Почему сварочный шов пористый

Обновлено: 25.01.2025

Повышенная склонность алюминиевых сплавов к порообразо­ванию является одним из главных затруднений на пути полу­чения сварных соединений высокого качества. Некоторые ученые считают, что пористость больше определенного размера при опре­деленном взаимном расположении отдельных пор существенно понижает прочность и пластичность сварных соединений. Поэтому в СССР и за рубежом проводятся работы по выяснению причин возникновения пористости и определению методов их предупреждения. Основной причиной пористости в алюминиевых сплавах является присутствие в них водорода. Кроме водорода, в сварочную ванну возможно попадание азота и кислорода. Азот практически не растворяется в алюминии, а дает нитрид алюминия, переходящий в шлак, и поэтому не ока­зывает существенного влияния на образование пористости. При сварке в защитных газах кислород в сварочную ванну обычно попадает в небольших количествах, так как содержание его в за­щитных газах строго ограничено. Кислород, попадающий в ванну, соединяется с алюминием в окисел А1203 и, очевидно, также не влияет на появление пористости в металле шва.

Образование пористости зависит от чистоты исходного металла, качества подготовки под сварку поверхности свариваемого и при­садочного материалов, чистоты защитных газов, состава защитной атмосферы, качества травления и полноты удаления продуктов травления, способа сварки, параметров сварки, вида переноса капель металла и других факторов.

Причины и механизм образования пористости исследовали многие советские ученые. Основным источником насы­щения металла шва атомарным водородом является влага, адсор­бированная окисной пленкой на поверхности сварочной про­волоки и свариваемых кромках.

Избыток газообразного водорода в металле объясняется повы­шением растворимости газов, особенно водорода, в жидком алю­минии и скачкообразным уменьшением растворимости его в кри­сталлизующемся металле. Температура сварочной ванны в голов­ной ее части достигает 1600—1700° С, а температура переносимой в столбе дуги капли еще выше; Установлено, что наивысшая растворимость водорода в алюминии имеет место при температуре 2050° С и достигает 20,9 см 3 на 100 г металла, т. е. объем раство­ренного водорода чрезвычайно велик.

По мере остывания сварочной ванны из-за резкого падения растворимости атомарный водород стремится выделиться, но, встречаясь и объединяясь с другими атомами водорода, с центрами кристаллизации и загрязнениями в металле, рекомбинирует в молекулы и образует газовые пузыри. Эти пузыри всплывают, пока позволяет вязкость окружающего металла. Не успевшие всплыть газовые пузыри после кристаллизации металла остаются в нем в виде неплотностей, как правило, сферической формы — газовой пористости.

Кроме газовой пористости, имеющей сферическую форму, различают усадочную пористость, не имеющую определенной формы и располагающуюся по границам зерен.

В некоторых случаях в сварных соединениях из алюминиевых сплавов нарушается герметичность в околошовной зоне. Это явление наблюдается в сварных деталях малой толщины (до 1 мм). В деталях большей толщины негерметичности может не быть, однако в околошовной зоне отмечается вспучивание металла. Исследования показали, что причиной возникновения негерме­тичности в околошовной зоне является междендритная водород­ная микропористость, в некоторых случаях — сквозная. При нагреве сварочной дугой в околошовной зоне частично оплав­ляются границы зерен. Диффундирующий из основного металла к этим границам водород вытесняет расплавленную эвтектику, в результате чего в околошовной зоне образуется пористость, имеющая вид разветвленных каналов. Пористость такого типа опасна, так как часто не выявляется непосредственно после сваркипри контроле сварных швов, а открывается при эксплуатации сварных узлов.

Образованию пористости сварных соединений способствует не только водород, попадающий в сварочную ванну с присадочным материалом, газами и из влаги, адсорбированной поверхностной окисной пленкой, но и водород, растворенный в металле при изготовлении полуфабрикатов. Внутренние напряжения создают направленный поток водорода в растянутые места решетки, и про­грессирующая сегрегация водорода в этих местах может привести к ослаблению сил сцепления и зарождению трещин.

При достаточно высокой температуре или при длительном постоянно действующем напряжении атомы водорода диффунди­руют и выходят из решетки металла к поверхности раздела фаз, микропустот и рекомбинируют в молекулы водорода. Так как молекулы водорода неспособны диффундировать в металле, то в несплошностях возможны высокие давления, которые приводят к образованию не только пустот (пор), но и трещин в кристалли­зующемся металле. Диффундирующий из основного металла водо­род оказывает влияние на образование газовой пористости в ме­талле шва и усадочной пористости по границам оплавленных зерен в околошовной зоне.

По уменьшению пористости сварных соединений разработано много рекомендаций, которые можно разделить на две группы:

1) организационно-технические и технологические;

Ниже приведены основные организационно-технические и тех­нологические рекомендации по уменьшению пористости.

1. Поверхностная окисная пленка на присадочной проволоке и основном металле гигроскопична, поэтому для уменьшения пористости следует тщательно удалять ее перед сваркой.

2. Одной из причин возникновения пористости является нару­шение газовой защиты шва при сварке. Образование турбулентных потоков газа приводит к перемешиванию воздуха с расплавленным металлом и, как следствие, к повышенному его загрязнению. Установлено, что характер потока защитного газа (ламинарность или турбулентность) зависит от расхода газа, скорости истечения, диаметра сопла, вылета вольфрамового электрода, расстояния сопла до изделия и типа сварного соединения. Оптимальные значения этих параметров определяют экспериментально.

3. На увеличение пористости оказывают влияние остатки на поверхности свариваемых и присадочных материалов продук­тов травления NaOH , поэтому необходимо обеспечить тща­тельную промывку деталей и проволоки после травления.

4. Для уменьшения пористости наобходимо повышать чистоту присадочной проволоки. При этом следует стре­миться к относительному уменьшению площади поверхности при­садочной проволоки, т. е. применять присадочную проволоку возможно большего диаметра. Для получения сварных швов высокого качества необходима тщательная подготовка материалов перед сваркой. По методике суммарной оценки качества подготовки материалов к сварке, разработанной в Англии, две пластины размером 25 x 37 мм, толщиной 1,5 мм сваривают по большей стороне аргоно-дуговой сваркой и рассматривают качество металла в изломе.

5. Объем пористости в сварных швах алюминиевых сплавоввозрастает при увеличении выдержки свариваемых кромок и присадочной проволоки после их обработки до момента сварки. Поэтому необходимо предельно сокращать эту выдержку. Проводятся работы по увеличению допустимого времени от подготовки деталей к сварке до сварки.

6. Одним из способов уменьшения пористости является пра­вильный выбор защитных газов. Например, при применении в ка­честве защитной среды смеси Аr+He (65—75% Не по объему) пористость уменьшается. При этом большое зна­чение имеет чистота защитных газов.

Металлургические рекомендации по уменьшению пористости

Металлургические рекомендации основаны на том, что умень­шение пористости возможно либо за счет ограничения протекания реакции взаимодействия жидкого металла с влагой путем увели­чения скорости кристаллизации сварочной ванны, либо, наоборот, за счет создания условий для полного протекания реакции удале­ния водорода путем увеличения продолжительности существова­ния жидкой ванны.

Выбор одного из металлургических способов уменьшения пористости зависит от типа свариваемого алюминиевого сплава (термически упрочняемого или термически неупрочняемого, склон­ного к образованию трещин или не склонного и др.), а также от толщины свариваемых деталей, их жесткости и других пара­метров. Детали малой толщины целесообразно сваривать на жест­ких режимах, т. е. применять первый из способов, а детали боль­шой толщины из термически неупрочняемых и не склонных к об­разованию трещин — по второму способу, учитывая, что при этом можно повысить производительность процесса сварки.

Иногда для уменьшения пористости применяют подогрев деталей перед сваркой, что увеличивает пребывание металла в жидком состоянии и таким образом облегчает удаление из него растворен­ных газов. Температуру подогрева назначают в зависимости от типа свариваемого алюминиевого сплава. Так, при сварке сплавов системы Аl— Mg подогрев свыше 100—150° С может привести не к снижению, а к увеличению пористости, так как в этих спла­вах пленка окиси магния, образующаяся на поверхности расплав­ленного металла, слабо защищает жидкий металл от воздействия влаги.

Для уменьшения пористости целесообразно применять много­дуговую сварку термически неупрочняемых алюминиевых спла­вов, что приводит к увеличению продолжительности существова­ния жидкой ванны.

Для уменьшения пористости сварных швов в СССР и за рубе­жом проводили опыты с добавлением в защитный газ 1—3% Сl по объему. Хлор, активно взаимодействуя с образовавшимся водо­родом, уменьшает его количество в сварочной ванне. Известно также, что пористость можно уменьшить путем наложения ультра­звуковых колебаний на жидкий и кристаллизующийся металл сварочной ванны. Ультразвуковые колебания облегчают выход водорода из ванны и ограничивают возможность образова­ния крупных пор. Однако применение хлора и ультразвука суще­ственно усложняет технологический процесс сварки и условия работы обслуживающего персонала.

Почему сварочный шов пористый

Пористость в сварных швах появляется потому, что газы, растворенные в жидком металле, не успевают выйти наружу до затвердевания поверхности шва.

Поры уменьшают механическую прочность шва. Они образуются при плохой зачистке свариваемых кромок и присадочной проволоки от грязи, ржавчины, масла, а также при повышенном содержании углерода в основном металле или если это металлический швеллер, большой скорости сварки, неправильном выборе сварочного пламени и марки проволоки.

Газовые поры располагаются цепочкой на некотором расстоянии друг от друга или в виде скоплений размером от сотых долей миллиметра до нескольких миллиметров. Иногда поры выходят на поверхность, образуя свищи. Поры могут быть внутренние, наружные и сквозные. Участки сварных швов с порами вырубают до основного металла и заваривают.

Каковы причины образования трещин?

Это наиболее опасные дефекты сварных швов. Они могут возникать в сварном шве и в околошовной зоне. По происхождению делятся на холодные и горячие, по расположению — на поперечные и продольные, по размерам — на макро- и микроскопические.

Трещины образуются в процессе и после сварки. Образованию трещин способствует повышенное содержание углерода в наплавленном металле, а также серы, фосфора и водорода. Холодные трещины возникают при температурах 100-300°С в легированных сталях и при нормальных температурах в углеродистых сталях.

Причины образования трещин следующие: несоблюдение технологии и режимов сварки, неправильное расположение швов в сварной конструкции, что вызывает высокую концентрацию напряжений, приводящих к полному разрушению изделия.

Большие напряжения в сварных конструкциях возникают при несоблюдении заданного порядка наложения швов. Поверхностные трещины в сварных швах вырубают полностью и заваривают. Чтобы во время вырубки трещина не распространялась дальше по шву, концы ее засверливают.

Отчего образуется непровар металла?

Непровар (местное несплавление основного металла с наплавленным, а также несплавление между собой слоев шва при многослойной сварке используя специальные электроды для сварки) образуется из-за неправильной подготовки кромок под сварку, недостаточной мощности сварочного пламени, большой скорости сварки, плохой зачистки кромок перед сваркой от окалины, шлака, ржавчины и других загрязнений.

Непровары, особенно по кромкам металлического уголка и между слоями, самые опасные, так как влияют на прочность сварочного шва. Участки с непроваром вырубают до основания металла, зачищают и заваривают.

Как устраняются сварочные прожоги?

Прожоги (сквозное проплавление с натеками с обратной стороны свариваемого металла) возникают при большом зазоре между свариваемыми кромками в зависимости от сварочного аппарата, недостаточном притуплении кромок, завышенной мощности сва-рочного пламени, недостаточной скорости сварки. Прожоги исправляют вырубкой дефектных мест с последующей их заваркой.

Отчего образуются сварочные наплывы и как их устраняют?

Наплывы образуются в результате натекания жидкого металла на кромки недостаточно прогретого основного металла, чаще всего при сварке горизонтальных швов. Наплывы срубают и проверяют, нет ли в этом месте непровара.

Какие бывают дефекты сварного шва металлоконструкций?

При сварке металлоконструкций случаются следующие дефекты: наплыв, прожог, непровар, трещина, пористость, перегрев, пережог, подрез, образование кратера, шлакоотложение.

Какова эффективность современных методов огнезащиты металлических конструкций?

В зависимости от толщины слоя штукатурного состава, конструктивных огнезащитных листов и плит обеспечвается предел огнестойкости стальных конструкций от 0, 25 до 2,5 часов.

Действие огнезащитных красок основано на вспучивании нанесенного состава при температурах 170-200°С и образовании пористого теплоизолирующего слоя, толщина которого составляет несколько сантиметров. Вспучивающиеся краски обеспечивают защиту стальных конструкций от огня в течение 1 часа.

Пористость сварных швов

Одним из наиболее часто встречающихся дефектов сварных швов являются поры. Так как их появление часто провоцируется нарушениями технологии изготовления электродов, рассмотрим этот весьма сложный процесс, о механизме которого существуют различные точки зрения.

Возникновение пористости связано с образованием газовых пу­зырьков в жидкой сварочной ванне и фиксацией их в металле при его кристаллизации. В зависимости от конкретных условий причи­нами образования пористости могут явиться такие газы, как водо­род, азот и оксид углерода.

Возникновение и развитие пор определяется совместным дей­ствием всех газов, присутствующих в металле. Однако чаще всего основное влияние принадлежит какому-либо одному из перечис­ленных газов. Существенно также влияние физических свойств сварочных шлаков.

Ранее было отмечено, что вместе с ростом температуры жидкого металла количество растворенного газа возрастает. В области высо­ких температур (капли жидкого металла, головная часть сварочной ванны) количество растворенного газа может превысить его рас­творимость (то количество газа, которое растворяется в жидком металле при температуре плавления и внешнем давлении газа в 101 кПа). В результате сварочная ванна в ее хвостовой, менее на­гретой части окажется пересыщенной газом, особенно на границе с кристаллизующимся металлом.

Излишний по сравнению с равновесным содержанием газ будет выделяться из металла. При этом он способен создавать давление (давление выделения), превышающее атмосферное. Если выделе­ние газа в атмосферу с поверхности металла происходит легко, то образование и развитие газового пузырька внутри металла затруд­нено и требует затрат энергии.

Образование зародыша газового пузырька происходит легче всего на границе между жидкой фазой и кристаллизующимся твер­дым металлом. Особенно легко это происходит во время остановок кристаллизации, продолжительность которых для стали обычно не превышает 0,2 с. Дело в том, что в процессе кристаллизации про­исходит повышение концентрации газа в слое жидкого металла на его границе с образующейся твердой фазой. Во время движения фронта кристаллизации содержание газов в твердом металле становится равным его исходному содержанию в жидком металле. Так как растворимость газов в твердом металле меньше, чем в жид­ком, то при остановке кристаллизации газ, в первую очередь водо­род, из затвердевшего металла начнет диффундировать в жидкий металл. Учитывая, что слой жидкого металла уже пересыщен га­зом, вероятность возникновения стойкого зародыша в это время возрастает.

Дальнейшее развитие и рост зародыша будут происходить в том случае, если сумма давлений выделения всех газов, растворенных в металле, превышает атмосферное давление.

Рассмотрим условия возникновения пористости при сварке эле­ктродами с покрытиями различных видов. При этом объединим в одну группу электроды с покрытиями следующих видов: кислым, рутиловым, целлюлозным. Общим для таких покрытий является наличие органики, главным образом в виде целлюлозы, создающей достаточную газовую защиту от атмосферы воздуха и кислых окси­дов в количествах, обеспечивающих развитие умеренного кремне­восстановительного процесса, а также применение в качестве рас - кислителя главным образом ферромарганца.

Сумма парциальных давлений остаточного водорода, азота и ок­сида углерода в наплавленном металле существенно превышает ат­мосферное давление. Каким же образом пересыщение наплавлен­ного металла газами сочетается с возможностью получения беспо - ристых швов?

Прежде всего, следует отметить, что жидкий металл, наплавляе­мый электродами этой группы, имеет при сравнительно высоких температурах повышенное содержание растворенного кислорода, что существенно снижает вязкость металла. Из трех рассмотрен­ных газов водород содержится в швах в большем количестве, и его парциальное давление, как правило, превышает атмосферное дав­ление. При этом диффузионная подвижность водорода в жидком металле на два-три порядка выше диффузионной подвижности азота, кислорода и углерода, необходимого для образования оксида углерода.

Приведенные особенности электродов рассматриваемой группы создают благоприятные условия для возникновения зародышей на фронте кристаллизации и их дальнейшего развития, главным обра­зом, за счет диффузии в них водорода.

В результате образующиеся газовые пузырьки растут быстрее, чем движется фронт кристаллизации. Пузырьки, достигнув опреде­ленного размера, отрываются и всплывают, что и обеспечивает отсутствие пористости в швах.

При введении в покрытие электродов сильных раскислителей (ферросилиций, алюминий, углерод) окислительный потенциал покрытия снижается. Это приводит к росту коэффициента перехо­да марганца из покрытия в наплавленный металл, к более интен­сивному развитию кремневосстановительного процесса или приро­сту кремния за счет его перехода из ферросилиция, вводимого в по­крытие. При этом изменяется также и химический состав образую­щегося шлака, а следовательно, и его свойства. В первую очередь повышается вязкость шлака, снижается его окислительная способ­ность и газопроницаемость.

Примерно к таким же результатам приводит прокалка электро­дов рассматриваемой группы при высоких температурах, превыша­ющих рекомендованные. Это снижает концентрацию влаги в по­крытии и вызывает обугливание органики. Все вместе взятое спо­собствует развитию кремневосстановительного процесса.

При повышенной концентрации кремний взаимодействует с кислородом, начиная с высоких температур. Это повышает вяз­кость и поверхностное натяжение жидкого металла. Кроме того, кремний затрудняет выделение водорода из металла. В результате образование и рост газовых пузырьков происходит вяло. Металл кристаллизируется быстрее, чем растут пузырьки газа, и в металле возникает внутренняя пористость.

В связи с повышением вязкости шлака может возникнуть также большая наружная пористость. Чаще всего это бывает, когда вяз­кий шлак покрывает ту часть сварочной ванны, в которой происхо­дит образование газовых пузырьков. Густой шлак задерживает об­разовавшиеся пузырьки газа на границе металл — шлак и не позво­ляет им выделиться в атмосферу.

Для предупреждения возможности образования пор при сварке электродами рассматриваемой группы необходимо:

• при изготовлении — строго соблюдать рецептуру покрытия и требования технической документации к компонентам и техно­логии изготовления, обращая особое внимание на соблюдение предусмотренных режимов прокалки;

• при применении — строго выдерживать предписанные режимы силы сварочного тока. В случае чрезмерного увлажнения произ­водить дополнительную прокалку в соответствии с технической документацией.

Сварку рекомендуют производить через 2-3 дня после прокал­ки с целью стабилизации влажности покрытия электродов в усло­виях цеха.

При сварке электродами с покрытием основного вида карбо­наты, содержащиеся в таких покрытиях в больших количествах, при высокой температуре разлагаются с выделением углекислого газа. При сварке короткой дугой обеспечивается достаточно мощ­ная защита сварочной ванны от воздействия воздуха, в связи с чем содержание азота в швах обычно не превышает 0,02%. Так как в со­став покрытия электродов входят сильные раскислители (кремний, титан), наплавленный металл по типу относится к спокойной стали с концентрацией кремния 0,2-0,4%. Поэтому содержание общего кислорода, связанного главным образом с кремнием, обычно нахо­дится в пределах 0,02-0,04%.

Температура прокалки электродов с покрытием основного вида достигает 380-420 °С.

Учитывая низкое содержание в покрытии пластификаторов, имеющих в своем составе связанную влагу, содержание в швах сум­марного водорода, как правило, не превышает 6-8 мл/100 г. Каза­лось бы, пористость в таких швах должна всегда отсутствовать. Од­нако на практике нередки случаи получения пористых швов. Рас­смотрим возможные причины их образования.

При сварке длинной дугой в атмосферу зоны сварки проникает воздух, а, следовательно, и азот, который в существенном количе­стве может раствориться в жидком металле при высокой темпе­ратуре.

При охлаждении жидкого металла до температуры кристалли­зации'растворимость азота резко снижается, и металл на фронте кристаллизации может оказаться пересыщенным этим газом. Так как скорость кристаллизации будет превышать скорость роста пузырьков, в сварных швах появятся поры.

При сварке электродами с увлажненным покрытием в атмо­сфере дуги появятся пары воды, диссоциация которых сопровож­дается появлением атмосферного водорода. В этом случае жидкий металл на фронте кристаллизации может быть пересыщен водоро­дом. В связи с медленным ростом пузырьков кристаллизующийся металл их зафиксирует, и в сварных швах появится пористость.

При сварке по окисленным, ржавым поверхностям возможно местное пересыщение металла как кислородом, так и водородом. Пористость возникает на фронте кристаллизации в результате

образования пузырьков газа как за счет водорода, так и за счет оксида углерода.

С целью снижения чувствительности электродов с основным покрытием к пористости при их изготовлении следует жестко огра­ничить введение в покрытие минеральных и органических пласти­фикаторов, содержащих соединения водорода, трудноудаляемые в процессе прокалки. Режимы прокалки должны полностью соответ­ствовать требованиям технической документации.

Сварку необходимо выполнять только по зачищенным поверх­ностям, на токовых режимах, соответствующих указаниям доку­ментации. Перед употреблением электроды надо прокалить.

Образование пор в сварных швах и способы их предупреждения

Поры, наблюдаемые в сварных швах, связаны с процессами выделения газов в макро- и микрообъемах.

При объемном пересыщении металла сварочной ванны газами, вызванном уменьшением растворимости из-за снижения температуры металла, в основном образуются макропоры. Рост пузырьков газа в этом случае происходит в основном в результате конвективной диффузии газа из окружающих объемов металла. Скорость роста пузырьков определяется степенью пересыщения ванны газами и скоростью десорбции газов в зародыш.

При локальном пересыщении жидкого металла у фронта кристаллизации зарождение и развитие пузырьков наиболее вероятно на стадии остановки роста кристаллов. Пузырьки в этом случае в основном развиваются вследствие диффузии атомов (ионов) газа из прилегающих микрообъемов металла. Размеры пузырьков определяются в основном длительностью остановок в росте кристаллов. При кристаллизации первых слоев и длительности остановок 0,1. 0,2 с, характерных для наиболее употребляемых режимов сварки, вероятно образование мельчайших пор у линии сплавления. Роль азота в образовании крупных пор при отсутствии конвективной массопередачи газа невелика.

Получение плотных швов при сварке покрытыми электродами и порошковыми проволоками может быть достигнуто путем снижения содержания газов в сварочной ванне ниже предела растворимости в твердом металле при температуре плавления. В этом случае образование пузырьков газа в момент кристаллизации не происходит. Этот способ обеспечения плотных швов реализуется в электродах с покрытием основного вида.

При увлажнении электродного покрытия основного вида содержание водорода в сварочной ванне возрастает выше его предела растворимости в твердом железе при температуре плавления и попадает в наиболее опасную с точки зрения образования пор концентрационную зону скачка растворимости (12. 27 см 3 /100 г). При таких концентрациях водорода процесс образования и удаления пузырьков газа из сварочной ванны протекает вяло, что приводит к образованию пор.

Поры, обнаруживаемые в швах при сварке длинной дугой электродами с карбонатно-флюоритным покрытием, вызваны выделением азота. Плохое смачивание капель электродного металла и ванны шлаками электродов этого вида создает условия для непосредственного контакта металла с газовой фазой и повышенной абсорбции азота.

Газом, вызывающим пористость швов при сварке электродами с рутиловым и руднокислым покрытиями, в основном является водород. Выделение оксида углерода и азота играет второстепенную роль.

Получение плотных швов при сварке этими электродами достигается путем создания благоприятных условий для повышенной абсорбции водорода на стадии капли и интенсивного роста и быстрого удаления образовавшихся пузырьков газа из сварочной ванны до момента ее кристаллизации. Такая ситуация реализуется при обеспечении содержания водорода в сварочной ванне, значительно превышающем предел его растворимости в жидком железе при температуре плавления, т. е. намного больше 27 см 3 /100 г.

Введение в рутиловые и руднокислые покрытия материалов, содержащих кристаллизационную влагу, способствует интенсивной абсорбции водорода каплями электродного металла и высокотемпературной областью сварочной ванны, что создает впоследствии благоприятные условия для зарождения, роста и удаления пузырьков газа до момента кристаллизации сварочной ванны.

Увеличение силы тока при сварке электродами с рутиловым и руднокислым покрытиями повышает вероятность образования пор в металле шва, что обусловлено перегревом второй половины электрода, уменьшением содержания влаги в перегретом покрытии и содержания водорода в металле шва, выполненном перегретой частью электрода до опасного концентрационного уровня (12. 27 см 3 /100 г).

При введении значительных количеств алюминия, титана, кремния в покрытия рутиловых и руднокислых электродов возрастает вероятность образования пор, обусловленная ростом концентрации кремния в металле сварочной ванны.

Будучи поверхностно-активным элементом, кремний тормозит десорбцию водорода, дегазация ванны идет вяло, в металле образуются поры. Подобное влияние может оказывать сера и другие поверхностно-активные элементы.

Раскисление покрытий рутиловых или руднокислых электродов кремнием, титаном, алюминием, углеродом, высокое содержание этих элементов в основном металле, повышение температуры прокалки, снижение окислительного потенциала покрытия и др. приводят к снижению скорости выделения газов и к образованию пористости.

Подавление кремневосстановительного процесса путем повышения основности шлака, введения карбонатов в покрытие и окисления кремния водяным паром способствует увеличению скорости выделения водорода. Предложенный метод интенсификации выделения водорода использован при создании промышленных марок рутил-карбонатных электродов серии АНО.

Менее падежная защита металла от воздуха при сварке порошковыми проволоками открытой дугой приводит к большей (по сравнению с электродами) абсорбции азота металлом, поэтому выделение азота из ванны оказывает существенное, а в ряде случаев решающее, влияние на пористость. В проволоках карбонатло-флюоритного типа предупреждение выделения азота в виде газовой фазы достигается легированием металла титаном и алюминием. Эффективно снизить абсорбцию азота можно, зашитив зону сварки углекислым газом, смесями газов на основе аргона либо используя проволоку двухслойной конструкции.

Что такое подрез в сварке?

Начинающие сварщики часто задают вопросы: «Что такое подрез в сварке? Какие причины образования подрезов при сварке? Как производить ремонт подрезов сварных швов?» и в данной статье на все эти вопросы есть ответы.

Что такое подрез в сварке?

Содержание

Подрез сварного шва это дефект который характеризуется образованием продолговатого углубления (канавки) остроугольной формы в зоне сплавления сварного шва и основного металла или металла сварного шва предыдущего слоя.

Похожие определения для данного вида дефекта сварного шва указаны и в нормативных документах на сварку ГОСТ 2601 и ГОСТ 30242:

Виды подрезов сварного шва

Подрез это дефект в виде углубления по линии сплавления сварного шва с основным металлом. Подрез это углубление продольное на наружной поверхности валика сварного шва, образовавшееся при сварке.

Напоминаем, что в статье о дефектах сварных швов и в пособии о дефектах сварных швов Юхина Н.А. есть фотографии, причины и способы устранения всех дефектов сварки.

Причины образования подрезов при сварке

Причиной образования подреза при сварке является выполнение сварки либо на повышенных режимах или с большой скоростью. Также, результатом возникновения может служить выбор неправильного угла наклона к более тонкому краю детали, что в свою очередь вызывает ее перегрев.

Исследования показывают, что с уменьшением температуры твердой поверхности смачивание ее жидким металлом ухудшается и улучшается с повышением температуры. Следовательно, одним из основных факторов, влияющих на смачивание является температура. На горизонтальных плоскостях смачивание играет ключевую роль т.к. вследствие действия сил поверхностного натяжения, жидкий металл на холодной поверхности стремиться к сжиманию, сокращая свою площадь и поверхность, которую он занимает, что и приводит к образованию подреза в сварном шве. В вертикальной плоскости, т.е. при сварке угловых и горизонтальных швов, дополнительной причиной является стекания жидкого металла под действием силы тяжести.

Неправильное использование газовой защиты, неправильная техника сварки и положение при сварке являются дополнительными причинами образования подреза сварного шва.

Подрезы при сварке всегда были серьезной проблемой в сварочном производстве, поэтому в последние годы все больше производителей сварочного оборудования и материалов и предпринимают попытки решить данную проблему.

Наличие подрезов обусловливает существенную концентрацию напряжений вблизи данного дефекта и может вызвать локальное или общее разрушение конструкции. Продольные углубления снижают сечение основного металла в зоне термического влияния. В результате чего сварные швы плохо воспринимают динамическую нагрузку и в данных местах могут возникнуть трещины. При проведении испытаний сварных швов на растяжение и угол загиба разрушение металла начинается от подреза, при значительного заниженных механических показателях.

Восемь советов для уменьшения вероятности образования подрезов в сварном шве

Ниже приведены рекомендации, которые помогут уменьшить вероятность образования подрезов при сварке изделий из труб, листов, швеллеров, уголков и т.д.

Правильное тепловложение

Одной из самых главных причин образования подрезов в сварных швах является большая величина нагрева при выполнении сварки вблизи свободных краев детали в результате чего происходит более глубокое проплавление одной из кромок, что приводит к образованию канавки, которая остается после затвердевания металла сварочной ванны. Это может привести к перегреву и расплавлению близлежащего основного металла или ранее наложенного металла шва. Для предотвращения необходимо следить за тепловложением при этом уменьшая сварочный ток при приближении к более тонким участкам детали или к свободному краю изделия.

Правильный угол электрода

Как известно угол электрода играет очень важную роль для предотвращения образования дефектов при сварке. Если выполнить сварку с неправильным углом, который будет направлять больше тепла к свободным кромкам изделия, вероятность образования подреза увеличивается в несколько раз. В связи с чем необходимо использовать правильный угол, чтобы направлять больше тепла на более толстую часть детали.

Правильная скорость сварки

Сварка с большой скоростью является еще одной причиной образования подрезов на сварных швах. При большой скорости некоторая часть основного металла переходит в расплавленный металл сварного шва и в результате быстрой кристаллизации остаются углубления (канавки) по краям. Поэтому рекомендуется производить сварку в умеренном темпе потому что слишком маленькая скорость сварки не дает удовлетворительных результатов. Таким образом, конкретным условиям сварки соответствует определенный диапазон скорости, в пределах которого возможно получение швов без подрезов.

Правильный выбор газовой защиты

При сварке полуавтоматом неправильный выбор защитных газов также является одной из основных причин подрезов при сварке. Сварщик должен быть уверен, что использует правильную сварочную смесь, которая подходит именно для сварки этого металла. Применение смесей углекислоты с инертными газами обеспечивает качественные результаты при сварке углеродистых сталей.

Правильная техника сварки

Причиной образования подрезов при сварке также является попытка сварщика выполнять сварку с чрезмерными поперечными колебаниями электрода. Рекомендуется выполнять сварку с минимальными поперечными колебаниями – так называемым «ниточным швом». Размер колебаний не должен превышать допустимых значений, потому что это значительно увеличивает вероятность образования подреза в сварном шве. Для предотвращения образования данного дефекта сварного шва необходимо либо уменьшить ширину поперечных колебаний электрода, либо выполнять многослойный шов вместо однослойного.

При ручной дуговой сварке покрытыми электродами рекомендуемый размах поперечных колебаний должен составлять не более 2-3 диаметров электрода.

Правильное пространственное положение при сварке

Сварка в горизонтальном или вертикальном положении в свою очередь увеличивает вероятность образования подреза шва. В данном случае, канавка образуется из-за недостаточного заполнения вдоль зоны сплавления шва. Если есть возможность, сварку необходимо выполнять в нижнем положении.

Использовать многослойную сварку

Это самый лучший вариант для предотвращения образования подрезов при сварке. Техника наложения многослойного шва подразумевает выполнение всех вышесказанных рекомендаций и помогает добиться качественных сварных соединений с гарантированными механическими свойствами.

Использование предварительного подогрева

Предварительный подогрев снижает скорость кристаллизации металла и улучшает смачиваемость за счет меньшей разности температур между сильно нагретым металлом сварочной ванны и слабо нагретым основным металлом.

Измерение глубины подреза сварного шва

В большинстве случаев измерение подрезов сварных швов производится с помощью:

  • специального прибора (глубиномера);
  • универсального шаблона сварщика УШС-3, УШС-4.

Прибор для измерения глубины подреза сварного шва

Прибор для измерения глубины подреза сварного шва представляет собой опорное основание 1 в котором закрепляется индикатор часового типа со специальным наконечником индикатора. Путем установки основания на ровную поверхность необходимо выставить 0 на индикаторе, после чего прибор передвинуть к месту измерения и установить наконечник индикатора в канавку. Размер устанавливается значением на шкале индикатора.

Прибор для измерения глубины подреза сварного шва

Кстати, конструкция прибора предусматривает два типа наконечников:

  • с углом 45° - для измерения глубины подреза, углублений между валиками и чешуйчатости, вогнутости корня шва;
  • плоский – для измерения высоты усиления сварного шва, выпуклости корня шва, смещение кромок свариваемых деталей.

Измерение глубины подреза сварного шва универсальным шаблоном сварщика (УШС-3; УШС-4)

Измерение подреза при помощи универсального шаблона сварщика производится путем установки указателя 1 в канавку. Размер определяется напротив риски 2 по шкале 3.

Измерение подреза при помощи универсального шаблона сварщика

Принципиального отличия в методах проведения контроля нет, поэтому чем измерить подрез сварного шва зависит только от наличия того или иного мерительного инструмента.

Измерение подреза при помощи универсального измерителя сварных соединений WG-2
Измерение подреза при помощи измерителя сварных соединений Bridge Cam

Допуски на подрезы в сварных швах

Конечно же лучше изготавливать конструкции без дефектов, но чаще всего это является необоснованно дорого или невозможно, поэтому всегда имеются допуски с указанием какие дефекты, их количество и размеры являются допустимыми в той или иной конструкции и не влияют на её эксплуатационные свойства. В первую очередь от назначения конструкции и требований нормативных документов зависит какого размера подрезы допускаются в сварных швах:

Чтобы узнать допуски на подрезы в сварных швах, прежде всего необходимо найти данную информацию в нормативных документ с требованиями к сварным швам.

Ремонт подрезов сварных швов

В зависимости от требований нормативных документов в некоторых случаях допускается небольшие подрезы исправлять методом зачистки без последующей сварки. Если требуется проведение ремонта с последующей сваркой - процесс исправления состоит из следующих этапов:

Читайте также: