Периодичность измерения сопротивления изоляции сварочных трансформаторов
ГОСТ Р МЭК 60974-4-2014
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
ОБОРУДОВАНИЕ ДЛЯ ДУГОВОЙ СВАРКИ
Периодическая проверка и испытание
Arc welding equipment. Part 4. Periodic inspection and testing
Дата введения 2016-01-01
1 ПОДГОТОВЛЕН Федеральным государственным автономным учреждением "Научно-учебный центр "Сварка и контроль" при МГТУ им.Н.Э.Баумана" (ФГАУ "НУЦСК при МГТУ им.Н.Э.Баумана"), Национальным Агентством Контроля Сварки (СРО НП "НАКС"), Научно-производственной фирмой "Инженерный и технологический сервис" (НПФ "ИТС"), Обществом с ограниченной ответственностью "Шторм" (ООО "Шторм") на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 4
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 364 "Сварка и родственные процессы"
4 Настоящий стандарт идентичен международному стандарту МЭК 60974-4:2010* Оборудование для дуговой сварки. Часть 4. Периодическая проверка и испытание (IEC 60974-4:2010 Arc welding equipment - Part 4: Periodic inspection and testing).
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.
При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации и межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА.
Степень соответствия - идентичная (IDT)
5 ВВЕДЕН ВПЕРВЫЕ
Введение
Международная электротехническая комиссия (МЭК) является всемирной организацией по стандартизации, включающей в себя все национальные комитеты (национальные комитеты МЭК). Целью МЭК является развитие международного сотрудничества по всем вопросам стандартизации в области электрической и электронной аппаратуры.
Международный стандарт МЭК 60974-4 был подготовлен техническим комитетом МЭК N 26: Электрическая сварка.
1 Область применения
Настоящий стандарт устанавливает методику испытаний при периодических проверках и после ремонта оборудования с целью обеспечения электрической безопасности. Методика испытаний также применима для технического обслуживания.
Настоящий стандарт применим к источникам питания для дуговой сварки и родственным процессам, спроектированным и изготовленным в соответствии с МЭК 60974-1 или МЭК 60974-6. Испытания автономного вспомогательного оборудования, спроектированного и изготовленного в соответствии с другими частями МЭК 60974, могут проводиться согласно требованиям настоящего стандарта.
Примечание 1 - Источник сварочного тока может подвергаться испытаниям совместно с установленным на нем вспомогательном оборудовании для определения степени воздействия данного оборудования на работу источника сварочного тока.
Настоящий стандарт не применим к испытаниям новых источников питания или источников с приводным двигателем.
Примечание 2 - Для источников сварочного тока, изготовленных не в соответствии с МЭК 60974-1, см. приложение C.
2 Нормативные ссылки
Для применения настоящего стандарта необходимы следующие ссылочные документы*. Для датированных ссылок применяют только указанное издание ссылочного документа, для недатированных ссылок применяют последнее издание ссылочного документа (включая все его изменения):
* Таблицу соответствия национальных стандартов международным см. по ссылке. - Примечание изготовителя базы данных.
МЭК 60050-151 Международный электротехнический словарь. Глава 151. Электрические и магнитные устройства (IEC 60050-151 International Electrotechnical Vocabulary - Part 151: Electrical and magnetic devices)
МЭК 60050-195 Международный электротехнический словарь. Часть 195. Заземление и защита от электрического удара (IEC 60050-195 International Electrotechnical Vocabulary - Part 195: Earthing and protection against electric shock)
МЭК 60050-851 Международный электротехнический словарь. Глава 851. Электросварка (IEC 60050-851 International Electrotechnical Vocabulary - Part 851: Electric welding)
МЭК 60974-1:2005 Оборудование для дуговой сварки. Часть 1. Источники сварочного тока (IEC 60974-1:2005 Arc welding equipment - Part 1: Welding power sources)
Заменен на МЭК 60974-1:2012 Оборудование для дуговой сварки. Часть 1. Источники питания для сварки (IEC 60974-1:2012 Arc welding equipment - Part 1: Welding power sources). Для однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.
МЭК 60974-6 Оборудование для дуговой сварки. Часть 6. Ручные источники питания дуговой сварки металла в ограниченном режиме (IEC 60974-6 Arc welding equipment - Part 6: Limited duty manual metal arc welding power sources)
МЭК 61557-4 Электробезопасность распределительных низковольтных сетей до 1000 B переменного тока и 1500 B постоянного тока. Оборудование для испытания, измерения или контроля средств защиты. Часть 4. Сопротивление присоединения к земле и устройств выравнивания потенциалов (IEC 61557-4 Electrical safety in low voltage distribution systems up to 1000 V a.c. and 1500 V d.c. - Equipment for testing, measuring or monitoring of protective measures - Part 4: Resistance of earth connection and equipotential bonding)
3 Термины и определения
В настоящем стандарте применены термины и определения, представленные в МЭК 60050-151, МЭК 60050-195, МЭК 60050-851, МЭК 60974-1, а также следующие термины с соответствующими определениями:
3.1 квалифицированный специалист, компетентное лицо, подготовленный сотрудник (expert, competent person, skilled person): Сотрудник, способный к выполнению порученной ему работы и к распознаванию потенциальных опасностей за счет полученной профессиональной подготовки, приобретенных знаний и опыта, а также знания конструкции соответствующего оборудования
Примечание - При оценке уровня профессиональной подготовки сотрудников допускается принимать во внимание наличие у них многолетнего стажа работы в соответствующей технической сфере.
[МЭК 60974-1:2005, 3.3]
3.2 проинструктированный сотрудник (instructed person): Сотрудник, проинформированный о поставленных задачах и потенциальных опасностях в случае пренебрежения техникой безопасности и прошедший, при необходимости, определенную подготовку
Примечание - Сотрудник, прошедший, при необходимости, определенную подготовку.
[МЭК 60974-1:2005, 3.4]
3.3 периодическая проверка и испытание (periodic inspection and test): Проверка, выполняемая с заданной периодичностью для снижения риска воздействия опасных факторов
3.4 техническое обслуживание (maintenance): Обслуживание, выполняемое с заданной периодичностью для снижения риска возникновения опасности и отказа
3.5 ремонт (repair): Восстановление безопасного и работоспособного состояния
3.6 специалист по испытаниям (test personnel): Подготовленный работник или специалист, прошедший обучение и получивший разрешение проводить периодические проверки и испытания
4 Общие требования
4.1 Квалификация специалистов по испытаниям
Испытания сварочного оборудования могут представлять опасность и должны выполняться проинструктированным сотрудником или квалифицированным специалистом по ремонту электрооборудования, предпочтительно знакомым со сваркой, резкой и родственными процессами. Проинструктированных сотрудников следует рассматривать как квалифицированных для простых периодических испытаний и технического обслуживания, при условии, что не требуется открывать корпус оборудования.
Примечание - Опасные напряжения и токи, присутствующие внутри корпуса, могут вызвать поражение, ожоги или смертельный исход. Открывать оборудование могут только квалифицированные специалисты по испытаниям.
4.2 Условия проведения испытаний
Все испытания должны проводиться при температуре окружающего воздуха от 10°C до 40°C на сухом и чистом сварочном оборудовании.
4.3 Измерительные приборы
Точность измерительных приборов должна быть не ниже класса 2,5, за исключением измерений сопротивления изоляции, где точность приборов не определена, но измерения при этом все равно должны выполняться.
4.4 Периодическая проверка и испытание
Периодическая проверка и испытание проводятся в соответствии с таблицей 1.
Результаты регистрируются в отчете об испытаниях согласно 7.1.
Во время проведения испытаний должны соблюдаться инструкции изготовителя.
4.5 Техническое обслуживание
График технического обслуживания и инструкции производителя должны быть соблюдены.
4.6 Ремонт
После ремонта или замены узла, который восстанавливает функцию сварки или резки, квалифицированный специалист должен назначить испытания согласно таблице 1.
Примечание - После мелкого ремонта, такого как замена лампы, колеса или тележки, испытания, указанные в таблице 1, могут не проводить.
В ходе проведения испытаний должны соблюдаться дополнительные инструкции изготовителя (например, принципиальные схемы, перечень запасных частей, функциональное испытание источника питания и вспомогательного оборудования и т.д.).
4.7 Последовательность испытаний
Последовательность испытаний представлена в таблице 1.
Таблица 1 - Последовательность испытания на используемом оборудовании для дуговой сварки
Полный текст этого документа доступен на портале с 20 до 24 часов по московскому времени 7 дней в неделю .
Также этот документ или информация о нем всегда доступны в профессиональных справочных системах «Техэксперт» и «Кодекс».
Тема: Каковы нормы и периодичность испытаний сварочных установок?
Каковы нормы и периодичность испытаний сварочных установок?
Каким испытаниям подвергаются сварочные установки (как стационарные, так и переносные), кроме измерения сопротивления изоляции? Каковы нормы и периодичность испытаний, в том числе сопротивление изоляции?
Открываем и смотрим, что написано в ПТЭЭП, 3.1.21. Система технического обслуживания и ремонта электросварочных установок разрабатывается и осуществляется в соответствии с принятой у Потребителя схемой с учетом требований настоящей главы, инструкций по эксплуатации этих установок, указаний завода-изготовителя, норм испытания электрооборудования (Приложение 3) и местных условий.
3.1.22. Проведение испытаний и измерений на электросварочных установках осуществляется в соответствии с нормами испытания электрооборудования (Приложение 3), инструкциями заводов-изготовителей. Кроме того, измерение сопротивления изоляции этих установок проводится после длительного перерыва в их работе, при наличии видимых механических повреждений, но не реже 1 раза в 6 мес.
3.5.11. Переносные и передвижные электроприемники, вспомогательное оборудование к ним должны подвергаться периодической проверке не реже одного раза в 6 месяцев. Результаты проверки работники, указанные в п.3.5.10, отражают в Журнале регистрации инвентарного учета, периодической проверки и ремонта переносных и передвижных электроприемников, вспомогательного оборудования к ним.
3.5.12. В объем периодической проверки переносных и передвижных электроприемников, вспомогательного оборудования к ним входят: внешний осмотр; проверка работы на холостом ходу в течение не менее 5 мин; измерение сопротивления изоляции; проверка исправности цепи заземления электроприемников и вспомогательного оборудования классов 01 и 1.
3.5.13. В процессе эксплуатации переносные, передвижные электроприемники, вспомогательное оборудование к ним должны подвергаться техническому обслуживанию, испытаниям и измерениям, планово-предупредительным ремонтам в соответствии с указаниями заводов-изготовителей, приведенными в документации на эти электроприемники и вспомогательное оборудование к ним.
3.5.14. Ремонт переносных и передвижных электроприемников, вспомогательного оборудования к ним должен производиться специализированной организацией (подразделением). После ремонта каждый переносной и передвижной электроприемник, вспомогательное оборудование должны быть подвергнуты испытаниям в соответствии с государственными стандартами, указаниями завода-изготовителя, нормами испытаний электрооборудования (Приложение 3).
Приложение 3
28. Электроустановки, аппараты, вторичные цепи, нормы испытаний которых не определены в разделах 2-27, и электропроводки напряжением до 1000 В
28.1. Измерение сопротивления изоляции - См. табл.37 (Приложение 3.1): Измерения сопротивления изоляции в особо опасных помещениях и наружных установках производятся 1 раз в год. В остальных случаях измерения производятся 1 раз в 3 года.
Измерение сопротивления изоляции обмоток силовых трансформаторов
Сопротивление изоляции обмоток силовых трансформаторов , имеющих параллельные ветви, производится между ветвями, если при этом параллельные ветви могут быть выделены в электрически несвязанные цепи без распайки концов.
Измерение сопротивления изоляции силовых трансформаторов рекомендуется производить до измерения тангенса угла диэлектрических потерь и емкости обмоток.
Измерение сопротивления изоляции обмоток трансформаторов производится мегомметром между каждой обмоткой и корпусом (землей) и между обмотками при отсоединенных и заземленных на корпус остальных обмотках.
Состояние изоляции силовых трансформаторов характеризуется не только абсолютным значением сопротивления изоляции , которое зависит от габаритов трансформаторов и применяемых в нем материалов, но и коэффициентом абсорбции (отношением сопротивления изоляции, измеренного дважды — через 15 и 60 с после приложения напряжения на испытуемом объекте, R6o»и R15″). За начало отсчета допускается принимать начало вращения рукоятки мегаомметра.
Измерение сопротивления изоляции позволяет судить как о местных дефектах, так и о степени увлажнения изоляции обмоток трансформатора. Измерение сопротивления изоляции должно производиться мегаомметром, имеющим напряжение не ниже 2500 В с верхним пределом измерения не ниже 10000 МОм. На трансформаторах с высшим напряжением 10 кВ и ниже допускается измерение сопротивления изоляции производить мегаомметром на 1000 В с верхним пределом измерения не ниже 1000 МОм.
Перед началом каждого измерения по рис.1 испытуемая обмотка должна быть заземлена не менее 2 мин. Сопротивление изоляции R6o»- не нормируется, и показателем в данном случае является сравнение его с данными заводских или предыдущих испытаний. Коэффициент абсорбции также не нормируется, но учитывается при комплексном рассмотрении результатов измерения.
Обычно при температуре 10 — 30°С для неувлажненных трансформаторов он находится в следующих пределах: для трансформаторов менее 10000 кВА напряжением 35 кВ и ниже — 1,3, а для трансформаторов 110 кВ и выше — 1,5 — 2. Для трансформаторов, увлажненных или имеющих местные дефекты в изоляции, коэффициент абсорбции приближается к 1.
В связи с тем, что при приемосдаточных испытаниях приходится измерять трансформаторов при различных температурах изоляции, следует учитывать, что значение коэффициента изменяется с изменением температуры. Зависимость Ka б c = R6o» / R15″- показана на рис.2.
Для сравнения сопротивления изоляции необходимо измерять при одной и той же температуре и в протоколе испытания указывать температуру, при которой проводилось измерение. При сравнении результаты измерений сопротивления изоляции при разных температурах могут быть приведены к одной температуре с учетом того, что на каждые 10 °С понижения температуры R6o» увеличивается примерно в 1,5 раза.
В инструкции на этот счет даются следующие рекомендации: значение R6o» должно быть приведено к температуре измерения, указанной в заводском паспорте, оно должно быть: для трансформаторов 110 кВ — не менее 70 %, для трансформаторов 220 кВ — не менее 85 % значения, указанного в паспорте трансформатора.
Рис. 1. Схемы измерения сопротивления изоляции обмоток трансформатора: a – относительно корпуса; б – между обмотками трансформатора
Рис. 2 Зависимость Ka б c = R6o» / R15″
Измерение сопротивления изоляции вводов с бумажно-масляной изоляцией производится мегаомметром на напряжение 1000 — 2500 В. При этом измеряется сопротивление дополнительной изоляции вводов относительно соединительной втулки, которое должно быть не менее 1000 МОм при температуре 10 — 30 °С. Сопротивление основной изоляции ввода трансформатора должно быть не менее 10000 МОм.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Как испытывают сварочные трансформаторы?
Своевременное испытание трансформаторов является одним из обязательных условий их безопасной эксплуатации. В соответствии с нормативно-технической документацией периодичность испытаний сварочных трансформаторов составляет не реже одного раза в 6 месяцев. При наличии перебоев в работе или выполнении ремонтных операций, этот срок может быть сокращен. Объем испытаний сварочного трансформатора включает следующие обязательные операции:
- Визуальный осмотр всех составных частей устройства на отсутствие видимых дефектов.
- Определение величины сопротивления изоляции обмоток и коэффициента абсорбции.
- Проверка параметров сварочного трансформатора в режиме холостого хода.
- Проверка изоляции обмоток напряжением выше номинального.
- Измерение сопротивления изоляции стяжных шпилек.
По окончании проведения испытаний, результаты всех измерений вносят в протокол, форма которого регламентирована государственным стандартом. На корпусе трансформатора дополнительно наносят точную дату проведения испытаний.
Особенности испытаний сварочных трансформаторов
В процессе проверки сварочных трансформаторов их подключают к безындукционной нагрузке, что позволяет исключить влияние реактивной составляющей на результаты измерений. В качестве измерительных приборов используют устройства с классом точности не ниже 1,5. Для проверки электродинамической стойкости трансформаторов осуществляют не менее 10 коротких замыканий на землю. После этого, с помощью внешнего осмотра оценивают целостность устройства и его составных частей.
Для измерений сопротивления изоляции необходимо предварительно нагрузить сварочный трансформатор в течение 10 минут на максимально возможном режиме. Только после его нагрузки и прогрева до определенной температуры, трансформатор допускают к измерению сопротивления изоляции и испытаниям в режиме холостого хода. Сопротивление изоляции обмоток испытывают мегомметром с напряжением 2,5 кВ в течение времени 60 секунд. Коэффициент абсорбции представляет собой отношение величины сопротивления изоляции после 60 секунд измерений к величине сопротивления изоляции после 15 секунд измерений. Коэффициент абсорбции считается нормальным, если его значение выше 1,3. В противном случае изоляция считается увлажненной и требует сушки.
В процессе определения тока и потерь холостого хода на концы обоих обмоток подсоединяют измерительные приборы. При этом одновременно проверяют стационарные измерительные приборы со шкалой тока в разных положениях регулятора. Допустимый уровень погрешности не должен превышать ±7,5%. Величина тока и потерь холостого хода не должны отличаться паспортных значений на величину более 10%.
Уровень электрической прочности изоляции у сварочного трансформатора испытывают относительно заземленного корпуса и между обмотками при помощи переменного напряжения частотой 50 Гц в течение времени 60 секунд. Величина напряжения зависит от места его прикладывания и питающего напряжения самого трансформатора.
Все результаты измерений и испытаний заносят в протокол, где приводится нормированные и измеренные величины. На основании этой информации персонал электротехнической лаборатории делает вывод о пригодности электрооборудования к дальнейшей эксплуатации. Кроме периодических испытаний персоналом электротехнической лаборатории, сварщики должны визуально проверять оборудование ежедневно перед началом работ. При этом они производят его очистку от песка, пыли, грязи, отвечают за наличие маркировки и специальных оградительных конструкций.
Методика испытания и измерения силовых трансформаторов
I. Общая часть.
1. Цель работы.
Целью проведения пуско-наладочных работ на силовых трансформаторах является проверка возможности включения трансформаторов в работу без предварительной ревизии и сушки, а также соответствия их характеристик данным заводов-изготовителей.
2. Техника безопасности.
Испытания и измерения силовых трансформаторов может производить бригада в составе не менее 2 человек из лиц ЭТЛ. Производитель работ при высоковольтных испытаниях должен иметь группу по электробезопасности не ниже IV, а остальные не ниже III группы. Работы проводятся по наряду с применением защитных средств.
Все выводы трансформатора на время производства работ должны быть закорочены и заземлены. Снимать закоротки и заземление допускается только на время испытаний.
3. Техническая оснащенность.
3.1. Средства защиты:
— диэлектрические боты или коврик;
3.2. Приборы:
— мегаомметр электронный Ф 4102/2-М;
— мост постоянного тока Р 333;
— испытательная установка АИД-70;
II. Испытания и измерения.
1. Замеры изоляционных характеристик.
Перед началом испытаний необходимо провести внешний осмотр трансформатора, проверить исправность бака и радиаторов, состояние изоляторов, уровень масла, целостность маслоуказательного стекла, заземление трансформатора.
Замеры изоляционных характеристик допускается измерять не ранее чем через 12 ч. после окончания заливки трансформатора маслом. Характеристики изоляции измеряются при температуре изоляции не ниже 10 °С у трансформаторов напряжением до 150 кВ, мощностью до 80 МВА.
1.1. Сопротивление изоляции.
Характеристики изоляции измеряются по схемам и в последовательности, указанным ниже:
При измерении все выводы обмоток одного напряжения соединяют вместе, остальные обмотки и бак трансформатора должны быть заземлены.
В начале измеряют R60 и R15, а затем остальные характеристики трансформатора. Сопротивление изоляции трансформатора измеряют по приведенным ниже схемам мегаомметром на 2500 В с верхним пределом измерения не ниже 10000 МОм.
Перед началом измерения все обмотки должны быть заземлены не менее чем на 5 минут, а между отдельными измерениями не менее чем на 2 минуты.
Для трансформаторов на напряжение до 35 кВ включительно, мощностью до 10 МВА сопротивление изоляции обмоток должно быть не ниже следующих значений:
Температура обмотки, °С 10 20 30 40 50 60 70
R60 // , МОм 450 300 200 130 90 60 40
Сопротивление изоляции сухих трансформаторов при температуре обмоток 20-30 °С должно быть для трансформаторов с номинальным напряжением:
До 1 кВ включительно – не менее 100 МОм;
Более 1 кВ до 6 кВ включительно – не менее 300 МОм;
Более 6 кВ – не менее 500 МОм.
Измерения производятся по схеме, представленной на рис. 1, при соблюдении всех требований техники безопасности, причем рабочая зона должна быть ограждена и вывешены плакаты «СТОЙ, НАПРЯЖЕНИЕ».
Измерение сопротивления изоляции доступных стяжных шпилек, бандажей и прессующих колей относительно активной стали и ярмовых балок, а также ярмовых балок относительно обмоток и магнитопровода.
Производится в случае осмотра активной части трансформатора. Используются мегаомметры на напряжение 1000-2500 В.
Измеренные значения должны быть не менее 0,5 МОм.
1.2. Измерение тангенса угла диэлектрических потерь (см. методику).
Тангенс угла диэлектрических потерь (tg d) в изоляции и емкости обмоток производят при помощи мостов переменного тока (Р-5026) по перевернутой схеме при напряжении 10 кВ. Испытательное напряжение не должно превышать 60 % номинального напряжения испытуемой обмотки (см. методику замера tg d). Схемы и условия измерения диэлектрических потерь в изоляции силового трансформатора те же, что и при измерении сопротивления изоляции. При сравнении измеренных значений с заводскими учитываются температуры, при которых производились измерения. Зависимость поправочного коэффициента от разности температур приведена ниже. Приведенное к заводской температуре значение tg d, измеренное при монтаже, не должно превышать заводских данных более чем на 30 %. Значения tg d изоляции, равные или меньше 1 % (после приведения к заводской температуре), с паспортными данными не сравниваются и считаются удовлетворительными.
2. Испытание обмоток трансформатора.
Повышенным напряжением переменного тока от постороннего источника производится вместе с вводами (рис. 2). Испытательное напряжение зависит от класса изоляции обмотки:
обмотки, кВ до 3 3 6 10 15 20 24 27 35
кВ, обмоток трансформатора
с изоляцией: нормальной 4,5 16 23 32 41 50 59 63 77
сухие трансформаторы 2,7 9 15 22 28 — — — —
Время испытания составляет 1 мин. При отсутствии испытательной установки необходимой мощности испытание обмоток трансформаторов, автотрансформаторов, масляных и дугогасящих реакторов с нормальной изоляцией не проводится. В эксплуатации для обмоток 35 кВ и ниже испытание напряжением переменного тока может быть заменено испытанием выпрямленным напряжением с измерением тока утечки. Выпрямленное испытательное напряжение принимается равным амплитудному значению испытательного напряжения промышленной частоты.
3. Измерение сопротивления обмоток постоянному току.
Измерение производится на всех ответвлениях обмоток, если в паспорте трансформатора нет других указаний.
Измеряются, как правило, линейные сопротивления, при наличии нулевого вывода измеряют также одно из фазных сопротивлений.
Сопротивления обмоток трехфазных трансформаторов, измеренные на одинаковых ответвлениях разных фаз при одинаковой температуре, не должны отличаться более чем на 2%. Кроме того, должна соблюдаться одинаковая для всех фаз и соответствующая положениям переключателя закономерность изменения сопротивления постоянному току в различных положениях переключателя. Если из-за конструктивных особенностей трансформатора это расхождение может быть большим, и об этом указано в заводской технической документации, следует руководствоваться нормой на допустимое расхождение, приведенное в паспорте трансформатора.
Перед измерением сопротивления обмоток трансформаторов, снабженных устройствами регулирования напряжения, следует произвести не менее трех полных циклов переключения.
4. Коэффициент трансформации.
Коэффициент трансформации силовых трансформаторов определяют для проверки соответствия паспортным данным и правильности подсоединения ответвлений обмоток к переключателям.
Определение коэффициента производится методом «двух вольтметров». По этому методу к одной из обмоток трансформатора подводится напряжение, и двумя вольтметрами одновременно измеряется подводимое напряжение и напряжение на другой обмотке трансформатора. Подводимое напряжение не должно превышать номинальное и в тоже время должно составлять не менее 1% номинального напряжения.
Испытания трехфазных трансформаторов допустимо производить при трехфазном и однофазном возбуждении. При этом измеряют линейные напряжения на одноименных зажимах обеих обмоток.
Коэффициент трансформации находят для всех ответвлений обмоток и всех фаз, и не должен отличаться более чем на 2 % от значений, указанных в паспорте трансформатора для каждого положения переключателя.
При испытаниях трехобмоточных трансформаторов достаточно определить коэффициент трансформации для двух пар обмоток.
Работа производится при строгом соблюдении всех требований правил техники безопасности, при этом подача напряжения производится на обмотку высокого напряжения, после подключения измерительных приборов.
5. Измерение потерь холостого хода.
Опыт холостого хода проводят для измерения тока и потерь холостого хода.
Измерение производится у трансформаторов мощностью 1000 кВА и более, при напряжении, подводимом к обмотке низшего напряжения, равном указанному в протоколе заводских испытаний (паспорте). У трехфазных трансформаторов потери холостого хода измеряются при однофазном возбуждении по схемам, применяемым на заводе-изготовителе.
В трехфазных трансформаторах токи холостого хода различных фаз за счет различной длины пути потока каждой фазы несколько различаются. Ток средней фазы обычно на 20-35 % меньше тока крайних фаз.
У трехфазных трансформаторов соотношение потерь в разных фазах не должно отличаться от соотношений, приведенных в протоколе заводских испытаний (паспорте), более чем на 5 %.
У однофазных трансформаторов отличие измеренных значений не должно превышать 10 %.
Ток холостого хода трехфазного трансформатора Iх определяется как среднеарифметическое токов трех фаз и выражается в процентах номинального тока Iном.
6. Проверка группы соединений обмоток трехфазных трансформаторов и полярности выводов однофазных трансформаторов.
Проверка проводится при отсутствии паспортных данных методом двух вольтметров, либо методом импульсов постоянного тока, если отсутствуют паспортные данные или есть сомнения в достоверности имеющихся данных.
Группа соединений должна соответствовать указанным в паспорте трансформатора, а полярность выводов –обозначениям на крышке трансформатора.
7. Проверка работы переключающего устройства.
Снятие круговой диаграммы производится на всех положениях переключателя. Диаграмма не должна отличаться от диаграммы завода-изготовителя. Проверку срабатывания устройства следует производить согласно заводским инструкциям.
8. Проверка системы охлаждения.
Режим работы охлаждающих устройств должен соответствовать заводской инструкции.
9. Фазировка трансформатора.
Должно иметь место совпадение по фазам.
10. Испытания трансформаторного масла.
Испытания трансформаторного масла перед вводом в эксплуатацию трансформаторов производится в соответствии с табл. 25.2 п. 1-7 «Объемов и норм». По решению руководителя предприятия испытания масла по пп. 1, 6,7 табл. 25.2 могут не производится.
У трансформаторов всех напряжений масло из бака РПН испытывается в соответствии с инструкцией завода-изготовителя. У трансформаторов напряжения 35 кВ включительно масло испытывается на пробой в течение первого месяца эксплуатации 3 раза. Масло из трансформаторов мощностью до 630 кВА включительно, установленных в эл. сетях, допускается не испытывать.
Испытания трансформаторного масла проводятся Заказчиком в специализированной лаборатории, имеющей право на испытание масла.
11. Испытания вводов.
Испытания вводов проводятся в соответствии с методикой испытания вводов.
12. Испытание встроенных трансформаторов тока.
Испытание встроенных трансформаторов тока проводятся в соответствии с методикой испытания измерительных трансформаторов.
13. Испытание включением толчком на номинальное напряжение.
В процессе 3-5 кратного включения трансформатора на номинальное напряжение не должны иметь место явления, указывающие на неудовлетворительное состояние трансформатора.
Проверка сварочного оборудования
Работа большей части промышленных предприятий невозможна без использования сварочного оборудования. Аппаратура, предназначенная для выполнения сварочных работ, требует периодического планово-предупредительного ремонта. В этой статье поговорим о том, что представляет собой проверка сварочного оборудования, в чем ее суть и для чего она необходима.
Суть проверок сварочного оборудования
Разные виды сварочного оборудования нуждаются в различных обслуживающих мероприятиях. Перечень самих мероприятий и их периодичность определены в нормативах и правилах, касающихся конкретной аппаратуры. Но, помимо индивидуальных требований, существуют также общие правила, относящиеся ко всему оборудованию.
Эксплуатация, проверка и техническое обслуживание электросварочной аппаратуры, относящейся к электроустановкам, осуществляется в соответствии с Правилами технической эксплуатации электроустановок потребителей.
Названные правила требуют проведения следующих проверочных мероприятий сварочного оборудования:
- проведения визуального осмотра установок;
- контрольного включения в режиме холостого хода как минимум на 5 минут;
- замеров величин сопротивления изоляции;
- оценки исправности цепей защитного заземления;
- проведения испытаний при повышении напряжения.
Проверка сварочного оборудования, включающая визуальный осмотр, контрольное включение, оценку сопротивления изоляции, в обязательном порядке выполняется, когда аппаратура вводится в эксплуатацию после продолжительного перерыва в работе.
Рекомендуем статьи по металлообработке
Периодичность подобных проверок – один раз в полгода, также они проводятся, если на оборудовании обнаружены механические или электрические повреждения. По окончании проверки выполнявший ее сотрудник должен сделать соответствующую запись в специально предназначенном для этих целей журнале.
В журнале проверок состояния сварочного и термического оборудования, приборов и аппаратуры предусматриваются графы, содержащие информацию о:
- дате и порядковом номере проверки;
- наименовании оборудования, аппаратуры, приборов и инструментов;
- заводском номере проверяемого оборудования;
- инвентарном номере;
- виде проводимой проверки;
- метрологической проверке контрольно-измерительных приборов/дате проверки;
- метрологической проверке контрольно-измерительных приборов/сроке следующей проверки;
- заключении о состоянии оборудования;
- лице, проводившем проверку, его должности, Ф. И. О., подписи.
Журналы проверки сварочного оборудования прошиваются, их страницы нумеруются.
Проверяемое оборудование должно соответствовать нормативам, закрепленным в вышеназванных Правилах (Приложение 3), а также в инструкциях по эксплуатации и проведению техобслуживания.
Сварочное и термическое оборудование является источником повышенной опасности. В связи с этим осуществление контроля его состояния должно выполняться в соответствии со специальным руководящим документом РД 34.10.127-34.
VT-metall предлагает услуги:
Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы
Документ предписывает проведение проверок, ремонтных, профилактических работ со сварочным оборудованием в строгом соответствии с графиком, который утверждается главным техническим специалистом предприятия.
Особое значение имеет своевременная проверка измерительных приборов, являющихся составными элементами сварочного оборудования. Поэтому в составлении графиков проверки аппаратуры обязательно участие специалиста, отвечающего за проведение метрологических испытаний на предприятии.
Соответственно, плановая проверка сварочного оборудования или его техническое обслуживание должно проводиться одновременно с поверкой измерительных приборов.
Периодичность проверки сварочного оборудования, установленная руководящим документом, должна быть следующей:
- осмотр сварочных аппаратов переменного и постоянного тока (трансформаторов и выпрямителей) – дважды в месяц;
- осмотр сварочных инверторных преобразователей – еженедельно;
- осмотр оборудования для автоматической и полуавтоматической сварки – ежедневно.
Параметры проверки сварочного оборудования
Проверяя сварочное оборудование, инструменты и приспособления, необходимо сравнивать полученные результаты с приведенными в таблице данными:
Назначение оборудования, инструмента, приспособлений и основные проверяемые показатели
Возможные отклонения от требований
I. Оборудование для контактной стыковой и точечной сварки
1. Напряжение первичного тока
2. Рабочее давление сжатого воздуха
3. Герметичность системы охлаждения
4. Циркуляция воды в системе охлаждения
Беспрепятственная, с расходом, указанным в паспорте оборудования или в Приложении 2 Указаний
5. Длина рычага механизма осадки у стыковых сварочных машин с ручным приводом
При сварке арматурной стали класса A-IV не меньше 1200 мм
6. Длина рукоятки ручных зажимов стержней в электродах стыковых сварочных машин
Не меньше 500 мм
7. Установка электродов
а) В машинах для стыковой сварки – соосное расположение свариваемых стержней
б) В машинах для точечной сварки с двусторонним подводом тока – соосное расположение верхнего и нижнего электродов
в) То же, с односторонним подводом тока – оси смежных электродов должны располагаться в одной вертикальной плоскости параллельно друг к другу
8. Закрепление электродов
Надежно, без люфтов
II. Оборудование для дуговой сварки
1. Тип источника питания током
В зависимости от способа сварки в соответствии с рекомендациями Указаний
2. Подключение источника питания к сварочным постам
К самостоятельным электрическим сборкам, получающим ток от отдельных фидеров ближайшего трансформаторного поста
3. Напряжение тока, питающего первичную обмотку сварочного трансформатора
4. Напряжение холостого хода генератора при полуавтоматической сварке
На 2–5 В выше начального напряжения сварки
5. Прикрепление гибких токоподводящих кабелей (к трансформаторам, друг к другу и т. п.)
Плотное, с помощью наконечников, скрепляемых болтами или другим способом, обеспечивающим хороший электрический контакт
6. Площадь поперечного сечения гибких токоподводящих кабелей
В зависимости от сварочного тока: до 200 В – 25 мм 2
200–300 – 50 мм 2
300–400 – 70 мм 2
400–600 – 95 мм 2
7. Длина гибкого кабеля
8. Изоляция гибких кабелей
9. Полярность дуги при сварке постоянным током
В соответствии с рекомендациями Указаний
10. Чистота контактных поверхностей электродов (губок) и токоподводящего электрода стола в машинах для сварки под слоем флюса тавровых соединений элементов закладных деталей
Зачистка до металлического блеска
11. Скорость подачи сварочной проволоки
В зависимости от диаметров проволоки и свариваемых стержней в соответствии с требованиями Указаний
12. Равномерность подачи сварочной проволоки
Подача без рывков и задержек
13. Диаметр отверстия в наконечнике держателя полуавтомата
Наконечник выбирается в зависимости от диаметра сварочной проволоки. Диаметр отверстия канала наконечника должен быть больше диаметра проволоки на 0,3 мм
14. Выработка канала в наконечнике держателя
Местная выработка не более 1,5 мм
Наконечник может быть повернут так, чтобы проволока прижималась к невыработанному участку канала
III. Инструмент (электроды) для контактной стыковой или точечной сварки
1. Геометрические размеры
В зависимости от диаметра свариваемых стержней в соответствии с требованиями Указаний
При точечной сварке увеличение диаметра или размеров овальной рабочей поверхности в плане вследствие деформации электродов не должно превышать 3 мм
2. Форма электродов для точечной сварки
В зависимости от вида свариваемых элементов в соответствии с рекомендациями Указаний
3. Форма гнезд в электродах для сварки арматурной стали встык
В зависимости от класса арматурной стали в соответствии с рекомендациями Указаний
4. Состояние рабочих поверхностей электродов
а) Чистые до металлического блеска.
б) Отсутствие вмятины – желобка в месте контакта со стержнями.
в) Форма поверхности в соответствии с требованиями Указаний
Вмятины глубиной не более 1,5 мм
IV. Приспособления для дуговой сварки швами или ванной сварки
1. Тип электрододержателя для дуговой многоэлектродной ванной сварки
Специальный, в соответствии с рекомендациями Указаний
2. Тип и размеры инвентарных форм
В зависимости от положения и диаметра свариваемых стержней в соответствии с рекомендациями Указаний
3. Износ инвентарных форм
Зазор между цилиндрическими поверхностями стержней и форм не более 2 мм, а толщина стенок уменьшена не более чем на 0,15 d
4. Состояние внутренней (рабочей) поверхности медных форм
Свободна от шлака
Особые проверки сварочного оборудования
В отношении сварочного оборудования, не использовавшегося в течение трех и более месяцев, вводимого в эксплуатацию после ремонта либо впервые поступающего на предприятие, проводится особая проверка.
В обязательном порядке проверяют, имеется ли у сварочного оборудования техническая эксплуатационная документация (паспорт изделия, инструкция по эксплуатации, схемы), в полном ли объеме она представлена.
Оборудование осматривается визуально, новые аппараты очищают от лишней смазки, удаляют транспортные крепежи (при наличии), проверяют состояние болтовых соединений, подтягивают при необходимости.
Отметка о поверке метрологических приборов, проставляемая на корпусе оборудования специализированной организацией, должна быть действующей (непросроченной). Данные о сроках поверки могут быть занесены в паспорт аппаратуры.
Проверка сварочного оборудования также включает в себя измерение уровня электрического сопротивления изоляции. Оценка работоспособности аппаратов проводится путем их включения.
Сопротивление изоляции замеряется между обмотками (при проверке трансформаторов и выпрямителей) и между каждой обмоткой и корпусом сварочного аппарата.
Проверки должны проводиться в соответствии с требованиями, прописанными в технических документах к оборудованию. Если инструкция по эксплуатации не содержит раздела о рекомендуемых методиках испытаний, при их выполнении необходимо руководствоваться ГОСТами, к примеру, при работе с автоматическими сварочными аппаратами – ГОСТом 8213.
Полуавтоматические сварочные устройства должны соответствовать требованиям, закрепленным в ГОСТе 18130. При испытаниях оборудования на основе сварочного инвертора необходимо руководствоваться ГОСТом 7237, аппаратов переменного тока (трансформаторов) – ГОСТом 7012.
Руководящим документом при испытаниях электрических генераторов является ГОСТ 304, аппаратов, работающих на выпрямленном сварочном токе, – ГОСТ 13821.
Хранение и обслуживание сварочного аппарата
Проверка сварочного оборудования также включает в себя регулярное базовое обслуживание, т. е. очистку установок от пыли и загрязнений. Для проведения технического обслуживания аппаратура либо сдается в сервисный центр, либо привлекается специалист с опытом такого рода работы. При отсутствии навыков заниматься техническим обслуживанием установок не рекомендуется.
Прежде чем приступить к обслуживанию аппаратуры, следует отключить ее от питания. Для удаления загрязнений на корпусе и кабелях необходимо воспользоваться влажной (но не мокрой) тряпкой, при сильных въевшихся загрязнениях – специальным средством. При отсутствии необходимости корпус оборудования разбирать не следует. Не стоит перегибать или заламывать провода, работа в целом должна выполняться аккуратно.
Специалисты для очистки оборудования используют сжатый воздух (воздушный компрессор). Постоянно замасливающиеся элементы нуждаются в регулярной очистке при помощи тряпки. Специалист проверяет надежность крепления деталей, при необходимости подгоняет их.
Проверке также подлежат кабели, которые не должны иметь разрывов и неисправностей. Периодичность подобных проверок – раз в месяц, а также перед тем, как установка будет отправлена на хранение.
Соблюдение правил при хранении оборудования влияет на срок его службы и частоту выхода из строя.
Для хранения инвертора можно использовать заводскую коробку, но лучшим вариантом станет пластиковая упаковка (плотный полиэтиленовый пакет, рулонная упаковка и пр.). Оборудование должно быть надежно защищено от пыли, грязи, воды и снега. Однако упаковочная тара не должна быть слишком плотной, воздух внутри нее должен циркулировать.
Несмотря на то, что температура хранения современного сварочного оборудования может варьироваться от +50 до -20 °С, оптимально хранить установки при комнатной температуре. Сырость, повышенная влажность, хранение аппаратуры непосредственно на земле отрицательно скажется на ее состоянии.
Почему следует обращаться именно к нам
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.
Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.
Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.
Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.
Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.
Периодичность проверки сварочных аппаратов
Виды мероприятий, относящихся к процедурам технического обслуживания и их периодичность, определяются порядком, изложенным в действующих нормах и правилах. Причем для различных типов оборудования существуют свои нормы, однако есть и общие правила обслуживания.
Электросварочные аппараты, по своей сути являясь электроустановками, должны эксплуатироваться, а также проходить техническое обслуживание в соответствии с действующими нормами, которыми для них являются Правила Технической Эксплуатации Электроустановок Потребителей, содержащие соответствующий раздел. Согласно этим правилам, проверка сварочного оборудования должна проводиться в следующих объёмах:
проведение внешнего осмотра аппаратов;
Периодические проверки, включающие контроль сопротивления изоляции, внешний осмотр и контрольное включение в рамках технического обслуживания, должны осуществляться при вводе сварочного оборудования в работу после длительного перерыва в эксплуатации.
Также это необходимо делать при обнаружении видимых следов механических или электрических повреждений, но в любом случае, не реже, чем 1 раз в 6 месяцев. Персонал, осуществляющий такие проверки, должен делать записи установленной формы в специально предназначенный для этого журнал.
Нормативы испытаний, проводимых при техническом обслуживании, должны соответствовать изложенным в Приложении 3 Правил, а также инструкциям по эксплуатации и проведению технического обслуживания.
Своевременное испытание трансформаторов является одним из обязательных условий их безопасной эксплуатации. В соответствии с нормативно-технической документацией периодичность испытаний сварочных трансформаторов составляет не реже одного раза в 6 месяцев. При наличии перебоев в работе или выполнении ремонтных операций, этот срок может быть сокращен. Объем испытаний сварочного трансформатора включает следующие обязательные операции:
Ремонт и профилактическое обслуживание
Ремонт и обслуживание аппаратов, предназначенных для выполнения сварочных работ, должны осуществляться специалистами, обладающими достаточной квалификацией, входящими в состав специализированных подразделений.
В случае отсутствия на предприятии ремонтного персонала соответствующего уровня, работы должны выполняться на договорной основе ремонтниками профильных организаций.
Сварочное оборудование, наряду с термическим, относится к объектам, являющимся источником повышенной опасности. По этой причине разработаны специализированные нормативные документы, регламентирующие порядок контроля его состояния. Эти положения сформулированы в руководящем документе РД 34.10.127 – 34.
Периодичность проведения замеров сопротивления изоляции.
Инженерный имеет все необходимые инструменты для качественного проведения замера сопротивления изоляции, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!
Если хотите заказать замер сопротивления изоляции или задать вопрос, звоните по телефону .
Периодичность замеров сопротивления изоляции электрооборудования, кабельных линий и электропроводок определяется НТД: ПТЭЭП, РД 34.45-51.300-97 и др.
Согласно НТД замер сопротивления изоляции в электроустановках потребителей (жилые дома, помещения, производства) проводится один раз в три года.
В специальных установках и установках с наличием опасных факторов: повышенная влажность, агрессивная среда, проводящая пыль, взрывопожароопасные, пожароопасные один раз в год.
Для сварочных аппаратов измерение сопротивления изоляции проводится не реже 1 раза в 6 месяцев.
Максимальный же интервал между измерениями сопротивления изоляции может составлять не более 3 лет. Это связано с тем, что органы Ростехнадзора имеют право производить проверку состояния оборудования потребителей не чаще чем 1 раз в 3 года. При проверке инспектор обязательно потребует наличия протоколов, среди которых должен быть протокол измерения сопротивления изоляции.
Все выше перечисленное, в основном, касалось оборудования на напряжение до 1000 В. Для высоковольтного оборудования сопротивление изоляции является сопутствующим высоковольтным испытаниям и скорее контролирует состояние изоляции до и после испытания.
Но есть и исключения. Например, вентильные разрядники допускается не подвергать испытанию на пробой, если сопротивление изоляции не менее 1 000 МОм. Измерения же эти следует проводить ежегодно перед началом грозового сезона.
Периодичность осмотров
В соответствии с этим документом, все ремонтные и профилактические мероприятия, относящиеся к обслуживанию сварочного и термического оборудования, должны выполняться в прямом соответствии с графиком, утверждённым главным техническим специалистом предприятия.
Особо подчёркивается важность своевременной поверки технических средств измерений, которыми комплектуются аппараты для сварки. Для этой цели установлено, что в подготовке графиков обслуживания сварочной техники должен принимать участие специалист, ответственный за метрологию на предприятии.
Таким образом, плановая остановка оборудования на ремонт или техническое обслуживание должно быть приурочено к сдаче измерительных приборов в поверку.
Согласно нормативам, устанавливаемым данным руководящим документом, в рамках обслуживания необходимо регулярно проводить мероприятия по текущему контролю технического состояния оборудования:
- сварочные аппараты переменного и постоянного тока (трансформаторы и выпрямители) осматриваются два раза в месяц;
- сварочные инверторные преобразователи подлежат осмотру 1 раз в неделю;
- аппараты для автоматической и полуавтоматической сварки осматриваются ежедневно.
Факт проведения проверки (осмотра), а также полученный результат, фиксируется в журнале установленной формы.
Контроль сварочного оборудования: что это значит
Контроль сварочного оборудования
Вопросы, рассмотренные в материале:
· Что такое контроль сварочного оборудования
· Что в себя включает контроль сварочного оборудования и приборов
· Какие требования предъявляются к квалификации сварщиков, работающих со сварочным оборудованием и оснасткой
· С какой периодичностью проводят мероприятия контроля сварочного оборудования
Сварочные работы могут производиться лишь при помощи исправных, правильно настроенных устройств. На предприятиях за состоянием всей используемой техники отвечают сварщики (сборщики) – каждый день в начале смены они оценивают все необходимые показатели. Мастера по сварке (либо другие инженерно-технические специалисты) проводят еженедельные проверки, а электрики и наладчики занимаются профилактическим осмотром раз в месяц. Если речь идет о более сложных устройствах, проверки могут производиться с большей периодичностью в соответствии с инструкциями. Далее вы узнаете о том, как именно проводится контроль сварочного оборудования.
Контроль сварочного оборудования: что это значит
На каждом предприятии существует своя система планово-предупредительного ремонта (ППР) техники, предназначенной для сварки. Она представляет собой совокупность организационно-технических мероприятий, цель которых состоит в контроле, обслуживании и ремонте конкретных устройств. Отметим, что все подобные действия проводятся по заранее сформированному плану. Последний предполагает профилактические осмотры и ремонтные работы, то есть малые (текущие) и средние ремонты.
Текущим ремонтом занимаются непосредственно на рабочем месте, тогда как для среднего ремонта устройство отправляют в мастерские предприятия. Между ремонтными работами обязательно проводят профилактические осмотры, причем межосмотровый цикл составляет 150–200 часов. Тогда как между ремонтами проходит 900–1 000 часов. Также существует понятие «полный ремонтный цикл», он представляет собой время от начала использования системы до первого капитального ремонта. Допустим, для механизированной сварочной техники, этот показатель составляет 13-14 тысяч часов.
Своевременный контроль позволяет убедиться в работоспособности оборудования. В процессе осмотров сварочных аппаратов оценивают такие характеристики, как состояние токоподводящих проводов, электрических контактов, исправность регулирующих механизмов, износ подающих устройств, зазоры в кинематических системах, состояние защитных устройств, токоподводящих элементов, пр.
В устройствах, используемых для контактной сварки, обязательно осуществляют контроль состояния систем подачи воды и воздуха, электрических контактов в сварочном контуре, степень износа рабочих поверхностей электродов и роликов, пр.
Когда речь идет о работе со сборочно-сварочным оборудованием, например, для дуговой сварки, осуществляют контроль поверхности прижимных элементов, состояния и формы используемых при сварке подкладок, исправности теплоотводящих устройств, работоспособности приводов, пр.
При осмотре любой контрольно-измерительной аппаратуры метрологическая служба предприятия сравнивает показания систем с результатами эталонных средств измерения. Данная операция носит название метрологической поверки.
Однако контроль сварочного оборудования производится не только в процессе эксплуатации. Ему обязательно подвергаются все новые устройства, оснастка. Специалисты предприятия должны убедиться, что поступившая техника соответствует техническим параметрам, указанным в паспорте. В последний вносятся изменения после того, как был произведен капитальный ремонт и оборудование прошло аттестацию.
Чтобы оборудование было допущено к эксплуатации, для него оформляется соответствующий акт. Далее данная бумага хранится у сварщика или наладчика, поскольку именно эти специалисты отвечают за исправность и безаварийную работу оборудования в периоды между плановыми ремонтами. Для устройств, используемых во время сварки, на предприятии сформированы нормы обслуживания одним наладчиком.
Результаты каждого осмотра, ремонта заносятся в журналы, предусмотренные системой ППР.
Отметим, что с 2003 г. действует РД 03-614-03, фиксирующий порядок использования сварочного оборудования в процессе изготовления, установки, ремонта, реконструкции технических устройств на опасных производственных объектах.
Особые проверки
Особая форма проверки устанавливается при контроле вновь поступающего оборудования, оборудования, вышедшего из ремонта, а также, простаивающего более трёх месяцев.
В этих ситуациях осуществляется проверка наличия и комплектности технической эксплуатационной документации аппарата (паспорт, инструкция по эксплуатации, схемы).
Производится визуальный контроль технического состояния оборудования, если аппаратура новая, удаляются излишки смазки, снимается транспортный крепёж, при его наличии осуществляется протяжка ослабленных болтовых соединений.
Проверяется наличие действующей (то есть, не просроченной) отметки (наклейки) поверяющей организации на корпусах измерительных приборов. При необходимости, отметка о сроке проведённой поверки делается в соответствующей графе паспорта оборудования.
Измеряется уровень электрического сопротивления изоляции. Необходимо также включить оборудование для определения его рабочего состояния.
Замеры сопротивления изоляции проводятся между обмотками (для трансформаторов и выпрямителей), а также между каждой обмоткой и корпусом оборудования.
При этом следует руководствоваться рекомендациями, изложенными в технической документации прибора. Если в инструкции по эксплуатации отсутствует описание методики проведения испытаний, проводить их следует в соответствии с ГОСТами. Так, автоматические сварочные аппараты испытываются в соответствии с нормами ГОСТ 8213.
Полуавтоматические сварочные устройства – по нормам ГОСТ 18130. Испытания устройств на основе сварочного инвертора проводятся по ГОСТ 7237. Аппараты переменного тока (трансформаторы) – по ГОСТ 7012.
Электрические генераторы в рамках обслуживания подлежат испытаниям по ГОСТ 304. Аппараты, использующие выпрямленный сварочный ток – по ГОСТ 13821.
Особенности, тонкости и нюансы работ по измерению сопротивления изоляции
е электроиспытаний и измерений дает возможность определить и обнаружить проблемные участки и зоны кабельных линий, электрооборудования и установок. Как известно, изоляция бывает двух видов – фазная, которая выполняет функцию отделения друг от друга токопроводящих жил, и поясная, отделяющая кабель от земли. Материалы для изготовления изоляции применяются разные, это может быть полиэтилен, резина, бумага, пропитанная определёнными составами, пластик и так далее.
На целостность и надёжность изоляции могут влиять множество самых разных факторов. Очень часто изоляционные материалы получают различной степени повреждения в ходе проведения электромонтажных работ, могут случиться разные механические повреждения как следствие механического воздействия. Угрозу изоляции несут высокие нагрузки на электросеть, возникающие в результате перепадов напряжения и выражающиеся в оплавлении проводов от перегрева. Нельзя забывать и об агрессивной внешней среде в виде перепадов температур, высокой влажности и тому подобное. Наконец, кабель и его изоляция могут банально устареть и износиться от долгой эксплуатации. Любые повреждения изоляционного слоя таят в себе потенциально серьёзные опасности в виде ударов тока, коротких замыканий, возгораний и пожаров, поэтому своевременные и регулярные проверки состояния изоляции и уровня её электрического сопротивления очень важны и значимы.
Для каждой категории электроустановок существует своя периодичность и регулярность проведения испытаний. Для большинства из них измерения должны проводиться один раз в три года, для опасных помещений, передвижных установок и некоторых других видов оборудования срок сокращается до одного года, а измерение сопротивления изоляции сварочных аппаратов необходимо осуществлять с ещё большей частотой – один раз за шесть месяцев.
Читайте также: