смеси газов.
Сварка в инертном газе плавящимся электродом была разработана в нашей стране в это же время. В 1952 г. К.В. Любавский и Н.М. Новожилов получили положительные результаты по сварке в углекислом газе плавящимся электродом.
В настоящее время имеется много разновидностей сварки в защитных газах, которые получили широкое распространение в нашей стране и за рубежом.
Интенсивное развитие сварки в защитных газах объясняется ее преимуществами по сравнению с дуговой сваркой покрытыми электродами:
- высокая степень концентрации нагрева изделия, позволяющая значительно уменьшить зону термического влияния и коробление изделия после сварки;
- возможность получения высококачественных соединений из металлов и сплавов различных марок и толщин при различной конфигурации швов и различном расположении их в пространстве;
- широкая возможность механизации и автоматизации процесса.
2 Сварка неплавящимся электродом в инертном газе
Стабильность процесса зависит от стойкости неплавящегося электрода. Первоначально применяли электроды из чистого вольфрама, однако их стойкость сравнительно мала. Поэтому были разработаны электроды, содержащие определенные добавки для повышения стойкости: 1,5-2 % окиси тория, 1-2 % окиси лантана, 1,5-2,3 % окиси иттрия.
В 60-е гг. прошлого столетия были проведены работы, определившие основные направления увеличения производительности сварки неплавящимися электродами.
В основе их лежат методы, повышающие тепловое и силовое воздействие дуги на основной металл. Среди наиболее эффективных вариантов решения этой проблемы можно выделить следующие:
- сжатие дугового промежутка;
- сосредоточение теплового воздействия во времени;
- заглубление дуги в сварочную ванну;
- уменьшение размеров активного пятна на поверхности изделия без изменения мощности дуги.
Практическая реализация этих решений привела не только к изменению техники данного вида сварки, но и к созданию новых сварочных материалов, оборудования и способов соединения металлов. Принудительное обжатие столба дуги подающимся под давлением газом приводит к повышению концентрации его тепловой энергии.
В результате теплообмена с дугой газ нагревается, ионизируется и истекает из сопла в виде плазменной струи. Совершенствование этого процесса привело к разработке нового способа - плазменной сварки и резки. При сварке тонкостенных конструкций необходимо иметь возможность регулировать тепловложение в металл для обеспечения качественного соединения. В частности, эту задачу удалось решить путем применения импульсно-дуговой сварки, которая разработана в 1961 г. в нашей стране.
Стабильность процесса и равномерное формирование шва обеспечиваются специально разработанной системой поддержания горения дуги. Она заключается в том, что в промежутках между импульсами рабочей дуги поддерживается дежурная маломощная дуга. Ток дуги пульсирует от минимума во время паузы до максимума во время импульса. При импульсно-дуговой сварке шов получается путем расплавления отдельных точек с заданным перекрытием. За счет регулирования соотношения между токами импульса и дежурной дуги можно изменять усадочные явления и улучшить качество формирования шва.
При аргонно-дуговой сварке ряда металлов (титана, ниобия, молибдена, нержавеющих сталей) улучшение технологических характеристик источника нагрева достигается за счет применения бескислородных флюсов и паст, содержащих галоидные соли щелочных металлов. Подобные флюсы ограничивают активное пятно, в результате чего увеличивается сосредоточенность теплового потока, повышается эффективность нагрева, снижается погонная энергия и резко уменьшается коэффициент формы шва.
Большое значение в развитии сварки в защитном газе имела разработка способов автоматической сварки неповоротных стыков труб. При сварке вольфрамовым электродом обеспечивается равномерное проплавление и формирование шва. Наиболее часто автоматическая сварка неповоротных стыков труб применяется при соединении труб диаметром от 8 до 220 мм. Современное оборудование для сварки неповоротных стыков труб (орбитальной сварки) позволяет программировать режим сварки.
3 Сварка плавящимся электродом в инертном газе
Сварка плавящимся электродом в инертном газе применяется для соединения цветных металлов, титановых сплавов, нержавеющих и жаропрочных сталей и сплавов.
Применение и совершенствование этого способа сварки основаны на знании закономерностей металлургических процессов и физики дуги. В частности, была установлена связь между режимом переноса металла и формой проплавления изделия, роль электродинамических сил. При изготовлении конструкций из цветных металлов и нержавеющих сталей сварка ведется на повышенных режимах по току, обеспечивающих струйный перенос металла. Сварка в этом случае отличается высокой стабильностью и качеством шва.
Однако сварку плавящимся электродом в инертном газе можно вести только в нижнем положении. Для выполнения сварки в других пространственных положениях используют импульсно-дуговую сварку. Разработаны различные ее варианты, позволяющие регулировать продолжительность горения дуги и паузы. Для изменения характеристик процесса сварки плавящимся электродом в инертном газе разработаны и применяются различные схемы его ведения:
- введение в дуговой промежуток веществ, понижающих или повышающих эффективный потенциал ионизации;
- изменение давления и состава газа;
- наложение на электрод, дугу или сварочную ванну магнитных полей разной конфигурации;
- механические колебания электрода вдоль или поперек оси движения.
Все эти меры позволяют уменьшить разбрызгивание, влиять на процессы кристаллизации, изменять форму провара, улучшить формирование шва при выполнении как стыковых, так и угловых соединений.
4 Сварка в углекислом газе
При высокой температуре углекислый газ разлагается на окись углерода и кислород. В целом такая среда является окислительной по отношению к большинству компонентов металлов. Поэтому углекислый газ, защищая расплавленный металл от взаимодействия с воздухом, не может исключить окисление его компонентов. Сведение к минимуму влияния окислительных свойств газовой фазы на состав металла шва и его формирование является основной задачей, решение которой позволило осуществить промышленное применение данного способа сварки. Первоначально эта задача решалась путем применения угольного неплавящегося электрода для сварки низкоуглеродистых сталей.
Как показали исследования, проведенные в ИЭС им. Е.О. Патона, при сварке низкоуглеродистой стали на постоянном токе прямой полярности происходит незначительное выгорание углерода, что обеспечивает близость химического состава и свойств металла шва к полученному аргонно-дуговой сваркой. Это и ряд других сварочно-технологических характеристик позволили очертить первоначальную область применения этого способа сварки: тонкостенные изделия или трубы малого диаметра.
В основном применялась сварка с отбортовкой кромок или стыковых швов. Во всех этих случаях сварка тонкого металла угольной дугой обеспечивала удовлетворительное формирование шва в любом пространственном положении, так как объем жидкой ванны мал. Изучение металлургических процессов позволило распространить сварку угольным электродом в углекислом газе на нержавеющие стали и комбинированные соединения (низкоуглеродистая сталь + высоколегированный сплав).
Применение плавящихся электродов для сварки в углекислом газе сдерживалось тем, что наличие окислительной атмосферы приводило к выгоранию углерода и легирующих компонентов из металла, а также к появлению пор в шве. Также такой процесс сопровождался повышенным разбрызгиванием металла.
Таким образом, для предотвращения указанных выше недостатков необходимо было подавить окислительный потенциал газовой фазы. Это было достигнуто путем применения проволоки, легированной марганцем и кремнием, которые являются хорошими раскислителями. Введение дополнительного количества раскислителей в зону дуги подавляет окисление углерода и выгорание других элементов из металла, что устраняет образование пор и обеспечивает получение швов с достаточно высокими механическими свойствами.
Сотрудниками ЦНИИТМАШ в середине 50-х гг. ХХ в. были разработаны технологические рекомендации по сварке в углекислом газе проволоками диаметром 1,6-2,5 мм углеродистых, нержавеющих и ряда конструкционных сталей. Новый способ сварки обеспечивал более высокую производительность по сравнению с ручной дуговой сваркой, но мог быть использован только для выполнения швов в нижнем положении металла средних и больших толщин.
В это же время в Институте электросварки при непосредственном участии Б.Е. Патона был разработан процесс сварки в СО2 тонкой проволокой диаметром 0,5-1,2 мм, протекающий с принудительными короткими замыканиями. По своей физической природе данный процесс является импульсно-дуговым. Данный вариант сварки применяется для соединения углеродистых и нержавеющих сталей малых толщин, выполнения швов, расположенных в вертикальном, горизонтальном и потолочном положении.
Для реализации этих способов разработана специальная аппаратура для автоматической и полуавтоматической сварки. Полуавтоматическая сварка в СО2 отличается большой маневренностью, простотой поддержания стабильного режима и техники выполнения швов.
В то же время при использовании серийной проволоки Св-08Г2С процесс сварки сопровождался разбрызгиванием до 15%. Исследованиями российских ученых установлено, что потери на разбрызгивание существенно зависят от соотношения между напряжением и током сварки, чистоты поверхности проволоки, магнитного дутья, динамических свойств источника питания, техники выполнения сварки и квалификации сварщика.
Одним из путей уменьшения разбрызгивания при сварке в углекислом газе является введение в дугу ряда веществ: солей щелочных и щелочноземельных металлов, оксидов титана, легирующих элементов. Наиболее широкое распространение получил способ введения различных веществ в дугу при сварке в углекислом газе за счет использования порошковой проволоки. Основу шихты порошковых проволок, используемых для сварки в СО2 , составляют шлакообразующие, раскислители и легирующие. Наиболее широкое применение нашли рутиловые и рутил-флюоритные порошковые проволоки.
Дуговая сварка в среде защитных газов
Характеристика процесса сварки постоянным током прямой полярности, плавящимся и неплавящимся электродом. Изучение операций по засыпке, уборке флюса и удалению шлака. Исследование технологических параметров и области применения сварки в защитных газах.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 13.12.2010 |
Размер файла | 18,2 K |
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Министерство образования Российской Федерации
Омский Государственный Технический Университет
Кафедра: Оборудование и технология сварочного производства
по дисциплине: История развития машиностроительного производства
на тему: Дуговая сварка в среде защитных газов
Выполнил: Бородихин Сергей Александрович
Проверил: доц. к.т.н. Шестель Л.А.
1. Сущность дуговой сварки
2. Технологические параметры процесса
3. Область применения
Замечательный русский изобретатель Н.Г.Славянов был по образованию инженером, металлургом.
Последняя четверть прошлого века явилась периодом становления электротехники-науки о процессах, связанных с практическим применением электрических явлений. 30-летний руководитель орудийных и механических производств на одном из крупнейших в России пушечных заводов в Перми, Н.Г.Славянов увидел в электротехнике будущее металлургии, обработки металлов. Он глубоко изучил эту область науки.
Через шесть лет после открытия Н.Н.Бенардосом дуговой сварки, в 1888 году Н.Г.Славянов творчески развил эту идею, разработав и применив сварку металлическим электродом. Впервые в мире этот способ был внедрен Славяновым на Пермском заводе.
Он сконструировал и опробовал автоматическое приспособление для регулировки длины дуги. Это был прообраз современных сварочных аппаратов. Изобретение обессмертило его имя и имеет огромное значение и по сей день.
Так Славяновым была написана одна из страниц истории важнейшей области техники - дуговой сварки металлов, находящей самое широкое применение в современной промышленности и строительстве.
При сварке в зону дуги 1 через сопло 2 непрерывно подается защитный газ 3. Теплотой дуги расплавляется основной металл 4 и, если сварку выполняют плавящимся электродом, расплавляется и электродная проволока. Расплавленный металл сварочной ванны, кристаллизуясь, образует шов. При сварке неплавящимся электродом электрод не расплавляется, а его расход вызван испарением металла или частичным оплавлением при повышенном допустимом сварочном токе.
Образование шва происходит за счет расплавления кромок основного металла или дополнительно вводимого присадочного металла. В качестве защитных газов применяют инертные: аргон (бесцветный газ, в 1,38 раза тяжелее воздуха, нерастворим в жидких и твердых металлах. Аргон выпускают высшего и первого сортов. Поставляют и хранят аргон в стальных баллонах в сжатом газообразном состоянии под давлением 15 МПа) и гелий и активные: углекислый газ (бесцветный, со слабым запахом, в 1,52 раза тяжелее воздуха, нерастворим в твердых и жидких металлах. Выпускают углекислый газ сварочный, пищевой и технический. Для сварки газ поставляют и хранят в стальных баллонах в сжиженном состоянии под давлением 7 МПа) , водород, кислород и азот, газы, а также их смеси (Аг + Не, Аг + СО2, Аг + О2, СО2 + О2 и др.). По отношению к электроду защитный газ можно подавать центрально или сбоку. Сбоку газ подают при больших скоростях сварки плавящимся электродом, когда при центральной защите надежность защиты нарушается из-за обдувания газа неподвижным воздухом. Сквозняки или ветер при сварке, сдувая струю защитного газа, могут резко ухудшить качество сварного шва или соединения. В некоторых случаях, особенно при сварке вольфрамовым электродом, для получения необходимых технологических свойств дуги, а также с целью экономии дефицитных и дорогих инертных газов используют защиту двумя концентрическими потоками газа.
Сварку в защитных газах отличают следующие преимущества:
Ш высокая производительность (в 2-3 раза выше обычной дуговой сварки);
Ш возможность сварки в любых пространственных положениях, хорошая защита зоны сварки от кислорода и азота атмосферы, отсутствие необходимости очистки шва от шлаков и зачистки шва при многослойной сварке;
Ш малая зона термического влияния;
Ш относительно малые деформации изделий;
Ш возможность наблюдения за процессом формирования шва;
Ш доступность механизации и автоматизации.
Недостатками этого способа сварки являются необходимость принятия мер, предотвращающих сдувание струи защитного газа в процессе сварки, применение газовой аппаратуры, а в некоторых случаях и применение относительно дорогих защитных газов.
2. Технологические параметры процессы
Свойства защитных газов оказывают большое влияние на технологические свойства дуги и форму швов. Например, по сравнению с аргоном гелий имеет более высокий потенциал ионизации и большую теплопроводность при температурах плазмы. Поэтому дуга в гелии более "мягкая". При равных условиях дуга в гелии имеет более высокое напряжение, а образующийся шов имеет меньшую глубину проплавления и большую ширину. Поэтому гелий целесообразно использовать при сварке тонколистового металла. Кроме того, он легче воздуха и аргона, что требует для хорошей защиты зоны сварки повышенного его расхода (1,5-3 раза). Углекислый газ по влиянию на форму шва занимает промежуточное положение.
Широкий диапазон используемых защитных газов, обладающих значительно различающимися теплофизическими свойствами, обусловливает большие технологические возможности этого способа как в отношении свариваемых металлов (практически всех), так и их толщин (от 0,1 мм до десятков миллиметров). Сварку можно выполнять, используя также неплавящийся (угольный, вольфрамовый) или плавящийся электрод.
По сравнению с другими способами сварка в защитных газах обладает рядом преимуществ:
Ш высокое качество сварных соединений на разнообразных металлах и сплавах различной толщины;
Ш возможность сварки в различных пространственных положениях;
Ш возможность визуального наблюдения за образованием шва, что особенно важно при полуавтоматической сварке;
Ш отсутствие операций по засыпке и уборке флюса и удалению шлака;
Ш высокая производительность и легкость механизации и автоматизации;
Ш низкая стоимость при использовании активных защитных газов.
К недостаткам способа по сравнению со сваркой под флюсом относится необходимость применения защитных мер против световой и тепловой радиации дуги.
При сварке в среде защитных газов различают следующие основные способы: сварка постоянной дугой, импульсной дугой; плавящимся электродом и неплавящимся электродом.
Наиболее широко применяется сварка в среде защитных газов плавящимся и неплавящимся электродами.
Сварка неплавящимся электродом в защитных газах -- это процесс, в котором в качестве источника теплоты применяется дуга, возбуждаемая между вольфрамовым или угольным (графитовым) электродом и изделием.
Сварка постоянным током прямой полярности позволяет получать максимальное проплавление свариваемого металла.
При сварке плавящимся электродом в среде защитных газов различают следующие две основные разновидности процесса: сварка короткой дугой и сварка длинной дугой.
Сварка неплавящимся электродом
Условием стабильного горения дуги при дуговой сварке в защитной среде инертных газов на переменном токе является регулярное восстановление разряда при смене полярности. Потенциал возбуждения и ионизации инертных газов аргона и гелия выше, чем у кислорода, азота и паров металла, поэтому для возбуждения дуги переменного тока требуется источник питания с повышенным напряжением холостого хода. Сварочная дуга в среде инертных газов (аргона или гелия) отличается высокой стабильностью и для ее поддержания требуется небольшое напряжение. Высокая подвижность электронов обеспечивает достаточное возбуждение и ионизацию нейтральных атомов при столкновении с ними электронов.
В том случае, когда катодом является вольфрам, дуговой разряд происходит главным образом за счет термоэлектронной эмиссии благодаря высокой температуре плавления и относительно низкой теплопроводности вольфрама, что обусловливает неодинаковые условия горения дуги при прямой и обратной полярности. При обратной полярности (изделие является катодом -- минус) напряжение при возбуждении дуги должно быть больше, чем при прямой полярности. Поэтому из-за значительной разницы в свойствах вольфрамового электрода и свариваемого металла кривая напряжения дуги имеет не симметричную форму, а в ней появляется постоянная составляющая, которая вызывает появление в сварочной цепи постоянной составляющей тока. Постоянная составляющая тока в свою очередь создает постоянное магнитное поле в сердечнике трансформатора и дросселя, что приводит к уменьшению мощности сварочной дуги и ее устойчивости. Появление в цепи постоянной составляющей тока не обеспечивает нормального ведения процесса сварки и особенно при сварке алюминиевых сплавов, так как сварочная ванна даже при небольшом содержании кислорода и азота покрывается тугоплавкой пленкой окислов и нитридов, которые препятствуют сплавлению кромок и формированию шва.
Очищающее действие сварочной дуги при сварке переменным током проявляется в те полупериоды, когда катодом является изделие благодаря катодному распылению, так как в этом случае происходит разрушение окисной и нитридной пленок.
При обратной полярности применяют низкие плотности тока, а практически такая дуга не применяется. При прямой полярности тепла выделяется меньше на электроде, так как его значительная часть расходуется на плавление свариваемого металла.
Сварка плавящимся электродом
При дуговой сварке плавящимся электродом в среде защитных газов геометрическая форма сварного шва и его размеры зависят от мощности сварочной дуги, характера переноса металла через дуговой промежуток, а также от взаимодействия газового потока и частиц металла, пересекающих дуговой промежуток, с ванной расплавленного металла.
В процессе сварки на поверхность сварочной ванны оказывает давление столб дуги за счет потока газов, паров и капель металла, вследствие чего столб дуги погружается в основной металл, увеличивая глубину проплавления. Поток газов и паров металла, направляемый от электрода в сварочную ванну, создается благодаря сжимающему действию электромагнитных сил. Сила воздействия сварочной дуги на ванну расплавленного металла характеризуется ее давлением, которое будет тем больше, чем концентрированнее поток газа и металла. Концентрация потока металла увеличивается с уменьшением размера капель, который определяется составом металла, защитного газа, а также направлением и величиной сварочного тока.
Сварочная дуга, образованная в результате плавления электрода в среде инертных газов, имеет форму конуса, столб которой состоит из внутренней и внешней зоны. Внутренняя зона имеет яркий свет и большую температуру.
Во внутренней зоне происходит перенос металла, и ее атмосфера заполнена святящимися парами металла. Внешняя зона имеет менее яркий свет и представляет собой ионизированный газ.
электрод флюс шлак сварка
Области применения сварки в защитных газах охватывают широкий круг материалов и изделий (узлы летательных аппаратов, элементы атомных установок, корпуса и трубопроводы химических аппаратов и т. п.). Аргонодуговую сварку применяют для цветных (алюминия, магния, меди) и тугоплавких (титана, ниобия, ванадия, циркония) металлов и их сплавов, а также легированных и высоколегированных сталей.
В углекислом газе сваривают конструкции из углеродистой и низколегированной сталей (газо- и нефтепроводы, корпуса судов и т. д.). Преимущество полуавтоматической сварки в СО2 с точки зрения ее стоимости и производительности часто приводит к замене ею ручной дуговой сварки покрытыми электродами.
Сварку в среде защитных газов различают на следующие основные способы: сварка постоянной дугой, импульсной дугой; плавящимся электродом (сварка короткой дугой и сварка длинной дугой) и неплавящимся электродом.
Так как дуговую сварку в среде защитных газов можно использовать разными способами сваривания, то данная сварка нашла большое применение в сфере строительства. При такой сварке получается шов высококачественного сварочного соединения на разнообразных металлах и сплавах различной толщины. В таких швах отсутствует необходимость очистки шва от шлаков и зачистки шва при многослойной сварке.
1. Виноградов В.С. Электрическая дуговая сварка: учеб. пособие для нач. проф. образования. - М.: Издательский центр «Академия», 2007. - 320с.
2. Ганенко А.П. и др. Оформление текстовых и графических материалов при подготовке дипломных проектов, курсовых и письменных экзаменационных работ (требования ЕСКД): Учеб. для нач. проф. образования: Учебник для сред. Проф. образования. - М.: ПрофОбрИздат, 2001. - 352с.
3. Казаков Ю.В. и др. Сварка и резка материалов: Учебное пособие для нач. проф. образования. - М.: Издательский центр «Академия», 2004. - 400с.
4. Куликов О.Н., Ролин Е.И. Охрана труда при производстве сварочных работ: Учеб. пособие для нач. проф. образования. - М.: Издательский центр «Академия», 2006. - 176с.
5. Чернышов Г.Г. Сварочное дело: Сварка и резка металлов: Учебник для нач. проф. образования. - М.: Издательский центр «Академия», 2004. - 496с.
Подобные документы
История развития сварки в защитных газах. Особенности и виды сварки низкоуглеродистых и низколегированных сталей в защитных газах, используемое на современном этапе оборудование, методы и приемы. Описание изделия, сваренного с применением защитных газов.
курсовая работа [491,5 K], добавлен 20.06.2013
Классификация электрической сварки плавлением в зависимости от степени механизации процесса сварки, рода тока, полярности, свойств электрода, вида защиты зоны сварки от атмосферного воздуха. Особенности дуговой сварки под флюсом и в среде защитных газов.
презентация [524,2 K], добавлен 09.01.2015
История и основные этапы развития сварки в защитных газах, ее сущность и принципы реализации. Характеристика защитных газов, применяемых при сварке. Оценка преимуществ и недостатков, область применения и преимущества аргонодуговой и ручной сварки.
реферат [26,9 K], добавлен 17.01.2010
Описание способа сварки неплавящимся электродом в защитных газах корневых слоев сварных соединений. Анализ изобретений в области сварки. Изучение основных приемов и методов теории решения изобретательских задач, позволяющих устанавливать системные связи.
курсовая работа [41,5 K], добавлен 26.10.2013
Импульсная подача сварочной проволоки. Механизированная сварка короткой дугой с короткими замыканиями. Моделирование процесса переноса капли электродного металла. Сварка вертикальных швов. Моделирование процесса переноса капли электродного металла.
дипломная работа [3,6 M], добавлен 27.05.2015
Сварка вольфрамовым электродом и использование в качестве защитных инертных газов или их смесей и постоянного или переменного тока. Влияние формы заточки электрода на форму и размеры шва. Зависимость технологических свойств дуги от рода, полярности тока.
реферат [2,3 M], добавлен 03.02.2009
Сущность, основные достоинства и недостатки ручной дуговой сварки покрытыми электродами. Сущность, достоинства и недостатки сварки в среде защитных газов плавящимся электродом. Выбор сварочных материалов. Сварочно-технологические свойства электродов.
сварка в защитных газах. Реферат сварка в защитных газах. Реферат по учебной практике наименование дисциплины c варка в защитных газах
Введение
Газы – защитники на страже качества и красоты. Практически два века электросварка уверенно удерживала лидирующие позиции в сфере создания металлоконструкций, при необходимости дополняясь газовой сваркой. В последние десятилетия все активнее применяются альтернативные варианты соединения металлов посредством плавления. На смену традиционным разновидностям приходит более современный гибрид, вобравший в себя лучшее от каждой из них – сварка в среде защитных газов (ГОСТ был разработан в СССР в 1980 году). Она активно теснит другие методы, обладая высокими характеристиками и большой областью применения.
Цель работы: изучить принцип работы, технологию, а также извлечь преимущества и недостатки использования сварочных соединений в защитных газах.
История развития
Сварка в струе защитных газов была изобретена русским изобретателем Николай Николаевичем Бенардосом (26.06.1842 – 21.09.1905) в 1883 году. Защита от воздуха, по его предложению, осуществлялась светильным газом. Но этот метод Бенардоса нашел применение лишь спустя почти пол века и был необоснованно назван американцами «способом Александера». В период Второй мировой войны в США получила развитие сварка в струе аргона или гелия неплавящимся вольфрамовым электродом и плавящимся электродом. Этим способам сварки присвоена аббревиатура TIG и MIG. TIG (Tungsten Inert Gas) – сварка неплавящимся (вольфрамовым) электродом в среде инертного защитного газа, например так называемая аргонодуговая сварка. MIG (MechanicalInertGas) – механизированная (полуавтоматическая или автоматическая) сварка в струе инертного защитного газа. Вскоре эта технология пришла и в Европу. Сначала применялись только инертные газы или аргон, содержащий лишь небольшие доли активных компонентов (например, кислорода), поэтому такая технология сокращенно называлась S.I.G.M.A. Эта аббревиатура означает «shielded inert gas metal arc» – «дуговая сварка металлическим электродом в среде инертного газа». В настоящее время сварка в струе различных газов – аргона, гелия, азота – применяется во многих отраслях техники от небольших мастерских до крупных предприятий.
Принципиальная схема сварки в защитном газе
На рисунке 1 показана принципиальная схема поста для сварки в защитном газе.
Рисунок 1 – Принципиальная схема
Принципиальная схема сварки в защитном газе:
1 — баллон с жидкой углекислотой; 2 — вентиль; 3 — предредукторный осушитель газа; 4 — подогреватель газа; 5 — редуктор; 6 — регулятор давления (расхода) углекислого газа; 7 — электромагнитный клапан; 8 — реле давления; 9— резиновый рукав для, подачи газа; 10 — газоэлектрическая горелка; 11 — подающий механизм; 12 — шкаф распределительного устройства.
Параметрами режима сварки в углекислом газе являются род, полярность и величина сварочного тока, диаметр электродной проволоки, напряжение дуги, скорость сварки и подачи проволоки и расход газа. Сварка производится постоянным током прямой и обратной полярности, а также переменным током с осциллятором. В качестве источников тока применяются стандартные и специально переоборудованные агрегаты с жесткой или возрастающей характеристикой. Сварка на повышенных режимах (большой ток и напряжение) способствует стабилизации дуги, уменьшению разбрызгивания металла, увеличению глубины проплавления кромок и производительности процесса.
Используемые газы
Сварка в защитных газах производится с применением нескольких их разновидностей. Одноатомные, инертные газы, не взаимодействующие с металлами: аргон, гелий. Чистоту и показатели газов контролирует ГОСТ. Не представляют опасности при соблюдении элементарной техники безопасности. Активные двухатомные газы, взаимодействующие с металлами: азот, водород, углекислый газ. Ввиду взрывоопасности требуют повышенной осторожности при использовании. Смеси газов: в основном смесь аргона с другими газами в процентном соотношении. Наиболее распространена сварка в среде аргона и углекислого газа (особенно в бытовом применении), что объясняется физическими свойствами этих защитных газов и их доступностью. Гелий позволяет получать лучшее качество шва, но слишком дорогой для обычного применения и используется для самых тонких металлов на предприятиях. Азот и водород используются ограниченно, ввиду взаимодействия с большинством металлов.
Защитный газ для сварки полуавтоматом подбирается для каждого случая в отдельности, так как у всех них свои свойства. Есть, конечно же, и универсальные газы, но везде есть особенности применения.
Аргон является как раз тем самым универсальным вариантом. Он отличается более высокой стоимостью и высоким уровнем защиты, которые существенно превосходит остальных. Это инертный газ, создающий непроницаемую оболочку. Он оказывается вреден для здоровья при использовании, так что здесь обязательно нужно использовать средства индивидуальной защиты.
Водород относится к редко используемым газам. Он поставляется в баллонах в сжиженном состоянии под большим давлением. Особенности сварки в защитных газах с водородом выводят его в особую категорию. Лучше всего он подходит для сварки меди.
Азот также дает защитную среду во время сварки. Механизированное соединение металлических изделий в среде азота обходится относительно недорого и при этом обладает высокими прочностными характеристиками. Газ без запаха и цвета, а также не взрывоопасен.
Углекислота очень часто используется в качестве защитного газа. Она обладает невысокой стоимостью и хорошо подходит для сварки сталей со средним и низким содержанием углерода. Ею можно выполнять основную массу производственных операций.
Технология сварки в защитных газах
Сварка в защитных газах оказывается весьма эффективной, но для достижения высокопоставленных результатов нужно точно придерживаться технологии. Технология сварки в защитных газах имеет ряд отличий от других способов, что сказывается на технологии ее проведения. В самом начале идет подготовка металла под сварку. Хоть здесь она оказывает на столь большое влияние, но ее стоит привести. После этого идет подключение и настройка оборудования, чтобы оно соответствовало требуемым режимам сваривания. Дальнейшим этапом будет розжиг дуги, который производится одновременно с подпаливанием пламени горелки. Если процедура сваривания требует предварительного подогрева, то стоит включить горелку заранее и прогреть ею заготовку. После того, как сварочная ванна начала образовываться вокруг электрической дуги, можно подавать проволоку. Для этого используется специальное механизированное устройство, которое позволяет обеспечить подачу с постоянной скоростью. Это удобно, когда нужно сделать длинный шов, не разрывая дуги. Неплавкий электрод позволяет поддерживать дугу максимально длительный период времени. При использовании постоянного тока, сварка производится на обратной полярности. В данном случае сокращается вероятность разбрызгивания, но увеличивается расход металла. Дело в том, что коэффициент наплавления в данном случае будет значительно снижен. При прямой полярности он оказывается в 1,5 раза выше. Ведение ванны желательно осуществлять слева направо, чтобы специалист мог видеть, как формируется шов, а не действовать вслепую. Все манипуляции осуществляются по направлению к себе.
Классификация
На базе основных физических явлений технология сварки в защитных газах классифицируется по двум признакам:
Сварка неплавящимся электродом: в процессе расплавления соединяемых металлов в защитных газах материал электрода не становится элементом соединения, он служит исключительно для возбуждения дуги. Шов образуется посредством плавления кромок свариваемого металла и присадки. Расход электрода вызван испарением или оплавлением при избыточных показателях тока. Изготавливаются неплавящиеся электроды из вольфрама с присадками.
Сварка плавящимся электродом: в процессе расплавления соединяемых металлов в защитных газах электродный материал тоже плавится и становится элементом шва. Плавящиеся электроды могут использоваться в качестве присадочной проволоки, если выпущены по ГОСТ 2246–70 или из соответствующего свариваемым металла.
Область применения
Способ сварки в среде защитных газов применяют для сложных конструкций с повышенными требованиями к прочности и выносливости. Соединение всевозможных трубопроводов, деталей автомобилей, в промышленности и подобное. Сваривают цветные и черные металлы и их сплавы. Наиболее востребована способ соединения алюминия, нержавеющей стали, магния, циркония, титана и их сплавов. При этом используются определенные газы для определенных металлов. Инертные газы: соединение быстро окисляющихся металлов и сплавов алюминия, титана, магния, высоколегированных хромоникелевых и никелевых сплавов. Углекислый газ: соединение легированных и углеродистых сталей. Азот: соединение меди. Смесь аргона с водородом (5 – 10%): магний, алюминий.
Сварка в защитных газах. Углекислота
Сварочная техника и технология занимают одно из ведущих мест в современном производстве. Свариваются корпуса гигантских супертанкеров и сетчатка человеческого глаза, миниатюрные детали полупроводниковых приборов и кости человека при хирургических операциях. Многие конструкции современных машин и сооружений, например космические ракеты, подводные лодки, газо- и нефтепроводы, изготовить без помощи сварки невозможно.
Содержание работы
1. ВВЕДЕНИЕ……………………………………………………………….. 3
2. ПРОЦЕСС СВАРКИ В УГЛЕКИСЛОМ ГАЗЕ………………………….3
3. ОПРЕДЕЛЕНИЯ, КЛАССИФИКАЦИЯ СВАРКИ В ЗАЩИТНЫХ ГАЗАХ………………………………………………………………………. 4
4. ВИДЫ СВАРКИ В ЗАЩИТНЫХ ГАЗАХ……………………………….7
4.1. ПОЛУАВТОМАТИЧЕСКАЯ СВАРКА В УГЛЕКИСЛОМ ГАЗЕ…. 7
4.2. АВТОМАТИЧЕСКАЯ СВАРКА В СРЕДЕ ЗАЩИТНЫХ ГАЗОВ…..10
5. МАТЕРИАЛЫ И ОБОРУДОВАНИЕ…………………………………….12
6. МЕРЫ БЕЗОПАСНОСТИ ПРИ СВАРКЕ В ЗАЩИТНЫХ ГАЗАХ……13
7. ЗАКЛЮЧЕНИЕ………………………………..…………………………..13
8. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ…………………………..14
Файлы: 1 файл
Сварка в защитных газах. Углекислота.doc
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«ИЖЕВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕССКИЙ УНИВЕРСИТЕТ»
КАФЕДРА «М и ТОМД ИСП»
КОНТРОЛЬНАЯ РАБОТА №1
По дисциплине: «Теория Сварочных Процессов»
Тема: «Сварка в защитных газах. Углекислота»
Выполнил студент гр.
Руководитель: к.т.н., доцент
2. ПРОЦЕСС СВАРКИ В УГЛЕКИСЛОМ ГАЗЕ………………………….3
3. ОПРЕДЕЛЕНИЯ, КЛАССИФИКАЦИЯ СВАРКИ В ЗАЩИТНЫХ ГАЗАХ………………………………………………………………… ……. 4
4. ВИДЫ СВАРКИ В ЗАЩИТНЫХ ГАЗАХ……………………………….7
4.1. ПОЛУАВТОМАТИЧЕСКАЯ СВАРКА В УГЛЕКИСЛОМ ГАЗЕ…. 7
4.2. АВТОМАТИЧЕСКАЯ СВАРКА В СРЕДЕ ЗАЩИТНЫХ ГАЗОВ…..10
5. МАТЕРИАЛЫ И ОБОРУДОВАНИЕ…………………………………….12
6. МЕРЫ БЕЗОПАСНОСТИ ПРИ СВАРКЕ В ЗАЩИТНЫХ ГАЗАХ……13
8. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ…………………………..14
Сварочная техника и технология занимают одно из ведущих мест в современном производстве. Свариваются корпуса гигантских супертанкеров и сетчатка человеческого глаза, миниатюрные детали полупроводниковых приборов и кости человека при хирургических операциях. Многие конструкции современных машин и сооружений, например космические ракеты, подводные лодки, газо- и нефтепроводы, изготовить без помощи сварки невозможно. Развитие техники предъявляет все новые требования к способам производства и, в частности, к технологии сварки. Сегодня сваривают материалы, которые еще относительно недавно считались экзотическими. Это титановые, ниобиевые и бериллиевые сплавы, молибден, вольфрам, композиционные высокопрочные материалы, керамика, а также всевозможные сочетания разнородных материалов. Свариваются детали электроники толщиной в несколько микрон и детали тяжелого оборудования толщиной в несколько метров. Постоянно усложняются условия, в которых выполняются сварочные работы: сваривать приходится под водой, при высоких температурах, в глубоком вакууме, при повышенной радиации, в невесомости. Все это предъявляет повышенные требования к квалификации специалистов в области сварки, в особенности рабочих-сварщиков, так как именно они непосредственно осваивают новые способы и приемы сварки, новые сварочные машины.
Сегодня мы рассмотрим один из самых эффективных, надежных и популярных видов сварки, сварка в защитных газов, а конкретно в среде углекислоты.
Советскими исследователями К. В. Любавским и Н. М. Новожиловым в начале 50-х годов был разработан способ сварки в защитной среде углекислого газа, который в настоящее время нашел широкое применение во всех странах мира.
Сущность процесса сварки в углекислом газе заключается в следующем. Поступающий в зону сварки углекислый газ защищает ее от вредного влияния атмосферы воздуха. Причем при высокой температуре сварочной дуги углекислый газ частично диссоциируется на окись углерода и кислород 2СО2 2СО + O2.
В результате в зоне дуги образуется смесь из трех различных газов: углекислого газа, окиси углерода и кислорода.
Вследствие того, что температура дуги не везде одинакова, неодинаков и состав газовой смеси в зоне дуги. В центральной части, где температура дуги высокая, углекислый газ диссоциирует почти полностью. В области, прилегающей к сварочной ванне, количество углекислого газа преобладает над суммарным количеством кислорода и окиси углерода. Все три компонента газовой смеси защищают металл от воздействия воздуха, в то же время окисляют его как при переходе капель электродной проволоки в сварочную ванну, так и на поверхности [1].
Порядок и интенсивность окисления элементов зависят от их химического сродства к кислороду. Вначале окисляется кремний, имеющий большее сродство к кислороду, чем другие элементы. Окисление марганца также происходит значительно интенсивнее, чем окисление железа и углерода. Следовательно, нейтрализовать окислительный потенциал углекислого газа можно введением в присадочную проволоку избыточного кремния и марганца, В этом случае погашаются реакции окисления железа и образования окиси углерода, но сохраняются защитные функции углекислого газа в отношении атмосферы воздуха.
- ОПРЕДЕЛЕНИЯ, КЛАССИФИКАЦИЯ СВАРКИ В ЗАЩИТНЫХ ГАЗАХ.
Общие сведения Сущностью и отличительной особенностью дуговой сварки в защитных газах является защита расплавленного и нагретого до высокой температуры основного и электродного металла от вредного влияния воздуха защитными газами, которые обеспечивают физическую изоляцию металла и зоны сварки от воздуха и заданную атмосферу в зоне сварки. Разновидности сварки в защитных газах можно классифицировать по следующим признакам рис. 2 [1]: типу электрода—плавящимся и неплавящимся электродами; типу защитного газа — инертные, активные, их смеси; способу защиты — струйная, в контролируемой атмосфере; характеру горения дуги — стационарной, импульсной; механизации — ручная, полуавтоматическая, автоматическая. В нашем случае сварку в среде углекислого газа по физическим показателям (допустим дуговая сварка в среде защитных газов) классифицируется как термический класс сварки, а по техническим показателям как сварка в среде защитных, активных газах. Классификация разновидностей сварки по типу электрода. В качестве плавящегося электрода используют сварочные проволоки, по химическому составу соответствующие свариваемым материалам. Неплавящиеся электроды служат для возбуждения и поддержания горения дуги. В основном используют вольфрамовые, реже угольные и графитовые электроды (при сварке в активных газах). Для повышения устойчивости горения дуги и стойкости электрода в состав вольфрамового электрода вводят обычно 1,5—3% окислов активирующих редкоземельных металлов (тория, лантана, иттрия), повышающих эмиссионную способность электрода. В качестве электродов для сварки применяют вольфрамовые прутки диаметром 0,2—12 мм, выпускаемые промышленностью: вольфрам чистый (ЭВЧ), вольфрам торированный (ЭВТ5, ЭВТЮ, ЭВТ15), вольфрам лантанированный (ЭВЛ10, ЭВЛ20), вольфрам иттрированный (ЭВИЗО). Угольные и графитовые электроды (стержни) изготовляют из электротехнического угля или синтетического графита диаметром 4—18 мм и длиной 250—700 мм. Графитовые электроды имеют лучшую электропроводность и более стойки против окисления при высоких температурах, чем угольные электроды. Защитные газы защищают дугу и сварочную ванну от вредного воздействия окружающей среды. В качестве защитных газов применяют инертные и активные газы, а также их смеси. Инертным и называются газы, которые химически не взаимодействуют с металлом и не растворяются в нем. В качестве инертных газов используют аргон (Аг), гелий (Не) и их смеси. Активным и защитными газами называют газы, вступающие в химическое взаимодействие со свариваемым металлом и растворяющиеся в нем (углекислый газ, водород, пары воды и др.). Основным активным защитным газом является углекислый газ, который поставляется по ГОСТ 8050—76 «Двуокись углерода газообразная и жидкая». Для сварки используют сварочный углекислый газ чистотой 99,5%. Углекислый газ хранят и транспортируют в жидком виде преимущественно в стальных баллонах емкостью 40 л под давлением 6,0—7,0 МПа. В баллоне находится 60—80% жидкой углекислоты, а остальное — испарившийся газ. Цвет баллона черный, надпись желтого цвета. Смеси газов обладают в ряде случаев лучшими технологическими свойствами, чем отдельные газы. Например, смесь углекислого газа с кислородом (2—5%) способствует мелкокапельному переносу металла, уменьшению разбрызгивания (на 30—40%), улучшению формирования шва. Смесь из 70% Не и 30% Аг увеличивает производительность сварки алюминия, улучшает формирование шва и позволяет сваривать за один проход металл большей толщины. По способу защиты различают местную и общую защиту свариваемого узла (сварку в контролируемой атмосфере). Основным способом местной защиты является струйная защита шва. При этом способе защитная среда в зоне сварки создается газовым потоком при центральной, боковой комбинированной подаче газа. При центральной подаче газа дуга, горящая между электродом и основным металлом, со всех сторон окружена газом, подаваемым под небольшим избыточным давлением из сопла горелки, расположенного концентрично оси электрода. Этот способ защиты является наиболее распространенным. В ряде случаев с Целью экономии инертных газов, а также получения оптимальных технологических и металлургических свойств защитной среды применяют горелки, конструкция которых обеспечивает комбинированную защиту двумя концентрическими потоками газов. Например, внутренний поток образуется аргоном, а внешний — углекислым газом. При сварке высокоактивных металлов (Ti, Zr, Та, Nb, Mo, W) необходимо защищать не только расплавленный металл, но и зону металла, нагреваемую при сварке до температуры более 300°С с лицевой и обратной сторон шва. Для расширения струйной защиты с лицевой стороны шва применяют дополнительные колпаки-дриставки, надеваемые на сопло горелки. Защита обратной стороны шва обеспечивается поддувом защитного газа. Боковую подачу газа применяют ограниченно.
Рис. 2. Виды сварки в защитных газах.
4.1. ПОЛУАВТОМАТИЧЕСКАЯ СВАРКА В УГЛЕКИСЛОМ ГАЗЕ
Полуавтоматическая сварка в углекислом газе (СО2) является основной и наиболее распространенной технологией сварки плавлением на предприятиях машиностроительной отрасли. Она является экономичной, обеспечивает достаточно высокое качество сварных швов, особенно при сварке низкоуглеродистых сталей, возможна в различных пространственных положениях, требует более низкой квалификации сварщика, чем ручная дуговая сварка.
Защитный газ, выходя из сопла, вытесняет воздух из зоны сварки. Сварочная проволока подается вниз роликами, которые вращаются двигателем подающего механизма. Подвод сварочного тока к проволоке осуществляется через скользящий контакт рис.3 [4].
В зависимости от свариваемого металла и его толщины в качестве защитных газов используют инертные, активные газы или их смеси. В силу физических особенностей стабильность дуги и ее технологические свойства выше при использовании постоянного тока обратной полярности. При использовании постоянного тока прямой полярности количество расплавляемого электродного металла увеличивается на 25 . 30 %, но резко снижается стабильность дуги и повышаются потери металла на разбрызгивание. Применение переменного тока невозможно из-за нестабильного горения дуги.
При сварке плавящимся электродом шов образуется за счет проплавления основного металла и расплавления дополнительного металла — электродной проволоки. Поэтому форма и размеры шва помимо прочего (скорости сварки, пространственного положения электрода и изделия и др.) зависят также от характера расплавления и переноса электродного металла в сварочную ванну. Характер переноса электродного металла определяется в основном материалом электрода, составом защитного газа, плотностью сварочного тока и рядом других факторов.
При традиционном способе сварки можно выделить три основные формы расплавления электрода и переноса электродного металла в сварочную ванну. Процесс сварки с периодическими короткими замыканиями характерен для сварки электродными проволоками диаметром 0,5 . 1,6 мм при короткой дуге с напряжением 15 . 22 В. После очередного короткого замыкания (1 и 2 на рис.4 ниже, а [5]) силой поверхностного натяжения расплавленный металл на торце электрода стягивается в каплю. В результате длина и напряжение дуги становятся максимальными.
Во все стадии процесса скорость подачи электродной проволоки постоянна, а скорость ее плавления изменяется и в периоды 3 и 4 меньше скорости подачи.
Поэтому торец электрода с каплей приближается к сварочной ванне (длина дуги и ее напряжение уменьшаются) до короткого замыкания (5). При коротком замыкании резко возрастает сварочный ток и как результат этого увеличивается сжимающее действие электромагнитных сил, совместное действие которых разрывает перемычку жидкого металла между электродом и изделием. Во время короткого замыкания капля расплавленного электродного металла переходит в сварочную ванну. Далее процесс повторяется.
Частота периодических замыканий дугового промежутка может изменяться в пределах 90 . 450 в секунду. Для каждого диаметра электродной проволоки в зависимости от материала, защитного газа и т.д. существует диапазон сварочных токов, в котором возможен процесс сварки с короткими замыканиями. При оптимальных параметрах процесса сварка возможна в различных пространственных положениях, а потери электродного металла на разбрызгивание не превышают 7 %.
Увеличение плотности сварочного тока и длины (напряжения) дуги ведет к изменению характера расплавления и переноса электродного металла, перехода от сварки короткой дугой с короткими замыканиями к процессу с редкими короткими замыканиями или без них. В сварочную ванну электродный металл переносится нерегулярно, отдельными крупными каплями различного размера, хорошо заметными невооруженным глазом.
При этом ухудшаются технологические свойства дуги, затрудняется сварка в потолочном положении, а потери электродного металла на угар и разбрызгивание возрастают до 15 %.
Для улучшения технологических свойств дуги применяют периодическое изменение ее мгновенной мощности - импульсно-дуговая сварка (см. рис.). Теплота, выделяемая основной дугой, недостаточна для плавления электродной проволоки со скоростью, равной скорости ее подачи.
Вследствие этого длина дугового промежутка уменьшается. Под действием импульса тока происходит ускоренное расплавление электрода, обеспечивающее формирование капли на его конце. Резкое увеличение электродинамических сил сужает шейку капли и сбрасывает ее в направлении сварочной ванны в любом пространственном положении.
Можно использовать одиночные импульсы (см. рис. 3.49) или группу импульсов с одинаковыми или различными параметрами. В последнем случае первый или первые импульсы ускоряют расплавление электрода, а последующие сбрасывают каплю электродного металла в сварочную ванну. Устойчивость процесса зависит от соотношения основных параметров (величины и длительности импульсов и пауз). Соответствующим подбором тока основной дуги и импульса можно повысить скорость расплавления электродной проволоки, изменить форму и размеры шва, а также уменьшить нижний предел сварочного тока, обеспечивающий устойчивое горение дуги.
При достаточно высоких плотностях постоянного по величине (без импульсов или с импульсами) сварочного тока обратной полярности и при горении дуги в инертных газах может наблюдаться очень мелкокапельный перенос электродного металла. Название "струйный" он получил потому, что при его наблюдении невооруженным глазом создается впечатление, что расплавленный металл стекает в сварочную ванну с торца электрода непрерывной струей (см. рис. выше, в). Изменение характера переноса электродного металла с капельного на струйный происходит при увеличении сварочного тока до "критического" для данного диаметра электрода.
Значение критического тока уменьшается при активировании электрода (нанесении на его поверхность тем или иным способом некоторых легкоионизирующих веществ), увеличении вылета электрода. Изменение состава защитного газа также влияет на значение критического тока. Например, добавка в аргон до 5 % кислорода снижает значение критического тока. При сварке в углекислом газе без применения специальных мер получить струйный перенос электродного металла невозможно. Он не получен и при использовании тока прямой полярности.
При переходе к струйному переносу поток газов и металла от электрода в сторону сварочной ванны резко интенсифицируется благодаря сжимающему действию электромагнитных сил. В результате под дугой уменьшается прослойка жидкого металла, в сварочной ванне появляется местное углубление. Повышается теплопередача к основному металлу, и шов приобретает специфическую форму с повышенной глубиной проплавления по его оси. При струйном переносе дуга очень стабильна -колебаний сварочного тока и напряжений не наблюдается. Сварка возможна во всех пространственных положениях.
4.2. АВТОМАТИЧЕСКАЯ СВАРКА В СРЕДЕ ЗАЩИТНЫХ ГАЗОВ.
Автоматическая сварка может производиться неплавящимся и плавящимся электродом. Рассмотрим автомат УДПГ-300 для сварки в защитном газе. 1 - сварочная головка; 2 - механизм подачи; 3 - электродная проволока; 4 - кассета с электродной проволокой; 5 - кнопка управления; 6 - электродвигатель механизма подачи. Применяются специализированные сварочные тракторы типа АДСП-2 для сварки черных и цветных металлов толщиной 0,8 мм и более. Автоматы типа АТВ предназначены для сварки труб различного диаметра неплавящимся вольфрамовым электродом и присадочной проволокой диаметром 1,6. 2 мм. Сварка в углекислом газе производится полуавтоматическими и автоматическими аппаратами. Схема полуавтоматической установки, предназначенной для сварки в углекислом газе. Установка состоит из сварочного преобразователя постоянного тока, газоэлектрической горелки механизма подачи электродной проволоки, аппаратного шкафа баллона с углекислым газом, осушителя, подогревателя, редуктора и расходомера. В качестве сварочных преобразователей применяются ПС-300 или ПС-500. Хорошие результаты дают генераторы G жесткой или возрастающей внешней характеристикой. Применяются также генераторы о невысоким напряжением холостого хода ГСР-6000, ГСР-9000, ГСР-12000, ГСР-15000.? Газоэлектрические горелки служат для подвода газа и подачи электродной проволоки в зону дуги и для подвода сварочного тока к электродной проволоке. Они выпускаются различных типов для малых сварочных токов (до 300 А) и для сварки на больших токах до 1000 А. Последние снабжены водяным охлаждением. Механизм подачи электродной проволоки используется от полуавтоматов ПШ-5 и ПШ-54
Читайте также: