Основы металлургических процессов при сварке
Глава XII
ОСНОВЫ МЕТАЛЛУРГИЧЕСКИХ ПРОЦЕССОВ, ПРОТЕКАЮЩИХ ПРИ СВАРКЕ
§ 61. Особенности металлургии сварки
Металлургические процессы при сварке характеризуются сосредоточенной на маленьком участке металла большой температурой, высокой скоростью кристаллизации расплавленного металла сварочной ванны и небольшим его объемом, а также сложными физическими и химическими явлениями, протекающими при переходе расплавленного металла электродного стержня в сварочную ванную и взаимодействием его и металла сварочной ванны с окружающей газовой средой, шлаками расплавленных покрытий и основным металлом.
В отличие от обычного металлургического процесса протекающие в сварочной ванне химические реакции не достигают равновесия, что обусловливается небольшим объемом расплавленного металла в сварочной ванне и кратковременным его пребыванием в жидком состоянии. Во время расплавления металла при сварке происходит окисление и восстановление различных элементов и легирование сварного шва, а также диссоциация газов. Металлургические процессы, происходящие при сварке плавлением, должны обеспечивать получение наплавленного металла с определенным химическим составом, требуемыми механическими свойствами и с необходимой макро- и микроструктурой.
Сварочная ванна образуется за счет плавления присадочного и основного металлов. Под сварочной ванной (или зоной плавления) необходимо подразумевать собственно ванну жидкого металла, капли, образующиеся на конце присадочного материала, и капли, находящиеся в пути в дуговом или шлаковом промежутке. Кристаллизация жидкого металла в сварочной ванне начинается с неполностью оплавленных зерен основного металла. После кристаллизации металла шва на участках расплавления основного металла образуются зерна, состоящие из основного металла и металла шва и обеспечивающие в сварном соединении непрерывную металлическую связь «основной металл – шов - основной металл». При движении источника теплоты вдоль свариваемых кромок в передней части сварочной ванны происходит процесс плавления, а в хвостовой части - процесс кристаллизации. Длина сварочной ванны зависит от теплофизических свойств свариваемого материала, тепловой мощности сварочной дуги и режимов сварки.
Жидкий металл в сварочной ванне в результате перемещения источника теплоты находится в непрерывном движении и перемешивании, жидкий металл из сварочной ванны всегда вытесняется в направлении, противоположном движению источника теплоты, и в месте вытеснения образуется углубление, называемое кратером.
Исходная концентрация любого элемента в сварном шве складывается из долей участия основного металла, присадочного материала и защитного покрытия.
Химическое сродство элементов к кислороду. Для регулирования происходящих химико-металлургических процессов в сварочной ванне необходимо знать, какие элементы быстрее всего соединяются с кислородом, т. е. обладают большим сродством к кислороду. Элементы, обладающие большим сродством к кислороду, чем железо, способствуют его восстановлению из окислов. При этом не следует думать, что элементы, обладающие большим сродством к кислороду, окисляются полностью и в первую очередь, чем другие элементы, имеющие меньшее сродство к кислороду. Реакции окисления и восстановления проходят одновременно и не до конца, а до определенного состояния равновесия. Если в момент прекращения реакции окисления какого-либо элемента часть этого элемента при этом не будет окислена, а будет находиться в свободном состоянии, то вследствие установившегося равновесия элемент раскисляющего действия на окислы железа уже не оказывает.
Из сказанного выше можно сделать вывод, что сродство элементов к кислороду, а следовательно, и их сила раскисления не являются постоянной величиной или свойством, присущим только какому-то отдельному элементу, а зависит от концентрации злемента-раскислителя в рассматриваемый момент, температуры, при которой протекает реакция, и других факторов.
Диссоциация простых и сложных газов. В результате столкновений и ударов в зоне высокой температуры сварочной дуги происходит распад молекул газа на атомы. Молекулярный водород, кислород и азот распадаются и переходят в атомарное состояние: Н2↔2Н; О2↔2O; N2↔2N.
Атомарный кислород, азот и водород обладают большей активностью и интенсивнее растворяются в металле, ухудшая его свойства - снижают пластичность и повышают хрупкость.
В состав многих покрытий и флюсов вводится плавиковый шпат CaF2, который, разлагаясь при высокой температуре, выделяет фтор (CaF2↔CaF+F). Фтор ухудшает условия горения сварочной дуги вследствие большого сродства к электрону, при температуре душ порядка 6000К диссоциация фтора достигает очень .больших размеров. Однако диссоциированный фтор выполняет весьма важную положительную роль в металлургическом процессе сварочной ванны: он связывает водород в молекулы, обладающие высокой стойкостью (H+CaF2↔CaF+HF).
Многие покрытия и флюсы в своем составе имеют карбонат кальция СаСО3 (мел и мрамор), который, разлагаясь, выделяет углекислый газ СаСО3↔СаО+СО2.
С увеличением температуры наряду с разложением большого количества карбоната кальция происходит также диссоциация углекислого газа 2СО2↔2С0+О2.
Взаимодействие кислорода с расплавленным металлом сварочной ванны. В зоне сварочной дуги имеются газовая, шлаковая и металлическая фазы.
При изучении реакций, протекающих в сварочной ванне, следует учитывать возможность окисления жидкого металла свободным (молекулярным и атомарным) кислородом газовой фазы, кислородом, находящимся на свариваемых кромках в виде окислов и шлаков, и кислородом, растворимым в металлической ванне и химически активных шлаках, которые вступают в процессе .сварки в обменные окислительные и восстановительные реакции с металлом сварочной ванны. Находящийся в газовой фазе молекулярный и атомарный кислород соединяется с металлом сварочной ванны.
Железо с кислородом образует три соединения (оксида), имеющих весьма важное значение в металлургических процессах, происходящих при сварке плавлением: оксид железа FeO, содержащей 22,27% О2, оксид железа Fe3О4, содержащий 27,64% О2, оксид железа Fe2O3, содержащий 30,06% О2.
Из всех трех оксидов растворим в железе только FeO. Остальные оксиды в железе практически нерастворимы в на его свойства влияния почти не оказывают. Однако окалина и ржавчина на свариваемых кромках, содержащие высшие оксиды, свободным железом могут раскисляться по реакциям Fe3О4+Fe=4FeO, Fe2O3+Fe=3FeO.
Образующийся оксид железа растворяется частично в шлаке и частично в расплавленном металле, вследствие чего в сварном шве образуются поры. В твердом железе растворимость кислорода невелика.
Для уменьшения растворимости оксида в металле необходимо иметь соответственно более низкую концентрацию оксида в шлаке, в результате он будет стремиться перейти из металла в шлак. Наоборот, более высокая концентрация оксида в шлаке способствует его переходу в металл. Металл может окисляться и под действием химически активных (по кислороду) оксидов, например кремния и марганца: SiO2+2Feж=2FeО+[Si]; MnO+Feж=FeO+[Mn], где индекс «ж» указывает, что Fe находится в виде расплава, а знак [ ], что элемент растворен в металлической фазе.
При наличии в газовой фазе сложных газов, таких, как, например, СО2 и H2О, которые при диссоциации выделяют кислород, также происходит окисление металла сварочной ванны.
Если жидкий металл содержит элементы-раскислители, которые имеют большее сродство к кислороду, чем металл сварочной ванны, то в этом случае концентрация кислорода в сварочной ванне может быть значительно уменьшена за счет элементов раскислителей.
Уважаемый посетитель, Вы прочитали статью "Особенности металлургии сварки", которая опубликована в категории "Ручная дуговая сварка". Если Вам понравилась или пригодилась эта статья, поделитесь ею, пожалуйста, со своими друзьями и знакомыми.
Презентация "Основы металлургических процессов при сварке"
Металлургические процессы при сварке – это процессы взаимодействия жидкого металла с газами и шлаками, которые протекают во время плавления электрода, при переходе капли жидкого металла через дугу, а так же в самой сварочной ванне.
МЕТАЛЛУРГИЧЕСКИЕ ПРОЦЕССЫ СВАРКИ
ОСОБЕННОСТИ МЕТАЛЛУРГИЧЕСКИХ ПРОЦЕССОВ ПРИ СВАРКЕ.
- высокая температура нагрева металла;
- малый объём расплавленного металла;
- активное взаимодействие расплавленного металла с окружающей средой и шлаками;
- быстротечность протекания процесса.
ЗАГРЯЗНЕНИЕ МЕТАЛЛА ШВА
Металл шва насыщается вредными веществами из окружающего воздуха, влаги, ржавчины, масел, минералов, которые входят в состав сварочных материалов, различных химических соединений, которые образуются во время взаимодействия расплавленного металла со сварочными материалами.
СПОСОБЫ ПРЕДУПРЕЖДЕНИЯ ЗАГРЯЗНЕНИЙ
- просушиванием сварочных материалов для удаления влаги
СПОСОБЫ ПРЕДУПРЕЖДЕНИЯ ЗАГРЯЗНЕНИЙ
Удалением ржавчины с поверхности свариваемых деталей:ручным,химическим и механическим способами
СПОСОБЫ ПРЕДУПРЕЖДЕНИЯ ЗАГРЯЗНЕНИЙ
Удалением влажности с поверхности свариваемых деталей: ветошью или термическим способом.
СПОСОБЫ ПРЕДУПРЕЖДЕНИЯ ЗАГРЯЗНЕНИЙ
Удалением масла с поверхности свариваемых деталей;
- созданием газовой и шлаковой защиты дуги и свариваемого металла;
СПОСОБЫ ПРЕДУПРЕЖДЕНИЯ ЗАГРЯЗНЕНИЙ
Раскислением - переводом оксида железа в нерастворимые соединения с последующим удалением в шлак через электродную проволоку, покрытия и флюсы.
Раскислителями являются марганец, кремний, титан, алюминий, углерод и другие элементы.
Рафинированием – удалением сульфидов, фосфидов, нитридов, водорода с помощью химических реакций и созданием новых химических соединений, которые не растворяются в железе, а переходят в шлак.
Для рафинирования применяют: ферросплавы — сплавы железа с другими элементами (Cr, Si, Mn, Ti и др.),
Кристаллизация металла шва
Кристаллизацией называют процесс образования кристаллов металла из расплава при переходе его из жидкого в твердое состояние.
Кристаллизация металла шва
Схема кристаллизации расплава в зависимости от формы сварочной ванны:
а - узкая сварочная ванна с глубоким проплавлением;
б - широкая сварочная ванна
СТРОЕНИЕ СВАРНОГО ШВА
1) основного металла;
2) наплавленного металла сварного шва;
3)зоны сплавления;
4)зоны термического влияния.
СТРОЕНИЕ СВАРНОГО ШВА
Зоны термического влияния
Участок неполного расплавления является переходным от зоны наплавленного металла шва к основному металлу, представляет собой область основного металла, нагретого несколько выше температуры плавления, и находится в твердожидком состоянии
Участок перегрева является областью сильно нагретого (1100-1500 °С) основного металла с крупнозернистым строением и пониженными механическими свойствами
Участок нормализации является областью основного металла, нагретого в пределах от 930 до 1100 °С.
Основной металл находится при таких температурах сравнительно недолго и в процессе перекристаллизации при охлаждении приобретает мелкозернистую структуру с высокими механическими свойствами, как правило, выше свойств основного металла в его исходном состоянии.
Зоны термического влияния
Участок неполной кристаллизации является областью основного металла нагретого до 720—850 °С.
Эта область характеризуется неполной перекристаллизацией, при которой вокруг крупных зерен феррита, не прошедших перекристаллизацию, находятся более мелкие зерна феррита и перлита, образовавшиеся в процессе перекристаллизации.
Зоны термического влияния
Участок рекристаллизации является областью основного металла, нагретого в пределах от 450 до 720 °С.
Этот участок наблюдается при сварке сталей, подвергавшихся пластической деформации (например, прокату), и характерен восстановлением формы и размеров разрушенных при деформации зерен металла.
Зоны термического влияния
Участок синеломкости располагается за участком рекристаллизации и лежит в интервале температур от 200 до 450°С.
На этом участке наблюдаются синие цвета побежалости, откуда и название.
Основной металл в этой зоне не имеет видимых структурных изменений, однако характеризуется снижением пластических свойств.
Образование трещин и газовых пор в металле шва
в зависимости от температур, при которых они образуются, трещины разделяют на две группы:
горячие (высокотемпературные);
холодные (низкотемпературные).
Образование трещин в металле шва
Горячие трещины представляют собой хрупкие межкристаллические разрушения металла шва и околошовной зоны, возникающие в процессе кристаллизации в твердожидком состоянии, а также при высоких температурах в твердом состоянии.
Образованию горячих трещин способствует содержание в металле шва примесей - серы, фосфора
Образование трещин в металле шва
Холодные трещины в структуре металла располагаются как по границам, так и по телу зерен. Поэтому они представляют собой внутрикристаллические разрушения.
Холодные трещины в сварных соединениях образуются при температурах 200 - 300°С.
Образуются в швах при сварке закаливающихся сталей.
На склонность металла к образованию холодных трещин оказывают влияние повышенное содержание углерода и элементов, облегчающих закалку, наличие в шве водорода, загрязнение фосфором, быстрое охлаждение и наличие в швах внутренних напряжений.
Образование газовых пор
в металле шва
Поры в сварных швах возникают при первичной кристаллизации металла сварочной ванны в результате выделения газов. Поры представляют собой полости в швах, заполненные газом, имеющие сферическую, вытянутую или более сложные формы. Поры могут располагаться по оси шва, его сечению или вблизи границы сплавления.
Поры при сварке в основном возникают за счет газов водорода, азота и оксида углерода, образующихся в результате химических реакций с выделением газовых продуктов, выделения газов в связи с разной растворимостью их в жидком и твердом металле, захватом газа из окружающей среды при кристаллизации сварочной ванны.
Металлургические процессы при сварке под слоем флюса и в среде защитных газов
Размеры и время существования сварочной ванны могут сильно изменяться в зависимости от способа и режима сварки; в то же время эти два фактора имеют важнейшее значение с точки зрения полноты проходящих химических реакций, очистки жидкого металла от газов и шлаков, формирования шва. Необходимо учитывать различие в степени участия основного и электродного металла в формировании шва в зависимости от способа сварки
Количество и состав шлаков при ручной сварке и при сварке под флюсом различны. При ручной сварке капли из дугового промежутка, двигаясь с большой скоростью, погружаются в сварочную ванну, перемешиваются в ней с металлом и перемещаются от дугового пятна назад и в стороны. При движении капель в ванне происходит разделение металла и шлака вследствие разрушения шлаковых оболочек из-за значительного газообразования внутри капель и разницы в удельном весе металла и шлака. Весь металл в ванне энергично перемешивается и выделяющиеся нерастворимые газы удаляются в атмосферу. В сварочной ванне продолжаются интенсивные окислительно-восстановительные реакции с образованием легкоплавких шлаков, всплывающих на поверхность шва и создающих шлаковый покров. Кроме того, происходит очищение металла ванны от серы. Основное значение металлургических реакций в сварочной ванне - раскисление металла шва и очищение его от вредных примесей и газов. Указанные процессы в полной мере заисят от состава толстого покрытия электрода, чистоты свариваемых кромок, влажности кромок и покрытия электрода, размеров и времени существования сварочной ванны. Наилучшим образом раскисляют и очищают металл шва электроды, содержащиe в покрытии большой процент мрамора (СаСО3) и значительный процент ферросплавов. При наличии на кромках окалины в сварочную ванну попадает кислород, что вызывает интенсивное образование FeO, в свою очередь, приводящее к выгоранию углерода и возможному образованию пор в шве. Влажность кромок или покрытия и наличие ржавчины приводят к окислению металла шва и насыщению его водородом по реакции Fe + H2O = FeO + 2H.
Автоматическая сварка и наплавка под слоем флюса
Автоматическая и полуавтоматическая сварка плавящимся электродом, под слоем флюса или в среде защитных газов дает более стабильный шов с повышением производительности в 2.. .8 раз по сравнению с ручной дуговой сваркой.
Основное промышленное применение находит сварка под флюсом одной вертикально расположенной электродной проволокой сплошного сечения . Нагрев и плавление основного и присадочного металлов происходят за счет тепла, получаемого при преобразовании подводимой к дуге электрической энергии. Дуга возникает между электродной проволокой 2 и основным металлом 3, присоединенным к полюсам источника питания. В качестве такого источника используют специальные однофазные или трехфазные сварочные трансформаторы переменного тока с пологопадающей внешней характеристикой, генераторы и выпрямители с пологопадающей или падающей внешней характеристикой. Сварку на постоянном токе преимущественно ведут при обратной полярности. Возможна сварка и при прямой полярности.
Подвод тока к электродной проволоке и ориентацию ее конца по отношению к свариваемым кромкам осуществляют мундштуком 4. Ток к изделию подводят через неподвижные или подвижные контактные устройства (струбцины, щетки и др.). Режим существования дуги при сварке под слоем флюса определяется силой тока, напряжением и длиной дуги. Обычно применяют силу тока 1000. ..1200 А, что при открытой дуге невозможно вследствие разбрызгивания металла шва. Сварку ведут короткой дугой. Некоторые современные автоматы поддерживают отклонение длины дуги в пределах ±0.2. ..0,3 мм. Напряжение колеблется в пределах 18. ..55 В.
В процессе сварки электрод и основной металл со всех сторон окружены слоем флюса 5, насыпаемым из флюсоалпарата 6, работающего обычно от заводской сети сжатого воздуха (при массовом производстве). Высоту и ширину слоя устанавливают, исходя из условия обеспечения эффективной изоляции зоны сварки от окружающего воздуха и создания плотного формирующего жидкий металл барьера. Обычная высота слоя флюса 20.. .60 мм. При нагреве и плавлении флюс выделяет газы и пары, способствующие стабилизации дугового разряда.
Дуга находится в заполненном парами и газами пузыре, сводом которого является прослойка 7 из жидкого шлака. Таким образом, флюс при этом способе сварки защищает расплавленный металл электрода и ванны от воздуха; концентрирует тепло в зоне сварки; замедляет остывание ванны, позволяя попавшим в нее газам выйти наружу; облегчает ионизацию дугового промежутка, обеспечивая стабильность процесса; легирует металл шва дополнительными элементами; предотвращает выгорание полезных примесей.
Для автоматической сварки применяют плавленые и керамические неплавленые флюсы. Керамические неплавленые флюсы представляют собой крупинки (гранулы) размером 1. 3 мм, изготовленные из материалов, входящих в состав обычных покрытий электродов Для электродуговой ручной сварки. По характеру шлака различают кислые и основные флюсы, а по назначению— для сварки низкоуглеродистых сталей, легиро-1анных спецсталей, цветных'металлов для наплавочных работ и т. д.
стабилизации горения дуги
металла шва (феррохром, ферротитан и др.).
Для автоматической сварки и наплавки промышленность выпускает аппараты марок АБСК, А1401, А1423, А384МК, А580М, тракторы ТС-17М-1, АДС-1004-04, АДФ-1001, ТС-44, ДТС-38 и др.
При ремонте сельскохозяйственной техники широко используют наплавку под слоем флюса для восстановления геометрических параметров изношенных деталей.
Сварка в среде защитных газов
Для защиты металла от воздействия воздуха, кроме шлакового покрытия, применяют газовую защиту вокруг дуги и расплавленного металла. В качестве защитных применяют инертные (аргон, гелий) и активные газы (водород, окись углерода или их смесь с азотом). Наибольшее распространение получили аргонодуговая сварка и сварка в среде углекислого газа. При аргонодуговой сварке наплавящимся электродом через специальную горелку, в которой установлен вольфрамовый электрод 3, пропускают инертный газ (аргон или гелий). Возбуждение дуги происходит между электродом и свариваемым изделием. Для заполнения разделки кромок в зону вводят присадочный материал 2, химический состав которого близок к составу свариваемого материала. Применяют электроды диаметром 2.. .6 мм. Аргон подают в горелку под давлением 0,03.. .0,05 МПа.
Аргонодуговую сварку применяют для сварки легированных сталей, алюминия и его сплавов, титана, магниевых сплавов.
В ряде случаев сварку выполняют и плавящимся электродом. В этом случае применяют проволоку диаметром 0,6.. .3 мм, которую автоматически подают в наконечник 2 горелки. Защитный газ через специальный канал 4 наконечника горелки попадает в пламя дуги .
Сварка в углекислом газе — наиболее дешевый способ по сравнению с другими видами сварки в защитных средах, широко применяется при восстановлении деталей сельскохозяйственных машин, особенно чугунных. Процесс наплавки в среде углекислого газа, по существу, аналогичен процессу сварки.
Для наплавки в среде углекислого газа используют электродные проволоки с повышенным содержанием кремния, марганца и титана (Св. 08ГС, Св. 08Г2С, Св. 10ХГ2С и др.). Для образования износостойкого наплавленного слоя применяют порошковые проволоки (ПП-6ХЗВ10,ПП-сормайт-1, ПП-сормайт-2, ПП-10Х10В4 и др.).
Наплавку тел вращения производят, используя токарно-винторезный станок.
Для восстановления изношенных деталей в ремонтной практике нередко применяют вибродуговую наплавку, в основе которой контактная сварка и электрическая дуга. Наплавку можно вести на воздухе, в среде защитного газа, в жидкости. Процесс состоит из трех этапов: замыкание электрода с деталью, размыкание, холостой ход. В момент короткого замыкания конец электрода оплавляется. При отрыве электрода перемычка взрывообразно разрушается и процесс переходит в дуговой. В этот момент и происходит перенос металла электрода на наплавляемую деталь. Наплавку чаще ведут на постоянном токе, что обеспечивает лучшую стабильность процесса.
Установки для автоматической вибродуговой наплавки обычно монтируют на базе токарно-винторезных станков, на суппорте которых устанавливают вибродуговую головку ЭВГ-2, КУМА-5М, ОКС-1252 и др.
. Сварка в среде аргона. Сущность. Область применения.
Сварка в среде аргона используется в ответственных случаях так как аргон очень дорогой. Аргон идеальный защитный газ он имеет большие атомы которые не растворимы. Аргон тяжелее воздуха он не горюч не ядовит. Применяется в завариваем трещины , пробои картеров КПП на отечественных и иностранных автомобилях в среде аргона. Сварка аргоном позволяет обеспечить высокую производительность сварки, максимально сократить зону термического влияния, появляется возможность производства сварки при повышенной плотности мощности.
Сварка в среде углекислого газа. Сущность. Область применения.
Углекислый газ тяжелее воздуха, не горюч, не ядовит Сущность процесса сварки в углекислом газе заключается в следующем. Поступающий в зону сварки углекислый газ защищает ее от вредного влияния атмосферы воздуха. Причем при высокой температуре сварочной дуги углекислый газ частично диссоциируется на окись углерода и кислород 2С022СО + O2.
В результате в зоне дуги образуется смесь из трех различных газов: углекислого газа, окиси углерода и кислорода. для того что бы О2 нетрилизовать вводят в него окислители Si,Mg,Al и таким образом эта самый распостраненый способ качественной сварки стали. Применяют в самолетостроении, где преобладает сварка металлов малых толщин (1-3 мм), в производстве химической аппаратуры. Важное значение имеет газовая сварка в прокладке и монтаже трубопроводов самых разнообразных назначений, в особенности малых диаметров, до 100 мм. Газовая сварка является незаменимым мощным средством при ремонте и с этой целью широко используется в ремонтных мастерских для всех видов транспорта, в сельском хозяйстве и т. Д
Плазменно-дуговая сварка
Плазменная струя, применяемая для сварки, представляет собой направленный поток частично или полностью ионизированного газа, имеющего температуру 10 000 – 20 000 °С. Плазму получают в плазменных горелках, пропуская газ через столб сжатой дуги. Дуга горит в узком канале сопла горелки, через который продувают газ. При этом столб дуги сжимается, что приводит к повышению в нем плотности энергии и температуры. Газ, проходящий через столб дуги, нагревается, ионизируется и выходит из сопла в виде высокотемпературной плазменной струи. В качестве плазмообразующих газов применяют азот, аргон, водород, гелий и воздух и их смеси.
Металлургические процессы при проведении сварки
Металлургические процессы при сварке протекают в зоне формирования сварочной ванны. Металлургию сварки характеризуют определенные физические и химические реакции, которые определяются взаимодействием плавящегося сплава со сварочными спецфлюсами, формирующимися в результате сварки шлаками и газами. Дополнительно в процессе проведения сварки происходят реакции, связанные со снижением температуры расплавленного сплава и кристаллизацией металла сварочной ванны.
Процесс плавления металла при скреплении деталей, с использованием специального инструмента, называется сваркой.
Физические и химические реакции, связанные с изменениями в металле, происходят на всех этапах осуществления дуговой электросварки. Основными этапами дуговой электросварки являются:
- плавление электрода, используемого в процессе электросварки;
- переход капель металла через электродуговой промежуток;
- попадание сварочного металла в сварочную ванну.
Схема дуговой сварки.
В отличие от реакций общей металлургии, которые протекают в сталеплавильных агрегатах, условия плавления металлической заготовки и протекания всех реакций при электродуговой сварке сильно отличаются целым комплексом особенностей. Эти особенности влияют на развитие плавления и на конечный результат. Основные особенности металлургических процессов при сварке следующие:
- небольшой объем зоны плавления;
- высокие температурные показатели и перегрев расплавленных компонентов в ванне;
- перемещение расплавленного сплава, его перемешивание и обновление;
- высокая скорость снижения температуры и кристаллизации компонентов, входящих в состав сварочной ванны.
При таких условиях происходит интенсивное взаимодействие между компонентами сплава.
Реакции, возникающие при проведении электродуговой сварки
Среди огромного количества реакций, которые протекают в процессе осуществления электросварочных работ, основными являются следующие:
Схемы движения электрода при ручной дуговой сварке.
- диссоциация образующихся газов и химсоединений;
- окисление расплавленного металла;
- раскисление компонентов сплава;
- раскисление под действием марганца;
- раскисление под воздействием кремния;
- раскисление под влиянием титана;
- раскисление под воздействием углерода;
- взаимодействие с газообразным азотом;
- химвзаимодействие с водородом;
- взаимодействие с серой и фосфором.
Все эти химпроцессы, происходящие при сварке плавлением, в той или иной мере оказывают воздействие на качество сварного соединения.
Характеристика реакций при дуговой сварке
При диссоциации осуществляется распад сложных компонентов на отдельные атомы или составляющие части. Возникновению диссоциации способствует высокий температурный режим в зоне проведения сваривания и каталитическое действие металлического расплава. При проведении электродугового сваривания диссоциации подвергаются молекулы различных газов: кислорода, водорода и азота, дополнительно происходит распад углекислого газа, водяных паров и некоторых других.
В зависимости от условий проведения электродуговой сварки, получаемые при диссоциировании молекул водяного пара компоненты могут как восстанавливать, так и окислять компоненты сплава, присутствующие в сварочной ванне.
, присутствующий в составе флюса, также подвергается распаду. Получающийся свободный атом фтора связывает атомы водорода, препятствуя его растворению.
Принцип газовой сварки.
Окисление металлических компонентов происходит под влиянием газов, которые в процессе сваривания переходят в атомарное состояние. В первую очередь на процесс окисления огромное влияние оказывает атомарный кислород, получаемый из молекулярного, входящего в состав атмосферы, окисление металла снижает его качество. Дополнительно окислять атомы металла могут пары воды, которые в результате диссоциации образуют атомарный кислород. Получаемая при окислении окись двухвалентного железа, растворяясь в расплаве, резко снижает его физсвойства. При проведении дугового сваривания окислению подвергаются практически все компоненты, входящие в сталь заготовки, подвергаемой обработке.
Применяемая при проведении работы защита не всегда позволяет избежать окисления, поэтому для улучшения качества шва проводят раскисление компонентов сплава. Раскисление представляет собой восстановительный процесс, при котором осуществляется восстановление железа, содержащегося в электросварочной ванне. Образуемый при раскислении кислород переводится в металле в нерастворимые химсоединения. В качестве спецраскислителей применяется марганец, кремний, титан, алюминий и углерод. Раскислители вводятся в зону сваривания через проволоку, покрытие электросварочных электродов и флюсы.
Взаимодействие с азотом в атомарном состоянии возникает в процессе распада молекулярного газа при попадании в электросварочную дугу. Это ведет к синтезу нитридов, ухудшающих качество.
Взаимодействие с серой и фосфором понижает качество электросварного шва в области сваривания.
Физико-химические реакции, происходящие при проведении газосварки
Металлургические процессы при газовой сварке полностью зависят от состава сплава, вводимых в расплав добавок и состава газового пламени.
Способы и режимы газовой сварки: А — ванночками; Б — по отборочным кромкам.
При проведении газовой сварки осуществляется взаимодействие расплавленных компонентов сплава, находящихся в сварочной ванне с пламенем газовой горелки. Реакции, происходящие при взаимодействии, полностью определяются физическими и химическими свойствами металлического расплава и составом пламени горелки. Сваривание осуществляется в восстановительном секторе факела, который состоит из оксида углерода и водорода. Различные компоненты по-разному реагируют с пламенем факела. Легче всего происходит окисление компонентов расплава, которые имеют большое сродство к кислороду. Окисление осуществляется за счет участия оксидов, входящих в состав основного металла и присадочной проволоки, дополнительно на скорость окисления оказывает влияние кислород атмосферного воздуха. При увеличении концентрации кислорода происходит снижение качества сварного шва и ухудшение его мехсвойств. Для снижения воздействия окислителей при проведении газосварочных работ в присадки вводятся специальные химсоединения – раскислители.
Раскислители представляют собой химвещества, имеющие большее сродство к кислороду, нежели компоненты основного расплава, из которого формируется электросварной шов. При проведении сваривания стали раскисляющим действием обладает углерод, оксид двухвалентного углерода и водород, которые образуются в процессе горения сварочного пламени. Это позволяет производить сваривание углеродистых сталей без использования присадочных флюсов.
Образуемый при проведении сваривания оксид двухвалентного углерода вызывает кипение расплава. Во время кипения происходит удаление нежелательных включений из расплава. При осуществлении кипения в момент кристаллизации образуются пузырьки, что снижает качество газосварки. Для уменьшения этого эффекта вводятся марганец и кремний.
Влияние химсостава газосварочного пламени на окислительно-восстановительные реакции
Состав газосварочного пламени оказывает огромное влияние на химические и физические процессы, происходящие в расплаве при проведении газосваривания. В составе нормального ацетиленокислородного пламени в средней его части, имеющей восстановительную среду, содержится 60% оксида двухвалентного углерода и по 20% молекулярного и атомарного водорода. Основным восстановителем железа является водород в атомарном состоянии. Образуемые при газосварке окислы кремния и марганца не проникают в жидкий металл, а всплывают на его поверхности, превращаясь в шлак. В жидком расплаве содержится большое количество разных оксидов, которые взаимодействуют между собой. Результатом таких взаимодействий является формирование химических соединений с низкой температурой плавки, что позволяет значительно легче удалить окислы из состава расплава газосварочной ванны. Окислы удаляются в виде разных шлаков.
При проведении газосваривания латуни, меди или алюминия в зону сваривания вводятся разные добавки. Раскисление проводится углеродом, оксидом двухвалентного углерода и водородом. При проведении сварки пламя обеспечивает восстановление металла и защиту расплава от кислорода и азота атмосферы.
Отличительные черты металлургических процессов в сварке
Сваркой называется формирование неразъемного соединения деталей, при котором изменяются старые связи между атомами и образуются новые. Для обеспечения техпроцесса нужна энергия.
Соединение материалов может достигаться благодаря механическим усилиям. В результате происходит пластическое деформирование, называющееся сваркой давлением.
Сварочный процесс, который обеспечивается сильным нагреванием материалов, называют плавлением. Изменения металлов при высокотемпературной сварке подобны классическим металлургическим превращениям.
Плавление
Одним из основных металлургических процессов является плавление. Температура плавления – это показатель, при котором вещества переходят из твердого состояния в жидкое. В сварочных процессах температуры достигают 5-7 тысяч градусов.
В твердых материалах атомы расположены близко друг от друга. В металлах маленькая длина междуатомных связей приводит к обобществлению электронов.
Образующиеся группы подвижных электронов называются металлической связью. Она обуславливает все свойства металлов: высокие значения тепло- и электропроводности, пластичность, химическую активность.
Тепловые процессы при сварке приводят к отдалению друг от друга атомов на кромке соединяемых металлов, продвижению их в зону расплава, перемешиванию в ней. В результате металлургических процессов плавления в сварочной ванне образуется новый расплавленный материал, из которого после застывания получается шов.
Характер источника тепловой энергии определяет виды сварки. Чаще всего выполняется электродуговое, электрошлаковое, электроннолучевое, диффузное сваривание. При необходимости используют другие технологии термического воздействия.
Технологические особенности
Понятие о металлургических процессах, реализующихся при сварке, полностью формируется при рассмотрении всех физико-химических явлений, химических реакций в рабочей зоне.
Они подобны преобразованиям, проходящим на сталеплавильных комбинатах. Существует несколько технологических особенностей сварки, отличающих ее от металлургии:
- в небольшом пространстве взаимодействует сразу несколько фаз;
- в разных точках сварочной ванны значительно отличаются показатели температур. Для центральной части зоны характерен большой перегрев;
- расплавленная масса интенсивно движется, перемешивается, обновляется;
- место сплава быстро охлаждается, образуя новую твердую фазу.
В таких специфических условиях идет быстрое взаимодействие частиц расплава с молекулами окружающих газов, флюсов, присадок. Взаимодействие между плавящимся материалом и окружающей средой в зоне дуги разнообразны.
Одновременно протекают реакции окисления, раскисления (восстановления), легирования. В зоне шва могут поглощаться или выделяться газообразные продукты.
Часто реакции идут не до полного завершения. Все превращения сказываются на качестве шва. Чтобы обеспечить прочное соединение материалов, нужно регулировать процесс со знанием его металлургических особенностей.
Расщепление молекул
Расщепление молекул газов и других сложных веществ во время сварки часто называют диссоциацией. Это не совсем верно, но термин прижился.
При классической диссоциации образуются ионы. При распаде молекул в металлургических процессах сварки образуются только атомы или новые молекулярные вещества и атомы.
Так расщепление простых газов (водорода, кислорода, азота) приводит в каждой реакции к образованию атомов. Причем, первые два из приведенных газов расщепляются почти полностью.
Распад азота идет медленнее. Расщепление молекулы воды при разных температурах дает принципиально отличающиеся продукты. В одном случае образуется атомарный кислород, который инициирует реакции окисления. В других условиях выделяется атомарный водород – сильнейший восстановитель.
В состав покрытий электродов часто содержится фторид кальция, называемый плавиковым шпатом.
При его расщеплении образуется атомарный фтор. Его возможное влияние на сварку двояко. Атомы фтора могут понижать стабильность дуги, но при этом связывать атомарный водород, уменьшая, таким образом, восстановительное направление реакций.
Покрытия электродов часто содержат карбонаты, известные склонностью к термическому разложению с образованием углекислого газа.
При температуре сварочной зоны он разлагается с выделением атомов кислорода. Атомарный кислород внедряется в металлургический процесс, ухудшает качество расплавов.
Окислительные реакции
Окисление существенно влияет на качество сварного соединения. Реакция может стимулироваться кислородом среды, шлаками рабочей зоны, оксидами поверхностей деталей.
Из всех оксидов железа наихудшим образом на состояние шва влияет низший оксид. Он имеет небольшую температуру плавления, внедряется в расплав, затвердевает в нем первым при охлаждении.
Высшие оксиды всплывают вверх или остаются в виде шлаков, которые можно легко удалить. Ухудшают механические качества швов оксиды других элементов: кремния, углерода, марганца. Для обеспечения качественного металлургического процесса при сварке влияние окислителей нужно минимизировать.
Раскисление
Добиться полного отсутствия окислительных реакций в металлургических сварочных процессах очень сложно.
Для уменьшения влияния оксидов проводят восстановление металла из них, связывание кислорода с другими химическими элементами. Эта реакция называется раскислением.
Хороший результат наблюдается при образовании нерастворимых оксидов, которые легко переходят в шлак.
В качестве восстановителей в сварочных металлургических процессах чаще всего применяют кремний, титан, углерод, марганец, алюминий.
Восстанавливающие добавки вносят в рабочую зону посредством плавящихся электродов, флюсов, электродных покрытий. В результате взаимодействия с углеродом образуется газ, который в структуре шва сформирует поры. Если нужно получить плотный шов без пор, применяют другие восстановители.
При использовании в качестве раскислителей марганца, кремния свойства шва улучшаются. Эти добавки в металлургическом процессе выполняют одновременно легирующую функцию. Улучшать сварочное соединение можно кобальтом, никелем другими элементами легирования, которые хорошо растворяются в рабочей зоне.
Очистка и применение неплавящихся электродов
Негативно сказываются на прочности сварочного шва газообразные вещества водород и азот. Для уменьшения насыщения среды вредными газами в металлургических технологиях применяют специальные приемы, прежде всего очистка и прокаливание исходных материалов.
Особыми приемами рафинирования из рабочей зоны выводят серу, фосфор. Суть этой стадии металлургического процесса сводится к выведению серы и фосфора из сульфидов и фосфидов в состав шлаковых веществ.
При использовании тугоплавких электродных материалов количество химических компонентов в металлургическом процессе сварки значительно уменьшается.
Сварочную зону составляют только расплавы крайних частей деталей. Инертное газовое облако сводит на нет вероятность окислительных реакций. Шов образуется из атомов исходных материалов без инородных вкраплений.
При необходимости введения дополнительных компонентов в сварочную зону вводят присадочную проволоку. Хорошее сплавление возможно при использовании присадок из металлов, идентичных по составу материалу исходных деталей.
Электрошлаковая и плазменная технология
В электрошлаковой технологии дуга пронизывает сварочную ванну через расплавленный шлак, компоненты которого естественным образом участвуют в химических реакциях.
В первые мгновения металлургического процесса расплавляется флюс, через который затем проходит дуга и достигает расплавленный шлак. Система в данной технологии имеет много компонентов.
Для получения хорошего сварочного соединения нужно учитывать химические свойства каждого вещества, возможность их взаимодействия; направлять процесс в требуемое русло регулированием параметров.
Источником энергии, вызывающим расплавление в плазменной технологии, является ионизированный газ. Образование плазмы обеспечивается действием тока с большой плотностью через сдавленный газ.
Обычно используют инертные газообразные вещества, например аргон. Формируют шов электродами из вольфрама. Участие всех других веществ во время плазменной сварки исключается.
Металлургические процессы сваривания в плазме имеют специфику. Механизмы реакций существенно отличаются от изменения атомных связей при обычных взаимодействиях. Плазменная сварка используется для получения швов очень высокого качества.
Все виды сварки по сути происходящих технологических процессов являются разновидностью металлургических превращений. Понимание роли каждого химического компонента рабочей зоны, его влияния на результат, возможности взаимопревращений среды позволяет получить хорошее сварочное соединение.
Читайте также: