Расчет режимов сварки под флюсом
Расчет режимов сварки производится всегда для конкретного случая, когда известен тип соединения и толщина свариваемого металла, марка проволоки, флюса и способа защиты сварочной ванны от воздуха и другие данные по шву. Поэтому до начала расчетов следует установить по ГОСТ8713-79 или по чертежу конструктивные элементы заданного сварного соединения и по известной методике определить площадь сварного шва.
При этом необходимо учитывать, что максимальное сечение однопроходного шва, выполненное автоматом, не должно превышать 100мм 2 . Последовательность расчета технологических параметров режимов автоматической сварки низкоуглеродистых сталей следующая.
1. Устанавливают требуемую глубину проплавления hm, мм. При односторонней сварке она равна толщине S металла hm = S, а при двусторонней и угловой сварке hm = 0,6S .
2. Определяют диаметр электродной проволоки
Диаметр электродной проволоки dэ желательно выбирать таким, чтобы он обеспечил максимальную производительность сварки (наплавки) при требуемой глубине проплавления. В большинстве случаев его выбирают в зависимости от толщины свариваемого металла (табл.6.1).
Таблица 6.1- Значения диаметра электродной проволоки в зависимости от толщины свариваемого металла
S,мм | 0,8 … 1 | 1,2 | … 2 | ..3 | 3 … 5 | 6 … 8 | |
dэ,мм | 0,5…0,8 | 0,8 | … 1 | 1,2 | . 1,6 | 1,6 … 2 | 1,6 … 2 |
3. Определяют силу сварочного тока
Силу сварочного тока (А) определяют из выражения:
где k - коэффициент, зависящий от рода тока и полярности, диаметра электрода, а также марки флюса (по данным Института электросварки им. Е.О. Патона к=1,1 мм /100А).
4.Назначают напряжение на дуге.
Напряжение сварки определяют в зависимости от силы тока (Табл.6.2)
Таблица 6.2-Зависимость напряжения дуги от силы сварочного тока (флюс АН-348А)
5. Определяется коэффициент формы провара ψпр. Значение коэффициент формы провара ψ пр определяется по графику (рис.6.2) в зависимости от силы тока, напряжения и диаметра электродной проволокиРис.6.2. Зависимость коэффициента формы провара от напряжения на дуге для проволоки диаметром d=2.
6. Определяют коэффициент формы валика ψ в. Для швов, выполненных автоматической сваркой, ψ в = 5 - 8.
7. Определяют геометрические параметры сварного шва.
За основу принимаются три размера: глубина проплавления – h, мм; ширина шва – B, мм и выпуклость шва – g, мм. Ширина шва B определяется из формулы yпр= B / h . Выпуклость шва q определяют из формулы yв= B / q.
8.Определяется площадь сечения наплавленного металла.
Площадь наплавленного металла можно определить по опытной формуле Fн.м = 0,751 *B*g, мм 2
9. Определяется масса наплавленного металла. Массу наплавленного металла определяют по формуле
Gн.м = Fн.мLg, где Gн.м – масса наплавленного металла, г; Fн.м – площадь наплавленного шва; L – длина сварных швов на изделии, см; – плотность металла, равная 7,8 г/см 3 .
10.Расход сварочной проволоки, определяется по формуле
гдеGH.м – масса наплавленного металла, г; Ψ -коэффициент потерь металла на угар и разбрызгивание, принимается равным 0,02 ÷ 0,03.
11. Определяют коэффициент расплавления электродной проволоки. Коэффициент расплавления электродной проволоки сплошного сечения при сварке под флюсом определяется по формулам:
а) для переменного тока
б) для постоянного тока прямой полярности
в) для постоянного тока обратной полярности αР= 10 ÷ 12 г/А·ч
где dПР – диаметр проволоки, мм.
12.Определяется коэффициент наплавки αН.
Коэффициент наплавки определяется из формулы
αН = αР·(1-Ψ).
13. Скорость перемещения дуги
14. Определяют скорость подачи электродной проволоки.
Скорость подачи электродной проволоки рассчитывается по формуле
Vп.п= arIсв Fэл.прg,м/ч,
где – коэффициент расплавления электродной проволоки, г/А ч; Iсв – сварочный ток; Fэл.пр – площадь поперечного сеченияэлектродной проволоки; – плотность металла (для стали =7,8 г/см 3 ). Коэффициент расплавления электродной проволоки можно приближенно принять равным коэффициенту наплавки, т.е. 14 …16 г/А ч.
15. Производительность сварки
16. Расход флюса, г/пог.м, определяется по формуле
Толщина слоя флюса зависит от силы сварочного тока и определяется по таблице 6.3.
Таблица 6.3-Зависимость толщина слоя флюса от силы сварочного тока | |||
Cварочный ток, А | 200-400 | 400-800 | 800-1200 |
Толщина слоя флюса, мм | 25-35 | 35-45 | 45-60 |
17. Время горения дуги, ч, определяется по формуле
18. Полное время сварки, ч, определяется по формуле
где kП – коэффициент использования сварочного поста принимается равным 0,6 ÷ 0,7.
19. Расход электроэнергии, кВт· ч, определяется по формуле
где UД– напряжение дуги, В; η– КПД источника питания: при постоянном токе 0,6÷0,7 , при переменном 0,8÷ 0,9; WO– мощность источника питания, работающего на холостом ходе, кВт·ч (на постоянном токе 2,0÷ 3,0 кВт, на переменном – 0,2÷ 0,4 кВт).
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой.
© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!
6.3. Расчет режимов сварки (наплавки) под флюсом проволокой сплошного сечения
При сварке и наплавке под флюсом, для более глубокого проплавления, рекомендуется использовать высокие значения плотности тока в электродной проволоке (а ≥40 ÷ 50 А/мм 2 ), а при наплавке для снижения глубины проплавления принимается а≤ 30 ÷ 40 А/мм 2 . Диаметр электродной проволоки желательно выбирать таким, чтобы он обеспечил максимальную производительность сварки (наплавки) при требуемой глубине проплавления. Зависимость силы сварочного тока и его плотности на глубину проплавления приведена в табл. 10 приложения. Зависимость напряжения дуги от силы сварочного тока (флюс АН-348А) следующая:
Наплавку рекомендуется выполнять при постоянном токе прямой полярности. Вылет электродной проволоки принимается 30 ÷ 60 мм, при этом более высокие его значения соответствуют большему диаметру проволоки и силе тока. Скорость подачи электродной проволоки, м/ч, рассчитывается по формуле:
где dПР – диаметр проволоки, мм; ρ – плотность металла электродной проволоки, г/см 3 (для стали ρ =7,8 г/см 3 ).
Коэффициент расплавления проволоки сплошного сечения при сварке под флюсом определяется по формулам:
для переменного тока:
для постоянного тока прямой полярности:
для постоянного тока обратной полярности
αР= 10 ÷ 12 г/Ач
Скорость сварки, м/ч, рассчитывается по формуле:
где αН - коэффициент наплавки, г/А ч; αН = αР(1-Ψ), где Ψ - коэффициент потерь металла на угар и разбрызгивание, принимается равным 0,02 ÷ 0,03.
При наплавке под флюсомFB - площадь поперечного сечения одного валика, см 2 , укладываемого за один проходможно принять равной 0,3 ÷ 0,6 см 2 .
Масса наплавленного металла, г, определяется по формуле:
где VН - объем наплавленного металла, см 3 .
Объем наплавленного металла, см 3 , определяется из выражения
где Fн – площадь наплавленной поверхности, см 2 ; h – высота наплавленного слоя, см.
Расход сварочной проволоки, г, определяется по формуле
де GH – масса наплавленного металла, г; Ψ – коэффициент потерь.
Расход флюса, г/пог.м, определяется по формуле
Время горения дуги, ч, определяется по формуле
Полное время сварки, ч, определяется по формуле
де kП – коэффициент использования сварочного поста принимается равным 0,6 ÷ 0,7.
Расход электроэнергии, кВт ч, определяется по формуле
где UД– напряжение дуги, В; η– КПД источника питания: при постоянном токе 0,6÷0,7 , при переменном 0,8÷ 0,9; WO– мощность источника питания, работающего на холостом ходе, кВтч (на постоянном токе 2,0÷ 3,0 кВт, на переменном – 0,2÷ 0,4 кВт).
Марки флюса приведены в табл. 5.3.
Cварочный ток, А | 200-400 | 400-800 | 800-1200 |
Толщина слоя флюса, мм | 25-35 | 35-45 | 45-60 |
Технические характеристики аппаратов для автоматической сварки (наплавки) под флюсом приведены табл.6 приложения.
6.2. Расчет режимов сварки (наплавки) в углекислом газе проволокой сплошного сечения
В основу выбора диаметра электродной проволоки при сварке и наплавке в углекислом газе положены те же принципы, что и при выборе диаметра электрода при ручной дуговой сварке:
Расчет сварочного тока, А, при сварке проволокой сплошного сечения производится по формуле:
где а – плотность тока в электродной проволоке, А/мм 2 (при сварке в СО2 а=110 ÷ 130 А/мм 2 ; dЭ – диаметр электродной проволоки, мм.
Механизированные способы сварки позволяют применять значительно большие плотности тока по сравнению с ручной сваркой. Это объясняется меньшей длиной вылета электрода.
Напряжение дуги и расход углекислого газа выбираются в зависимости от силы сварочного тока по табл. 6.1.
Зависимость напряжения и расхода углекислого газа от силы сварочного тока
При сварочном токе 200 ÷ 250 А длина дуги должна быть в пределах 1,5 ÷ 4,0 мм. Вылет электродной проволоки составляет 8 ÷ 15 мм (уменьшается с повышением сварочного тока).
Скорость подачи электродной проволоки, м/ч, расчитывается по формуле:
где αР – коэффициент расплавления проволоки, г/А ч ; ρ – плотность металла электродной проволоки, г/см 3 (для стали ρ =7,8 г/см 3 ).
Значение αР рассчитывается по формуле:
Скорость сварки (наплавки), м/ч, рассчитывается по формуле:
где αН - коэффициент наплавки, г/А ч; αН = αР(1-Ψ), где Ψ - коэффициент потерь металла на угар и разбрызгивание. При сварке в СО2 Ψ = 0,1- 0.15;FB - площадь поперечного сечения одного валика, см 2 . При наплавке в СО2 принимается равным 0,3 - 0,7 см 2 .
Масса наплавленного металла, г, сварке рассчитывается по следующим формулам:
при наплавочных работах:
где l – длина шва, см; ρ – плотность наплавленного металла (для стали ρ=7,8 г/см 3 ); VН - объем наплавленного металла, см 3 .
Время горения дуги, ч, определяется по формуле:
Полное время сварки (наплавки), ч, определяется по формуле:
где kП – коэффициент использования сварочного поста, ( kП= 0,6 ÷ 0,57).
Расход электродной проволоки, г, рассчитывается по формуле:
где GH – масса наплавленного металла, г; Ψ – коэффициент потерь, (Ψ = 0,1 - 0,15).
Расход электроэнергии, кВт ч, определяется по формуле:
где UД– напряжение дуги, В; η– КПД источника питания: при постоянном токе 0,6÷0,7 , при переменном 0,8÷ 0,9; WO–мощность источника питания, работающего на холостом ходе, кВт. На постоянном токе Wо = 2,0÷ 3,0 кВт, на переменном – Wо= 0,2÷ 0,4 кВт.
Справочные сведения по оборудованию для сварки в СО2 приведены в табл. 4,5,7 приложения.
Определение параметров режима при механизированной сварке под флюсом односторонних и двухсторонних стыковых швов
Основными размерами швов, выполненных автоматической сваркой под слоем флюса, влияющими на качество и работоспособность сварного соединения, являются: глубина провара h, ширина шва , высота валика с(см. рисунок 17).
Рис. 17. Основные размеры стыковых швов, выполненных
автоматической сваркой под флюсом
Отношение ширины шва к глубине провара h называют коэффициентом формы провара ψпр:
Отношение ширины шва к высоте валика с называют коэффициентом формы валика ψв:
При сварке стыковых швов с разделкой кромок величину проплавления нескошенной части называют глубиной проплавления притупления и обозначают h0.
Чтобы рассчитать режим сварки, обеспечивающий заданные размеры и форму шва, необходимо установить связь между отдельными параметрами режима и размерами шва.
Основными параметрами режима автоматической сварки под флюсом, оказывающими влияние на размеры и форму шва, являются: сварочный ток, напряжение на дуге, скорость сварки, диаметр электрода или плотность тока в электроде.
Основное влияние на размеры и форму шва оказывает количество теплоты, выделяемое дугой, и условия ввода этого тепла в изделие.
Увеличение силы сварочного тока приводит к возрастанию мощности дуги, вследствие чего увеличивается количество расплавленного металла, как электродного, так и основного. Поэтому увеличение сварочного тока приводит к возрастанию глубины провара, высоты валика и ширины шва. При этом, вследствие увеличения давления дуги, жидкий металл более интенсивно вытесняется в хвост сварочной ванны и дуга оказывает прямое воздействие на «дно» сварочной ванны, как бы заглубляясь в металл; поэтому главным образом сварочный ток оказывает влияние на глубину провара и высоту валика, а ширина шва увеличивается незначительно. Коэффициенты формы провара и формы валика вследствие этого интенсивно уменьшаются.
Увеличение напряжения на дуге также приводит к росту тепловой мощности дуги. Так как при возрастании напряжения длина дуги увеличивается, то тепло вводится в изделие по большей площади, что приводит к интенсивному росту ширины шва и снижению высоты валика.
Характер влияния напряжения на дуге на глубину провара зависит от величины сварочного тока.
При больших токах, когда дуга «заглублена» в основной металл, увеличение напряжения на дуге первоначально приводит к увеличению глубины провара; дальнейший рост напряжения связан со значительным удлинением дуги, и увеличение тепловой мощности не компенсирует возрастающих потерь поверхностью столба дуги. При этом существенно уменьшается давление дуги на металл сварочной ванны, который накапливается в основании столба дуги достаточно толстым слоем, препятствуя непосредственному воздействию дуги на основной металл. Вследствие этого глубина провара начинает падать.
При сварке на средних токах увеличение напряжения на дуге приводит к росту глубины провара лишь в диапазоне очень низких напряжений. Дальнейшее увеличение напряжения вызывает снижение глубины провара.
При сварке на малых токах напряжение на дуге оказывает незначительное влияние на глубину провара.
Увеличение скорости сварки во всем диапазоне вызывает уменьшение ширины провара и некоторое уменьшение высоты валика.
Характер влияния скорости сварки на глубину провара при разных диапазонах скоростей различен. Увеличение скорости сварки до 15—20м/час (при использовании электродной проволоки диаметром 4—5мм), несмотря на уменьшение погонной энергии, вызывает некоторое возрастание глубины провара, вследствие того, что при этом уменьшается количество жидкого металла в основании столба дуги. Поэтому непосредственное воздействие дуги на нерасплавленный металл усиливается.
В диапазоне 20—40м/час скорость сварки мало влияет на глубину провара. Дальнейшее увеличение скорости сварки вызывает снижение глубины провара.
Диаметр электрода при неизменной мощности дуги и скорости сварки также оказывает существенное влияние на размеры и форму шва.
С увеличением диаметра электрода при неизменном значении тока усиливается блуждание активного пятна по поверхности ванны, тепло дуги распределяется по большей площади, вследствие чего ширина шва увеличивается, а глубина провара и высота валика уменьшаются. Наоборот, при сварке электродной проволокой малого диаметра, когда плотность тока в электроде возрастает, блуждание активного пятна по поверхности ванны ослабевает, тепло вводится более концентрированно. В результате этого увеличивается глубина провара и высота валика, а ширина шва уменьшается. Росту высоты валика способствует также значительное увеличение коэффициента расплавления, а следовательно, и количества расплавленного электродного металла.
Коэффициенты формы провара и валика с уменьшением диаметра электродной проволоки резко уменьшаются.
Режим сварки обычно устанавливают исходя из условий обеспечения заданных размеров шва и сплошности сварного соединения.
Для обеспечения сплошного провара при двусторонней однопроходной автоматической сварке необходимо, чтобы размеры шва удовлетворяли следующим требованиям (рис. 28 и формулы (5.3):
d -толщина свариваемых листов,
h1 –глубина провара при сварке с первой стороны,
h2 - глубина провара при сварке с второй стороны,
k - величина перекроя,
S –толщина нерасплавленного слоя металла под сварочной ванной.
При проектировании технологических процессов сварки необходимо определить режимы сварки, обеспечивающие получение швов заданных размеров, формы и качества.
Метод расчета режимов, предложенный Ленинградским политехническим институтом приближенный, но для инженерных расчетов достаточно точен.
Расчет режима сварки начинают с того, что задают требуемую глубину провара при сварке с первой стороны, которая устанавливается равной:
Затем определяют сварочный ток, имея в виду, что в среднем каждые 80-100А дают глубину провара 1мм, т.е.
Скорость сварки устанавливается в зависимости от принятой величины сварочного тока.
Уже отмечалось, что для сохранения геометрического подобия сварочной ванны при изменении тепловой мощности дуги необходимо qvсв поддерживать постоянным. Так как изменение тепловой мощности дуги пропорционально изменению тока, то для сохранения необходимой формы сварочной ванны произведение сварочного тока на скорость сварки должно находиться в определенных пределах. Как известно из практики, формируется шов удовлетворительно тогда, когда произведение силы тока (А) на скорость сварки (м/час) при автоматической сварке электродной проволокой диаметром 4-6мм находится в пределах 20000-30000.
Исходя из этого скорость сварки при автоматической сварке электродной проволокой диаметром 4-6мм можно определить по формуле:
Vсв = (20 ÷ 30) 10 3 / Iсв ( м/час) (5.6 )
При этом следует иметь в виду, что при автоматической сварке скорость сварки не должна выходить за пределы 15-60м/час. Диаметр электродной проволоки может быть определен по формуле (5.7) по установленной величине сварочного тока и допускаемой плотности тока j в электроде, которая при автоматической сварке изменяется в довольно широких пределах, как можно видеть из табл. 4.
Автоматическая сварка под слоем флюса
Сварку под слоем флюса производят голой электродной проволокой, которую подают в зону горения дуги специальным механизмом, называемым головкой автомата. Токопровод к проволоке осуществляется через скользящий контакт при прохождении проволоки через мундштук, изготовляемый из меди.
Малый вылет электрода, отсутствие покрытия, большая скорость подачи электродной проволоки позволяют значительно увеличить силу сварочного тока по сравнению с ручной дуговой сваркой электродами тех же диаметров, что приводит к ускорению процесса плавления сварочной проволоки, увеличению глубины проплавления основного металла, как следствие, значительному повышению производительности. Коэффициент наплавки достигает от 14 до 16 г/Ач, а в некоторых случаях даже 30 г/Ач.
Достаточно толстый слой флюса (до 60 мм), засыпаемого в зону сварки, расплавляется только на 30 %, делает дугу невидимой (закрытой) и обеспечивает хорошую защиту расплавленного металла от окружающего воздуха.
Вследствие увеличения эффективности тепловой мощности дуги может быть расширен диапазон толщин, свариваемых без скоса кромок. На качество и работоспособность сварного соединения влияет отношение ширины однопроходного шва к глубине провара. Коэффициент формы провара может изменяться в пределах от 0,5 до 4. Оптимальное его значение равно 1,5.
Отношение ширины шва к его выпуклости при хорошо сформированных швах недолжно выходить за пределы 10. Основными параметрами режима автоматической сварки под слоем флюса является сила сварочного тока, напряжение на дуге, скорость перемещения дуги и скорость подачи сварочной проволоки.
Произведем расчет режимов сварки под слоем флюса.
Принимаем диаметр сварочной проволоки dэл=5 мм.
Величина сварочного тока Iсв, А
где i – допустимая плотность тока, i = 40 A/мм.
Глубина провара при стыковой сварке находится в прямой зависимости от сварочного тока
где k1 – коэффициент пропорциональности, зависящий от рода тока и полярности диаметра электрода, а также марки флюса, k1=1,15мм/100А.
h = (1,15/100)·785= 9 мм.
Напряжение на дуге принимаем для стыковых соединений в пределах от 32 до 40 В. Большему току и диаметру электрода соответствует большее напряжение на дуге.
Зная сварочный ток и напряжение на дуге, определяем коэффициент формы провара по графикам зависимости от сварочного тока и напряжения на дуге для сварки на переменном токе под флюсом ОСЦ-45.
Принимаем коэффициент формы провара ψпр=2,4 [2,c.189].
Зная глубину провара и коэффициент формы провара, определяем ширину шва
e= ψпр · h=2,4 · 9=22 мм (7.9)
Высоту выпуклости q, мм
q = e/ ψпр = 22/6 = 3,6 мм, (7.10)
где ψпр – коэффициент формы выпуклости, ψпр = 6.
Определяем площадь сечения наплавленного металла в зависимости от формы сечения наплавленного металла по формуле
Fн = 0,75 · e · q + b · S + h 2 · tgα/2, (7.11)
Для V – образной разделки кромок e= 25,2 мм, а=60°.
Fн = 0,75 · 22 · 3,6 + 2,1 · 32 + 9 2 · tg(60/2) = 173 мм 2 .
Скорость перемещения дуги(м/ч)
где αн – коэффициент наплавки, г/Ач.
При сварке постоянным током прямой полярности и переменным током коэффициент наплавки α, г/Ач вычисляется по формуле
где А и В – коэффициенты, равные А = 7, В = 0,04.
αн = 7+ 0,04·785/5 = 13,3 г/Ач
Действительный коэффициент наплавки при данном вылете можно определить по формуле
где ∆αн – увеличение коэффициента наплавки за счет предварительного нагрева вылета электрода; определяется по графику [2, с.191].
Принимаем ∆αн = 3,2 г/Ач.
Скорость подачи сварочной проволоки определяется по формуле
Полученные расчетным путем значения режимов автоматической сварки под слоем флюса сведем в таблицу 7.3
Таблица 7.3 – Режимы автоматической сварки под слоем флюса
dэл, мм | Iсв, А | Vнд | Vп.пр | e, мм | q, мм | ψ | h, мм |
0,1 | 68,1 | 3,6 | 2,4 |
Автоматическую сварку под слоем флюса применили для первого участка из стали 20 со вторым из стали 17Г1С, используя сварочную проволоку Св-08ГА под флюсом АН-348А, шов по ГОСТ 8713-79-С21.
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние.
Читайте также: