Основные процессы в сварочной ванне

Обновлено: 10.01.2025

Презентация на тему: " Металлургические процессы при сварке Автор: преподаватель Головков Алексей Николаевич Еловский филиал ГБОУ СПО Осинский профессионально-педагогический." — Транскрипт:

1 Металлургические процессы при сварке Автор: преподаватель Головков Алексей Николаевич Еловский филиал ГБОУ СПО Осинский профессионально-педагогический колледж Занятие по дисциплине Оборудование и технология электрогазосварки

2 По своей природе сварка является металлургическим процессом. Металлургия сварки характеризуется теми физико-химическими процессами, которые протекают в сварочной зоне. Они определяются взаимодействием расплавленного металла со сварочными флюсами, шлаками и газами, а также охлаждением и кристаллизацией металла шва и превращениями основного металла в зоне термического влияния. Эти процессы протекают на всех стадиях дуговой сварки: в период плавления электрода, перехода капли жидкого металла через дуговой промежуток и в самой сварочной ванне

3 1. Малый объем сварочной ванны и в то же время достаточно большие относительные количества реагирующих фаз в ней. 2. Высокие температуры в различных областях сварочной зоны и большой перегрев расплава в ванне. 3. Движение жидкого металла, интенсивное перемешивание расплавленных продуктов и их непрерывное обновление и обмен в сварочной ванне. 4. Высокие скорости охлаждения и кристаллизации наплавленного металла.

4 При сварке проходят в основном следующие металлургические процессы: - окисление; - раскисление; - легирование; - рафинирование.

5 Окисление Металл сварочной ванны может окисляться за счет кислорода, содержащегося в газовой среде и шлаках в зоне сварки. Кроме того, окисление может происходить и за счет оксидов (окалины, ржавчины), находящихся на кромках деталей и поверхности электродной проволоки. При недостаточной защите сварочной ванны окисление происходит за счет кислорода воздуха.

6 Окисление Кислород с железом образует оксиды: FeO, Fe 3 O 4, Fe 2 O 3. Наибольшую опасность для качества шва представляет оксид FeO, способный растворяться в жидком металле. Высшие оксиды железа не растворяются в жидком металле и, если они не успевают всплывать на поверхность сварочной ванны, то остаются в металле шва в виде шлаковых включений. Железо может окисляться также за счет кислорода, содержащегося в СО 2 и парах воды Н 2 О

7 Раскисление Раскислением называют процесс восстановления железа из его оксида и перевод кислорода в форму нерастворимых соединений с последующим удалением их в шлак. Раскислителем является элемент, обладающий в условиях сварки большим сродством к кислороду, чем железо. В качестве раскислителей применяют кремний, марганец, титан, алюминий, углерод. Раскислители вводят в сварочную ванну через электродную проволоку, покрытия электродов и флюсы.

8 Легирование Легирование – процесс введения в сплав элементов, придающих ему требуемые свойства. Путем легирования металла шва его пополняют элементами, содержание которых уменьшилось вследствие выгорания их при сварке. Легирующие элементы входят в состав проволоки электрода, его покрытие, во флюс. Чем лучше раскислен наплавленный металл, тем большее количество легирующего элемента им усваивается.

9 Рафинирование Рафинирование – это процесс удаления вредных примесей из сварного шва (сера, фосфор). Серу удаляют введением марганца, который образует химическое соединение (сернистый марганец), не растворимое в жидком металле, которое полностью переходит в шлак. Фосфор также в ходе химических реакций переходит в шлак.

10 Взаимодействие с азотом Азот воздуха, попадая в столб дуги, разогревается и частично диссоциирует. В атомарном состоянии азот растворяется в жидком металле. В процессе охлаждения азот выпадает из раствора и взаимодействует с металлом, образуя ряд соединений - нитридов Fe 2 N, Fe 4 N. Атомарный азот может соединяться и с кислородом, образуя оксид азота NO, который, растворяясь в каплях электродного металла, переходит в сварочную ванну. Содержание азота в металле шва вредно влияет на его механические свойства, особенно пластичность. Кроме того, насыщение металла азотом способствует образованию газовых пор. Снижение азота проводят для защиты расплавленного металла от воздуха или введения в него химических элементов, удаляющих азот в виде неметаллических включений.

11 Взаимодействие с водородом Водород может попасть в зону сварки из влаги покрытия электрода или флюса, ржавчины на поверхности сварочной проволоки и детали, из воздуха. Атомарный водород хорошо растворяется в жидком металле, и с увеличением температуры нагрева растворимость увеличивается. При охлаждении и кристаллизации сварочной ванны выделяющийся водород не успевает полностью удаляться из металла шва. Это приводит к образованию в нем газовых пор. Кроме того, атомы водорода, диффундируя в имеющиеся полости и несплошности в затвердевающем металле, приводят к повышению в них давления, развитию в металле внутренних напряжений и образованию микротрещин.

12 Взаимодействие с серой Сера является вредной примесью в сталях. В сварочную ванну она попадает из основного металла, сварочной проволоки и иногда из покрытия электродов или флюса. В металле сера может находиться в виде соединений - сульфидов. Особо вреден сульфид железа FeS, хорошо растворимый в железе. Наличие в металле шва серы снижает его механические свойства и сильно повышает склонность к образованию трещин.

13 Взаимодействие с серой Десульфурация, очистка металла от серы, имеет целью уменьшение общего содержания серы в шве и особенно FeS. Десульфурацию проводят введением в сварочную ванну элементов, имеющих большее сродство к сере, чем железо. Образующийся сульфид элемента должен плохо растворяться в металле и хорошо в шлаке. Таким элементом является марганец, обладающий большим сродством к сере. Сульфид марганца не растворяется в металле, имеет малую плотность и легко всплывает в шлак сварочной ванны. Такого же эффекта достигают введением кальция.

14 Взаимодействие с фосфором Фосфор также вредная примесь в сталях. Пути попадания его в шов те же самые, что и для серы. В металле фосфор находится в виде соединений - фосфидов железа с температурой плавления много ниже, чем у железа (1170°С). Фосфор в металле шва располагается по границам зерен в виде легкоплавкой прослойки и приводит к сильной неоднородности металла, росту зерен и снижению пластичности, особенно при низких температурах, вызывая хладноломкость металла. Удаление фосфора проводят его окислением и последующим связыванием в прочное соединение, удаляемое в шлак.

15 1. АНО «Научный Центр внедрения телекоммуникационных технологий «Гражданская сеть» 2. Федеральный центр информационных образовательных ресурсов ФЦИОР Сварка и резка материалов: Учебное пособие. Ю. В. Казаков, М.Г. Козулин и др.; М.: Академия 4. Иллюстрированное пособие сварщика. Издательство «Соуэло», Москва, 2000 г.

ОСНОВНЫЕ ХИМИЧЕСКИЕ РЕАКЦИИ В СВАРОЧНОЙ ВАННЕ

Эти особенности вносят определенные трудности в получении качественного шва, но при правильно выбранной технологии сварки данной марки стали или сплава, правильно выбранном режима сварки или другими словами высокой квалификации сварщика можно получить равнопрочный свариваемому металлу шов. Это и требуется от сварочного соединения.

ОСНОВНЫЕ ХИМИЧЕСКИЕ РЕАКЦИИ В СВАРОЧНОЙ ВАННЕ

1. ВЛИЯНИЕ КИСЛОРОДА.

Кислород попадает в сварочную ванну из воздуха и с железом образует три оксида Fe3O4; Fe2O3; FeO.

Самым нежелательным из них является FeO, который растворяется в расплавленном металле, а в процессе кристаллизации сварочной ванны, выделяется по границам столбчатых кристаллитов ( характерных для литой структуры) или зерен, нарушая и расслабляя связь между ними. В результате значительно снижается прочность, ударная вязкость, пластичность шва, т.е. основные механические свойства. Для уменьшения влияния кислорода:

— необходима надежная газовая и шлаковая защита сварочной ванны от воздуха, что и осуществляется за счет покрытия электрода;

— так же в покрытие вводятся раскислители, т.к. защита не гарантирует проникновение воздуха. Раскислителями называются химические элементы, обладающие большим сродством (активностью) к кислороду, чем железо. По этому признаку, наиболее встречаемые в сварочной ванне элементы, можно расположить в следующем порядке:

AL; Ti; V; Si; C; Mn; Cr; Fe; W; Co. . . .

Элементы, стоящие с ряду левее железа будут являться раскислителями. Из них AL не используют, т.к. образуются тугоплавкие, тяжелые и трудно выводимые из сварочной ванны оксиды. Наиболее широко применяются вводимые в виде ферросплавов Ѕi, Mn, Ti, которые восстанавливают железо из FeO и образуют нерастворимые, легко всплывающие и переходящие в шлак ЅiО2; MnO; TiO2.

2. Влияние углерода.

Углерод содержится, при сварке сталей, в основном металле, а так же в электроде. Является раскислителем и при чем его активность зависит от температуры. Например, от 1800 град, он своей активностью к кислороду превосходит титан, стоящий на втором месте, а от 2000 град. и алюминий. Температура сварочной ванны примерно в этих пределах и при восстановлении железа по реакции FeO + C = Fe + CO происходит его «выгорание», т.к. СО представляет собой газ. Пониженное содержание углерода повышает пластичность металла шва, но снижает его прочность. «Выгоранию» углерода препятствует кремний, при его содержании в основном металле 0,2 — 0,3 % и более.

3. Влияние азота.

Азот попадает в сварочную ванну из воздуха и образует с железом нитриды Fe2N; Fe3N, которые повышают прочность и твердость металла шва, но снижают его пластичность, что является нежелательным. Для уменьшения влияния азота достаточно надежной шлаковой и газовой защиты сварочной ванны от воздуха во время сварки.

4. Влияние водорода.

Причиной появления водорода в сварочной ванне является вода, которая при высокой температуре распадается на атомарный водород (+Н) и (-ОН). Атомарный водород, растворяясь в расплавленном металле, а при кристаллизации сварочной ванны, преобразуясь в молекулярный (Н2), скапливается в отдельных местах, образует поры (пузырьки) снижающие прочность шва. Кроме того, при усадке металла сварочной ванны, происходит сжатие водорода в пузырьках до десятков атмосфер в результате чего, при недостаточной пластичности металла возможно образование микротрещин, очень опасных для шва. Вода может попасть в сварочную ванну из — за:

—влаги на свариваемых кромках;

— ржавчины, окалины на кромках, т.к. они являются гидратами оксидов, например

— влажности покрытия электрода.

Для уменьшения влияния водорода следует:

— свариваемые кромки осушить;

— зачистить кромки до блеска стальной щеткой от ржавчины и окалины;

— влажное покрытие электрода просушить в сушильных шкафах или печах. Время просушки и допустимое содержание влаги в покрытии, указывается на бумажных ярлыках пачек электродов.

5. Влияние серы и фосфора.

Сера и фосфор могут попасть в сварочную ванну:

— из покрытия электрода. Чем меньше в нем их содержание, тем выше качество покрытия;

— из электродного (присадочного) и основного металла, в которых они являются вредными примесями и так же определяющими качество стали.

Сера придает металлу красноломкость, т.е. снижение прочности и явления ползучести при высоких температурах эксплуатации конструкции, а так же способствует появлению горячих трещин в шве. Это объясняется тем, что сера образует с железом сернистое железо Fe2S имеющее температуру плавления 1193 град, меньшую, чем у железа 1539 град. Оно расплавляется по границам кристаллитов (зерен) и при высокой температуре плавится в первую очередь. Уменьшает влияние серы марганец, содержащийся в покрытии, при этом MnS переходит в шлак.

Фосфор придает металлу хладноломкость, т.е. снижение прочности и пластичности при низких температурах эксплуатации конструкции, а так же способствует образованию холодных трещин в шве. Уменьшает влияние фосфора кальций, содержащийся в большом количестве в электродах с основным покрытием. Вот почему, сварку при низких температурах следует вести электродами с основным видом покрытия, во избежание появления холодных трещин.

Металлургические процессы при газовой сварке

Металлургические процессы при газовой сварке характеризуются следующими особенностями: малым объемом ванны расплавленного металла; высокой температурой и концентрацией тепла в месте сварки; Большой скоростью расплавления и остывания метла; интенсивным перемешиванием металла гладкой ванны газовым потоком пламени и присадочной проволокой; химическим взаимодействием расплавленного металла с газами пламени.

Основными в сварочной ванне являются реакции окисления и восстановления. Наиболее легко окисляются магний, алюминий, обладающие большим сродством к кислороду.

Кислы этих металлов не восстанавливаются водородом и окисью углерода, поэтому при сварке металлов необходимы специальные флюсы. Окислы железа и никеля, наоборот хорошо восстанавливаются окисью углерода и водородом пламени, поэтому при газовой сварке этих металлов флюсы не нужны.

Водород способен хорошо растворятся в жидком железе. При быстром остывании сварочной ванны он может остаться в шве в виде мелких газовых пузырей. Однако газовая сварка обеспечивает более медленное охлаждение металла по сравнению, например с дуговой. Поэтому при газовой сварке углеродистой стали, весь водород успевает уйти из металла шва и последний получится плотным.

Структурные изменения в металле при газовой сварке

В следствии более медленного нагрева зона влияния при газовой сварке больше чем при дуговой.

Слои основного металла, непосредственно примыкающие к сварочной ванне непрерывны и приобретают крупнозернистую структуру. В непосредственной близости к границе шва находится зона неполного расплавления. Основного металла с крупной структурой, характерной для ненагретого металла. В этой зоне прочность металла ниже, чем прочность металла шва, поэтому здесь обычно и происходит разрушение сварного соедениения.

Далее расположен участок, нерекристализации характеризуемы так же крупнозернистой структурой, для которого t o плавления металла, не выше 1100-1200С. Последующие участки нагреваются до более низких температур и имеют мелкозернистую структуру, нормализованной стали.

Для улучшения структуры и свойств металла шва и околошовной зоны иногда применяют горячую проковку шва и местную термообработку нагревом сварочным пламенем или общую термообработку с нагревом в печи.

Особенности и режимы сварки различных металлов

Сварка углеродистых сталей

Низкоуглеродистые стали можно сварить любым способом газовой сварки. Пламя горелки должно быть нормальным, мощностью 100-130дм 3/ч при правой сварке.

Сварка легированных сталей

Легированные стали хуже проводят тепло чем низкоуглеродистая сталь, и поэтому больше коробятся при сварке.

Низколегированные стали (например XCHД) хорошо свариваются газовой сваркой. При сварке применяют нормальное пламя и проволоку СВ-0.8, СВ-08А или СВ-10Г2

Хромоникелевые нержавеющие стали сваривают нормальным пламенем мощностью 75дм 3 ацетилена на 1мм толщины металла. Применяют проволоку СВ-02Х10Н9, СВ-06-Х19Н9Т. При сварке жаропрочной нержавеющей стали, применяют проволоку содержащую 21% никеля 25% хрома.

Сварка чугуна

Чугун сваривают при исправлении дефектов отливок, а так же восстановлении и ремонте деталей: заварке трещин, раковин, при варке отколовшихся частей и пр.

Сварочное пламя должно быть нормальным или науглероживающим, так как окислительное вызывает местное выгорание кремния, и в металле шва образуются зерна белого чугуна.

Сварка меди

Медь обладает высокой теплопроводностью, поэтому при ее сварке к месту расплавления металла приходится проводить большое количество тепла, чем при сварке стали.

Одним из свойств меди затрудняющим сварку, является ее повышенная текучесть в расплавленном состоянии. Поэтому при сварке меди не оставляют зазора между кромками. В качестве присадочного металла используют проволоку из чистой меди. Для раскисления меди и удаления шлака применяют флюсы.

Сварка латуни и бронзы

Сварка латуни. Газовую сварку широко используют для сварки латуни, которая труднее поддается сварке электрической дугой. Основное затруднение при сварке состоит в значительном испарении из латуни цинка, которое начинается при 900С. Если латунь перегреть, то вследствие испарения цинка, шов получится пористым. При газовой сварке может испаряется до 25% содержащегося в латуни цинка.

Для уменьшения испарения цинка сварку латуни ведут пламени с избытком кислорода до 30-40%. В качестве присадочного металла используют латунную проволоку. В качестве флюсов применяют прокаленную буру или газообразный флюс БМ-1

Сварка бронзы

Газовую сварку бронзы применяют при ремонте литых изделий из бронзы, наплавке работающих на трение поверхностей деталей слоем антифрикционных бронзовых сплавов и пр.

Сварочное пламя должно иметь восстановительный характер, так как при окислительном пламени увеличиваются выгорание из бронзы олова, кремния, алюминия. В качестве присадочного материала используют прутки или проволоку, близкие по составу к свариваемому металлу. Для раскисления в присадочную проволоку вводят до 0.4% кремния.

Для защиты металла от окисления и удаления окислов в шлаки применяют флюсы тех же составов, что и при сварке меди и латуни.

Список литературы

Глизманенко Д.А. Газовая сварка и резка металлов.-М.: Высш. школа, 1969.-304с.

Физико-химические процессы, возникающие при сварке

Существует три состояния вещества, отличающиеся между собой силами взаимодействия атомов и молекул: твердое, жидкое и газообразное. Переход вещества из одного состояния в другое сопровождается большими затратами энергии, прикладываемой извне. Для твердого и жидкого состояния характерны небольшие расстояния между молекулами, между которыми действуют силы взаимного притяжения. По мере перехода вещества в жидкое, а затем в газообразное состояние эти расстояния увеличиваются, а силы их взаимодействия снижаются. Этот процесс наглядно представлен во время сварки, когда металл плавится, частично переходит в газообразное состояние, а затем возникают обратные процессы, именуемые кристаллизацией.

Процесс плавления металла в зоне сварочного шва приводит к возникновению сложных физико-химических процессов и к образованию характерного соединения, отличающегося по своей структуре от основного металла.

Под физическими понимают процессы, которые не меняют строения элементарных частиц и не приводят к изменению химических свойств основного металла. К таким процессам относятся:

  • прохождение электрического тока и тепловые колебания кристаллической решетки;
  • переход основного и электродного вещества из твердого состояния в жидкое (плавление), перемешивание их между собой, кристаллизация металла в зоне сварочной ванны;
  • напряжения и деформации, возникающие в кристаллической решетке сварочного шва и прилегающей к нему зоны основного металла.

Химические процессы меняют свойства основного металла, в результате чего получаются новые соединения, имеющие отличные свойства. К основным химическим процессам относятся:

  • химические реакции, возникающие в газовой и жидкой фазах и на их границах;
  • образование оксидов, шлаков и других соединений, отличающихся своими химическими свойствами от основного металла.

Влияние физико-химических процессов, происходящих в сварочном шве на прочность соединения настолько велико, что следует рассмотреть этот вопрос более подробно.

Плавление металла

Плавление основного и присадочного материалов в процессе сварки происходит под действием концентрированной энергии, вызванной сварочной дугой, пламенем горелки или одним из других способов, о которых мы расскажем ниже. Если в зону сварки не подается дополнительный металл, то сварочная ванна образуется только за счет основного соединения. Но чаще сварочная ванна получается смешиванием основного и присадочного металла, вносимого непосредственно в зону сварки электродом, сварочной проволокой и т.д. Сливаясь и перемешиваясь между собой, основной и присадочный металл образуют общую сварочную ванну, границами которой служат оплавленные участки основного металла. Расплавленный в зоне подачи концентрированной энергии металл кристаллизуется, образуя сварочный шов.

Сварочный электрод плавится за счет тепла, сконцентрированного на его конце в приэлектродной области дуги. Количество тепла, выделяемого в этой области, напрямую зависит от силы тока и электрического сопротивления промежутка, образовавшегося между электродом и основным металлом. И чем больше вылет электрода, тем больше его сопротивление, и тем больше выделяется тепла. Нагреваясь до температуры 2300 — 2500°С, конец электрода плавится, а образовавшиеся при этом капли металла переносятся через дуговое пространство и попадают в сварочную ванну. Этому процессу способствуют электростатические и электродинамические силы, поверхностное натяжение, тяжесть металлической капли, давление газового потока, реактивное давление паров металла и т.д. Все эти силы, взаимодействуя между собой, формируют характер капельного переноса, который может быть крупнокапельным, мелкокапельным и струйным (рис.1).

Рис. 1. Расплав и перенос электродного материала: А — метод короткого замыкания; Б — капельный метод; В — cтруйный метод

Крупнокапельный перенос металла характерен для ручной дуговой сварки, мелкокапельный — для сварки под флюсом или в среде углекислого газа, а струйный - для сварки в среде аргона.

Силы поверхностного натяжения формируют каплю на конце электрода и направлены внутрь нее. В отрыве и переносе капли участвуют электродинамические силы и давление газовых потоков. И чем больше сила тока, тем больше эти силы и тем меньшими по размеру будут капли расплавленного металла. При этом происходит электрический взрыв перемычки, образованной между отделяющимся каплей и торцом электрода. Этот взрыв сопровождается выбросом части металла за пределы сварочной ванны (так называемым разбрызгиванием, когда сварочный процесс сопровождается фонтаном искр).

Основной металл плавится под воздействием сконцентрированного в активном пятне тепла, возникающего под воздействием дуги или газопламенной обработки. Электромагнитные силы, вызывающие осевое давление плазменного потока на сварочную ванну, будут пропорциональны квадрату тока, создающего электрическую дугу. Поэтому, меняя силу тока электрической дуги, меняют размеры сварочной ванны в зависимости от толщины свариваемых деталей. Зависимость размеров сварочной ванны от величины напряжения можно выразить уравнениями:

где В — ширина сварочной ванны, L — длина сварочной ванны, Н — глубина сварочной ванны, vсв — скорость сварки, S — толщина свариваемого металла, К — коэффициент, зависящий от рода тока, полярности, диаметра электрода, степени сжатия дуги и т.д.

Процесс формирования сварочной ванны, происходящий под действием силы тяжести расплавленного металла «Рм», давления сварочной дуги «Р » и сил поверхностного натяжения «Рн», представлен на рис.2.

Рис.2 Силы действующие в сварочной ванне и формирование шва: А — нижнее положение; Б — вертикальное; В — горизонтальное; Г — потолочное; Vcb — направление сварки; 1 — порез; 2 — наплыв

Формирование вертикального шва может происходить по двум направлениям - снизу вверх и сверху вниз. Когда шов формируют снизу вверх, то есть сварка выполняется на подъем, жидкий металл удерживается в ванне только силами поверхностного натяжения, а при сварке сверху вниз к этим силам добавляется давление дуги. Горизонтальный шов на вертикальной плоскости имеет свои особенности. В данном случае при неправильно выбранных режимах сварки жидкий металл может концентрироваться на нижней плоскости шва, нарушая симметрию, что в конечном итоге снижает прочность сварки.

При потолочной сварке силы, действующие на жидкую фазу металла, должны не только удерживать ее от стекания вниз, но и перемещать электродный металл в направлении, противоположном силам тяжести. Во всех указанных случаях следует ограничить размеры сварочной ванны и тепловую мощность дуги.

Кристаллизация металла

Затвердевание расплавленного металла, происходящее в хвостовой части ванны, называется кристаллизацией. Под действием сварочной дуги основной и дополнительный металлы, расплавленные в головной части ванны, перемещаются в ее хвостовую часть, где при снижении температуры подвергаются кристаллизации. Динамика этого процесса такова: сварочная дуга, направленная в головную часть ванны, повышает в этой области температуру, в результате чего происходит плавление основного и электродного металлов.

Механическое давление, оказываемое дугой на жидкую фазу основного и дополнительного металлов, вызывает их перемешивание и перемещение в хвостовую часть ванны. Таким образом, давление, вызванное дугой, приводит к вытеснению металла из основания ванны и открывает доступ к следующим слоям, где поддерживается необходимая для плавления температура. По мере удаления металла от зоны плавления отвод тепла начинает преобладать над его притоком, и температура жидкой фазы снижается.

Расплавленные фазы основного и электродного металла перемешиваются между собой и, затвердевая, образуют общие кристаллы, что обеспечивает монолитность сварочного соединения.

Снижение температуры в хвостовой части ванны происходит за счет усиленного теплоотвода в прилегающий холодный металл, так как его масса по сравнению с ванной значительно преобладает. Кристаллы металла начинают формироваться от готовых центров основного металла в направлении ведения сварки и принимают форму кристаллических столбов, вытянутых в сторону, противоположную теплоотводу.

Основные процессы, протекающие при дуговой сварке.


Р ассмотрим металлургические процессы, которые имеют общий характер во всех или большинстве случаев выполнения дуговой сварки.

Диссоциация газов и соединений. При диссоциации происходит распад более сложных компонентов на атомы или составные части. Этому процессу способствуют наличие высоких температур в зоне сварки и каталитическое действие расплавленного металла. При дуговой сварке в первую очередь диссоциации подвергаются молекулы газов как простых (кислород, азот, водород), так и сложных (углекислый газ СО₂, пары воды Н₂О и др). Диссоциация газов происходит по реакциям:

Кислород и водород при температурах дуги практически полностью диссоциируют на атомы, азот диссоциирует в меньшей степени.

Диссоциация водяного пара в зависимости от температуры проходит по реакциям:

Следовательно, в зависимости от условий протекания реакций водяной пар может окислять или восстанавливать металл сварочной ванны.

Диссоциации подвергаются и более сложные соединения. Во многих электродных покрытиях и флюсах содержится плавиковый шпат CaF₂. При высоких температурах он разлагается по реакции

Атомы фтора, соединяясь с электронами, превращаются в ионы малой подвижности. Это ведет к снижению проводимости дугового промежутка и ухудшению стабильности дуги. Но в то же время атомы фтора способны связывать водород в молекулы HF, не растворяющиеся в металле ванны, уменьшая насыщение металла шва водородом. В состав многих покрытий электродов входят карбонаты, например СаСО₃. Разлагаясь при высоких температурах, они выделяют углекислый газ, который, в свою очередь, диссоциирует с образованием кислорода:

Находясь в атомарном состоянии, газы становятся химически активными и, реагируя с металлом, резко ухудшают его качество.

Окисление металла при сварке. Металл сварочной ванны может окисляться за счет кислорода, содержащегося в газовой среде и шлаках в зоне сварки. Кроме того, окисление может происходить и за счет оксидов (окалины, ржавчины), находящихся на кромках деталей и поверхности электродной проволоки. При нагреве имеющаяся в ржавчине влага испаряется, молекулы воды диссоциируют, а получающийся кислород окисляет металл. Окалина при плавлении металла превращается в оксид железа также с выделением свободного кислорода. При недостаточной защите сварочной ванны окисление происходит за счет кислорода воздуха.

Кислород с железом образует оксиды: FeO (22,3 % О₂), Fe₃0₄ (27,6 % О₂), Fe₂О₃ (30,1% О₂). При высокой температуре сварочной дуги за счет атомарного кислорода в результате реакции Fe+О→FeO образуется низший оксид, который при понижении температуры может переходить в другие формы высших оксидов.

Наибольшую опасность для качества шва представляет оксид FeO, способный растворяться в жидком металле. Этот оксид обладает температурой плавления меньшей, чем у основного металла. Поэтому при кристаллизации металла шва он затвердевает в последнюю очередь. В результате он располагается в виде прослоек по границам зерен, что вызывает снижение пластических свойств металла шва. Чем больше кислорода в шве находится в виде FeO, тем сильнее ухудшаются его механические свойства. Высшие оксиды железа не растворяются в жидком металле и, если они не успевают всплывать на поверхность сварочной ванны, остаются в металле шва в виде шлаковых включений.

Железо может окисляться также за счет кислорода, содержащегося в СО2 и парах воды Н2О:

В процессе сварки, кроме железа, окисляются и другие элементы, находящиеся в стали, – углерод, кремний, марганец. При переходе капель электродного металла в дуге окисление элементов происходит в результате взаимодействия их с атомарным кислородом газовой среды дугового промежутка:

В сварочной ванне элементы окисляются при взаимодействии их с оксидом железа

Mn + FeO ⇆ MnO + Fe,

Si + 2FeO ⇆ SiO₂ + 2Fe.

Окисление этих элементов приводит к уменьшению их содержания в металле шва. Кроме того, образующиеся оксиды могут оставаться в шве в виде различных включений, значительно снижающих механические свойства сварных соединений, особенно пластичность и ударную вязкость металла шва. Повышенное содержание кислорода вредно влияет и на другие свойства – уменьшает стойкость против коррозии, повышает склонность к старению металла, сообщает ему хладноломкость и красноломкость. Поэтому одним из условий получения качественного металла шва является предупреждение окисления его в первую очередь путем создания различных защитных сред.

Раскисление металла при сварке. Применяемые при сварке защитные меры не всегда обеспечивают отсутствие окисления расплавленного металла. Поэтому его требуется раскислить. Раскислением называют процесс восстановления железа из его оксида и перевод кислорода в форму нерастворимых соединений с последующим удалением их в шлак. Окисление и раскисление, в сущности, представляют два направления протекания одного и того же химического процесса. В общем случае реакция раскисления имеет вид FeO + Me ⇆ Fe + МеО, где Me – раскислитель.

Раскислителем является элемент, обладающий в условиях сварки большим сродством к кислороду, чем железо. В качестве раскислителей применяют кремний, марганец, титан, алюминий, углерод. Раскислители вводят в сварочную ванну через электродную проволоку, покрытия электродов и флюсы. Ниже приведены наиболее типичные реакции раскисления.

Раскисление марганцем: Fe + Mn ⇆ Fe + MnO.

Оксид марганца малорастворим в железе, но сам хорошо растворяет оксид железа FeO, увлекая его за собой в шлак.

Раскисление кремнием: 2FeO + Si ⇆ 2Fe+SiО₂.

Оксид кремния плохо растворим в железе и всплывает в шлак. Раскисление кремнием сопровождается реакциями образования более легкоплавких комплексных силикатов марганца, кремния и железа, которые лучше переходят в шлак:

Раскисление титаном: 2FeO + Ti = 2Fe + TiO₂.

Титан – энергичный раскислитель, при этом образуются легкоплавкие титанаты марганца и железа:

Марганец, кремний и титан вводят в сварочную ванну через электродную проволоку, легируя ее через покрытие электрода или флюс, вводя соответствующие ферросплавы.

Раскисление углеродом: FeO + С = Fe + СО.

Образующийся оксид углерода выделяется в атмосферу в газообразном состоянии, вызывая сильное кипение сварочной ванны и образуя поры в шве. Для получения плотных швов реакцию раскисления углеродом следует «подавить» введением в сварочную ванну других раскислителей, например кремния.

Легирование металла шва. Осуществляется различными полезными примесями для улучшения качества металла шва, путем введения полезных элементов в электродные стержни или проволоку, а также в состав электродного покрытия. Такие элементы, как кобальт, никель и др., полностью усваиваются наплавленным металлом. Элементы Mn и Si, участвующие в раскислении, при их достаточной концентрации в шлаке и электродном металле также частично усваиваются, переходя в сварной шов.

Взаимодействие с азотом. Азот воздуха, попадая в столб дуги, разогревается и частично диссоциирует. В атомарном состоянии азот растворяется в жидком металле. В процессе охлаждения азот выпадает из раствора и взаимодействует с металлом, образуя ряд соединений – нитридов Fe₂N, Fe₄N. Атомарный азот может соединяться и с кислородом, образуя оксид азота NO, который, растворяясь в каплях электродного металла, переходит в сварочную ванну. Содержание азота в металле шва вредно влияет на его механические свойства, особенно пластичность. Кроме того, насыщение металла азотом способствует образованию газовых пор. Снижение азота проводят для защиты расплавленного металла от воздуха или введения в него химических элементов, удаляющих азот в виде неметаллических включений.

Взаимодействие с водородом. Водород может попасть в зону сварки из влаги покрытия электрода или флюса, ржавчины на поверхности сварочной проволоки и детали, из воздуха. Атомарный водород хорошо растворяется в жидком металле, и с увеличением температуры нагрева растворимость увеличивается. Важной закономерностью в поведении газов является скачкообразное изменение их растворимости в металле при фазовых изменениях его и особенно при переходе из жидкого состояния в твердое.

При охлаждении и кристаллизации сварочной ванны выделяющийся водород не успевает полностью удаляться из металла шва. Это приводит к образованию в нем газовых пор. Кроме того, атомы водорода, диффундируя в имеющиеся полости и несплошности в затвердевающем металле, приводят к повышению в них давления, развитию в металле внутренних напряжений и образованию микротрещин. Снижение газонасыщения швов проводят за счет качественной защиты расплавленного металла при сварке очисткой и прокалкой свариваемого и сварочных материалов.

Реакции с серой и фосфором. Сера и фосфор являются вредными примесями в сталях. В сварочную ванну они попадают из основного металла, сварочной проволоки и иногда из покрытия электродов или флюса. В металле сера и фосфор могут находиться в виде соединений – сульфидов и фосфидов, хорошо растворимых в железе. Наличие в металле шва серы и фосфора снижает его механические свойства, сильно повышает склонность к образованию трещин и снижает ударную вязкость. Поэтому рафинирование, очистка металла от серы и фосфора имеет целью уменьшение общего содержания FeS и FeP

Рафинирование осуществляют путем связывания серы и фосфора в химические соединения, нерастворимые в стали и удаляемые в шлак, по реакциям:

FeS + Mn = MnS + Fe;

FeS + СаО=FeO + CaS;

2Fe₂P + 5FeO = P₂O₅+9Fe;

При этом MnS, CaS и Са₃Р₂О₈ переходят в шлак. Следует контролировать состав применяемых для сварки материалов (металла, покрытия, флюса) и не допускать содержания в них серы и фосфора выше норм.

Читайте также: