Нагрузка для сварочного аппарата

Обновлено: 09.01.2025

Появление малогабаритных сварочных аппаратов(СА)инверторного типа значительно расширило парк СА. Увеличилось и количество обращений в ремонтные мастерские, связанные с ремонтом сварочных аппаратов. После ремонта любой сварочный аппарат требует испытания на соответствие своим техническим параметрам, заявленным в паспорте. К таким параметрам, прежде всего, относятся:

- напряжение холостого хода;

- минимальный сварочный ток;

- максимальный сварочный ток;

- продолжительность нагрузки ПН%;

Для определения последних трех параметров требуется мощная универсальная нагрузка, позволяющая имитировать работу СА на электрическую дугу. В качестве такой нагрузки зачастую используется балластный реостат типа РБ-315 (1) или генератор статической нагрузки фирмы TEL-WIN (2). Как известно из теории и практики электродуговой сварки (3), напряжение дуги при ручной сварке покрытыми электродами определяется формулой:

где Ud - напряжение на дуге в Вольтах, Id - ток дуги в Амперах;

В соответствии с этой формулой составляется таблица зависимости напряжений Ud от тока ld. Ручкой регулировки тока на СА выставляют требуемую минимальную или максимальную величину тока. Диагностируемый СА нагружают на балластный реостат, который с помощью имеющихся у него переключателей позволяет задавать различные сопротивления нагрузки. С помощью переключателей балластного реостата подбирают такое сопротивление нагрузки, при котором измеряемое напряжение на выходе СА и измеряемый ток нагрузки соответствовали бы имеющимся табличным значениям сварочной дуги. Таким способом можно определить реальный ток на выходе испытуемого СА. Этот процесс измерения сварочного тока требует определенных трудозатрат, так как подобрать сразу необходимое сопротивление балластного реостата, как правило, не удается.

Для упрощения процесса измерения параметров СА автор предлагает следующий универсальный имитатор нагрузки для сварочных аппаратов (далее - ИНСА).

ИНСА представляет активную нагрузку, состоящую из проволочной спирали R сопротивлением 0,04 Ом, включенной последовательно со стабилизатором напряжения (J1 20 В.

Рис. 1 Эквивалентная схема ИНСА

Как видно из эквивалентной схемы (рис.1), напряжение Ud, приложенное к зажимам этой схемы, будет соответствовать вышеприведенной формуле при произвольных значениях тока ld. Таким образом имитатор нагрузки СА будет являться эквивалентом сварочной дуги и с его помощью можно имитировать сварочный процесс без получения электродугового разряда с температурой 5000. 7000 °С и без необходимости использовать все сварочные аксессуары (защитная маска, электрод, электрододержатель).

Максимально допустимый ток стабилизатора напряжения U1 должен быть не менее максимального тока диагностируемых СА .

Рис.2. Функциональная схема ИНСА

На рис. 2 показана функциональная схема предлагаемогоимитатора нагрузки, рассчитанного на максимальный ток 300 А.

Выходные кабели испытуемого СА подключаются к зажимам IN1, IN2 имитатора нагрузки. Напряжение с выхода СА подается на диодный мост VD1 и на схему выделения напряжения А1. Диодный мост VD1, рассчитанный на максимальный ток диагностируемых сварочных аппаратов, необходим для того, чтобы имитатор нагрузки можно было использовать для испытаний СА постоянного и переменного токов. На выходе схемы выделения напряжения А1 вырабатывается напряжение 2Uvd, равное напряжению падения на двух диодах выпрямительного моста VD1. Это напряжение поступает на вход сумматора АЗ и вычитается из опорного напряжения 20 В, поступающего на второй вход сумматора. С выхода сумматора АЗ напряжение, равное (20-2Uvd), поступает на инверсный вход стабилизатора напряжения U1 (обведен пунктиром). Стабилизатор работает с последовательно включенным резистором R2. Принцип работы стабилизатора напряжения U1 аналогичен работе микросхемы TL431 - трехвыводного регулируемого параллельного стабилизатора [4]. На прямой вход стабилизатора поступает напряжение с преобразователя А2, который преобразует действующее (среднеквадратичное)значение напряжения, снимаемого с точки соединения проволочных резисторов R1 (0,04 Ом) и R2, в постоянное напряжение [5]. Посредством операционного усилителя DA1, силового транзистора VT1 и проволочного резистора R2 в точке соединения резисторов R1 и R2 поддерживается стабилизированное напряжение, равное величине (20-2Uvd) В. Номинал резистора R2 определяется максимальным значением тока ld_max из выражения: ld_max=(20-2Uvd)/(R2+Rsd), где Rsd - сопротивление открытого состояния силового MOSFET-транзистора VT1. Для ld_max=300 А значение R2=0,05 Ом.

Поскольку величина падения напряжения на резисторе R0 не превышает 75 мВ, то последним слагаемым ldxR0 можно пренебречь. Таким образом, получаем:

То есть, напряжение Ud на входе имитатора нагрузки будет соответствовать необходимому напряжению дуги при ручной сварке.

Кроме этих узлов функциональная схема имеет блок питания А5 (DC/DC-преобразователь), формирующий напряжение питания и опорное напряжение вышеперечисленных узлов, и вентилятор FEN для охлаждения диодного моста VD1 и транзистора VT1. Таким образом, вышеописанный ИНСА будет представлять из себя конструкцию, на передней панели которой размещаются амперметр (регистратор тока) и две клеммы для подключения кабелей от диагностируемого СА. Подключение к внешнему источнику питания ИНСА не требуется - все электронные узлы, включая вентилятор охлаждения, питаются от диагностируемого сварочного аппарата. Измерение выходного тока СА будет предельно просто - нужно подключить сварочные кабели к клеммам имитатора и снять показания регистратора тока.

Основной вопрос при разработке данного имитатора - это правильное определение теплового режима элементов конструкции. Для этого в первую очередь необходимо определить максимальную мощность, выделяемую на диодном мосте VD1 и силовом транзисторе VT1.

Мощность, выделяемая на диодном мосте VD1, вычисляется по формуле:

Максимальная мощность будет выделяться при максимальном токе Id_max.

Для ld_mах=300 А И Uvd= 1,5 В (падение напряжения на одном диоде) получим Pvd_max=900 Вт.

При условии, что ток, потребляемый блоком питания А5, много меньше тока ld, мощность, выделяемая на силовом транзисторе VT1, равна

Максимальная мощность Рvt_max будет выделяться при токе ld=(20-2Uvd)/2R2=17/0,1 = 170 А и составит Рvt_mах=170х(20-2х1,5 -170x0,05)= 1445 Вт. Исходя из этих значений мощностей: Pvd_max=900BT И Pvt_max=1445 Вт Необходимо рассчитывать эффективную площадь радиатора охлаждения, на котором будут устанавливаться диоды моста VD1 и силовой транзистор VT1.

Можно отказаться от диодного моста VD1 и заменить его вторым стабилизатором напряжения U2 противоположной полярности, включенным последовательно со стабилизатором U1, как показано на рис. 3.

Рис. 3. Функциональная схема ИНСА без диодного моста

Когда напряжение, поступающее из сварочного аппарата, имеет полярность "плюс" на клемме IN1 и "минус" на клемме IN2, то работает стабилизатор U1. Второй стабилизатор блокируется диодом VD2, являющимся составной частью силового транзисторного модуля VT2. При противоположной полярности приложенного напряжения ("плюс" на клемме IN2, а "минус" на клемме IN 1) работает второй (верхний на рис. 3) стабилизатор напряжения U2, а стабилизатор U1 блокируется диодом VD1. При такой функциональной схеме количество тепла, выделяемое на активных элементах схемы при ld_mах=300 А, уменьшается, поскольку в каждый полу-период тепло выделяется только на одном диоде транзисторного модуля, а не на двух диодах моста, как имело место в первой функциональной схеме с диодным мостом. Однако, максимальная мощность Pvt_max, выделяемая на силовом MOSFET-транзисторе, будет больше, чем в схеме с диодным мостом.

Если же заменить линейный стабилизатор напряжения импульсным, то можно существенно снизить рассеиваемую мощность на силовом MOSFET-транзисторе, поскольку он будет работать в ключевом режиме.

В настоящее время автором отрабатывается схема конструкции вышеописанного универсального имитатора нагрузки сварочного аппарата.

1. В.Я. Володин. Как отремонтировать сварочные аппараты своими руками. Наука и Техника,Санкт-Петербург, 2011, стр. 33, 291-293.

3. ГОСТ Р МЭК 60974-1-2004, п. 11.2.1.

4. Микросхемы для линейных источников питания и их применение. ДОДЭКА, изд. второе, 1998 г., стр. 219.

5. Пейтон, Волш. Аналоговая электроника на операционных усилителях. БИНОМ, Москва,

Автор: Александр Бегиев ( г. Волжский, Волгоградская обл.)

Мнения читателей

Super inoramftive writing; keep it up.

Всё уже давно умными людьми написано. Многократно печаталось и "сдиралось"перепечатав. Но как у многих руки росли из мест на чём сидят , так всё и продолжается. К сожалению. Может даже и хуже ! Настоящие специалисты как всегда "на вес золота " !

хорошими руками и головой сварщику не до того, ему работы всегда сильно много. на игрушки в рабочее время его не хватает. причём люди они технически продвинутые , это я без трёпа постоянно общаюсь с ними в обычной жизни и по работе.

Человек даже с небольшим опытом, сразу определит качество сварочного аппарата . Проблема в том, что все больше человеков у которых руки из места на котором сидят ростут .

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Потребляемая мощность сварочных аппаратов

Без верного и наиболее точного расчёта потребляемой мощности сварочный аппарат из полнофункционального агрегата превратится в источник проблем. К ним относят выгорание проводки и электрики, повреждение счётчика, возможность возгорания и возникновения пожара.

Сколько киловатт потребляют разные виды?

Потребляемая мощность сварочных аппаратов – величина, приближённо определяемая простым умножением рабочего тока на напряжение сварочной дуги, минус потери на нагрев (с учётом КПД электроники агрегата). Бытовая сеть с одной фазой рассчитана на мощность, превышающую 3 киловатта в непрерывном режиме. Однако мощность более 3,5 кВт не может обеспечиваться непрерывно.

Традиционная схема – сварочный трансформатор – потребляет порядка 10 кВт электроэнергии ежечасно. Этот показатель соответствует прерывистой работе в режиме «минуту варим, минута – перерыв в работе». Старшее поколение технически подкованных людей помнит, как скакало напряжение по всей улице, когда кто-то из соседей занимался сваркой: оно падало во время сварки с 220 до 180-200 вольт.



Но уличные кабели с площадью сечения в 10 мм2 выдержат ток сварочной дуги до сотен ампер, чего не скажешь о межквартирной или внутридомовой проводке. Потери электричества на трансформаторе при электросварке переменным током могут достигать 40%. Соответственно, КПД сварочного трансформатора опускается до 60%, когда сварщик варит много мощных металлоконструкций по несколько часов без перерыва.

Сварочный инвертор, ставший наиболее популярным, вписывается в требования квартирной однофазной линии. Он работает с напряжением сварочной дуги от 25, а не 41 вольт, как сварочный трансформатор. С учётом потерь и КПД импульсных схем, достигающих 90%, ток при 220 вольтах, равный 16 амперам, указанным на предохранителях-автоматах, при напряжении от 25 В достигнет порядка 120 А, минус потери на нагрев силовой электроники и работу охлаждающего вентилятора. Тока в 120 А хватит, чтобы сварить детали толщиной в 4-5 мм, используя электрод со стержнем диаметром в 3-3,2 мм.

Опытный сварщик помнит, что напряжение дуги ниже 20 В может не позволить её зажечь. Либо дуга загорится, но тут же погаснет. Возможно частое «чирканье» – по сути, короткое замыкание: искра приплавляет электрод к детали. Из-за приваривания электрода к свариваемой поверхности его нередко отрывают до нескольких секунд, особенно когда выходную цепь закоротило на большом токе, а электрод слишком толст.

Если напряжения не хватает, а ток близок к максимальному, указанному на регуляторе аппарата, такие замыкания вредны: полупроводниковые силовые элементы быстро нагреваются. Кулер (вентилятор) не успевает охлаждать всю систему, происходит тепловой пробой. Сварочник отправляется на капремонт в сервисный центр.



Как рассчитать потребление?

Расчёт потребления сварочника начинается с напряжения дуги, равное 20 единицам, прибавляемым к сварочному току, умноженному на 4%. Эта формула – константа, и другого пути для импульсной сварки на постоянном токе не существует. Нетрудно прикинуть, что для тока в 120 А пользователь получит 24,8 В. Разделив 220 В на 24,8, получаем 8,87. С учётом потерь порядка 5-10% округляем полученную величину в меньшую сторону – до 8. Ток в 16 А, указанный на автомате, берём не максимальным, а несколько меньшим – 15, и умножаем его на эти 8 единиц. Выходит, что для относительно безопасной сварки с перерывами (10 минут варим, 10-30 минут – перерыв) получили рабочий сварочный ток в 120 А при потребляемой мощности в 3,5 кВт/ч от сети 220 вольт. Пересчёт потребляемых киловатт берётся с расчётом на суммарное фактическое время горения сварочной дуги. Предположим, работа в общем отняла 3 часа – реально же сварщик варил, скажем, час с небольшим.

Если запас мощности инверторного агрегата позволяет (берётся полупрофессиональная модель на сварочный ток в 250-300 А), то можно, выставив 100-120 А на регуляторе, работать непрерывно по нескольку часов. Дело в том, что мощная силовая электроника нагревается меньше – в лучшем случае охлаждаемый радиатор будет тёплый, а не как кипяток, что обеспечит долговечность и надёжность аппарата. Структура полупроводника (силовых диодов и транзисторных ключей) не так быстро теряет оптимальные рабочие параметры. А значит, в преждевременной замене эти детали не нуждаются.

В целях безопасности на корпусе инверторных аппаратов печатается таблица соответствия толщины свариваемой стали диаметру электрода и рабочему току.

В чем отличие ПВ от ПН и что это такое

В характеристиках сварочных аппаратов указывается их ПВ или ПН в процентах, на которое нужно обращать внимание при покупке. Оно может быть 35, 40, 60, 80 и даже 100%. Что это за значения и в чем их отличия, а также каково влияние на сварку, рассмотрим далее.

В этой статье:

Что такое ПВ и как его рассчитать

Аббревиатура ПВ расшифровывается как "продолжительность включения" сварочного аппарата. В таком случае питание на клеммы подается только после включения кнопки (на горелке), а без этого инверторный блок не испытывает нагрузки.

Оценить ПВ можно по следующей формуле:

tд – время горения дуги

tот –время отключения источника от сети

TцПВ – длительность одного полного цикла работы (сварка + отключение источника)

Что такое ПН и как его рассчитать

Аббревиатура ПН расшифровывается как "продолжительность нагрузки". Она относится к сварочному оборудованию, работающему на холостом ходу сразу после включения. А нагрузка возникает при замыкании полюсов (электрода и изделия с подключенной массой).

Оценить ПН можно по следующей формуле:

tх –время работы источника на холостом ходу

TцПН – длительность одного полного цикла работы (сварка + работа на холостом ходу)

В чем отличие

Если говорить техническим языком, то понятие продолжительности включения (ПВ) может быть только у полуавтоматов и аппаратов для аргоновой сварки, у которых электрическая дуга на конце горелки загорается после нажатия на кнопку. При отпускании кнопки включение прекращается.

У них напряжение удерживается на входе силовой части, а на клеммах его нет. Если просто коснуться проволокой об изделие, подключенное к массе, ничего не будет. Поэтому здесь производители указывают продолжительность именно включения.

Понятие продолжительности нагрузки (ПН) относится к сварочным трансформаторам, инверторам РДС и аппаратам для аргонодуговой сварки без высокочастотного поджига. Напряжение на клеммах возникает сразу после включения тумблера на корпусе. Поэтому продолжительность включения у них составляет 100%. А вот нагрузка возникает при замыкании полюсов (электрод касается изделия) и возбуждении дуги. После отрыва электрода аппарат снова переходит на холостой ход, оставаясь включенным и держа напряжение на выходе силовой части.

Но если не вдаваться в технические нюансы, то большинство продавцов под ПВ и ПН понимают одно и то же — сколько аппарат сможет варить без остановки. И им не важно, как он запускает дугу и что находится под напряжением после включения оборудования в сеть.

Как устанавливается ПВ/ПН и примеры аппаратов

Для определения продолжительности нагрузки у любых видов сварочных аппаратов используют методику, прописанную в ГОСТ Р МЭК 60974-1-2012. Согласно документу, испытания проводятся при температуре окружающего воздуха +40º С в течение 10 минут. Оборудование подключается в сеть, возбуждается электрическая дуга и засекается время, сколько аппарат сможет варить беспрерывно в течение 10 минут, пока сам не отключится из-за перегрева.

Например, у инвертора РДС БАРСВЕЛД Mini ARC-200 D указано в характеристиках ПН 35%. Это означает, что на максимальном токе 200 А получится варить 3.5 минуты, а 6.5 минут нужно давать аппарату остывать. Конечно, такая характеристика не означает, что инвертор отключится сразу на 31-й секунде четвертой минуты. Время уходит на смену электрода, отбивание шлака, смену положения, поэтому оборудование немного отдыхает в такие паузы и может варить 4-5 минут, но не более.

А вот у ТОРУС-200С ПН составляет 100%. На максимальном токе 220 А он варит без остановки 10 минут из 10-ти. По сути, им можно работать целый день на даче, при ремонте сельскохозяйственной технике, на стройке. Хотя к категории профессиональных он не относится.

Но некоторые недобросовестные производители указывают ПН или ПВ сварочных аппаратов завышенным. Так получается, поскольку испытания проводят с нарушениями, например, при температуре +20º С, а не +40º С, как того требует ГОСТ. В результате в характеристиках прописывается значение "ПВ 40%", но на деле параметры аппарата составляют ПВ 20%, ведь при повышении температуры окружающего воздуха он будет перегреваться быстрее.

Насколько важно значение ПВ/ПН

Рассмотрев суть понятий ПВ и ПН, а также их отличия, разберемся, с какими характеристиками выбрать сварочный аппарат. Если продолжительной сварки не предвидится, то модели с ПВ 80-100% окажутся неоправданными, поскольку их потенциал не будет использован в полной мере. И наоборот, для длительных работ и сварки толстого металла аппараты с небольшим ПВ будут постоянно перегреваться, придется ждать, пока они остынут, что растянет время выполнения задачи.

Источник видео: Aurora Online Channel

Исходя из этого можно отметить, что:

Можно ли увеличить ПН/ПВ аппарата

Увеличить время продолжительности нагрузки сварочного аппарата можно путем установки на него водяного охлаждения. Это возможно в случае полуавтомата или инвертора TIG. Понадобится купить горелку с каналами для жидкостного охлаждения и внешний блок. В последнем предусмотрены:

Помпа запускает перемещение охлаждающей жидкости по каналам горелки. Тепло от сопла и кабеля передается в радиатор и выдувается во внешнюю среду. Благодаря этому продолжительность сварки на максимальном токе увеличивается.

У всех видов сварочного оборудования можно продлить ПН, снизив сварочный ток, если это позволяет толщина соединяемого металла. Например, у моделей на 160 А с ПВ 40%, продолжительность нагрузки будет около 60-80%, если установить силу тока 100 А. Тогда получится дольше варить без перегрева.

Для ремонта забора, изготовления теплицы или приварки петель калитки достаточно аппарата на 160 А с ПВ 35%. Пока ведутся подготовительные работы, разметка, зачистка от шлака и пр., инвертор будет успевать остывать.

При перегреве сработает тепловая защита и электрическая цепь на входе в сварочный аппарат принудительно разомкнется. Загорится световой индикатор "перегрев". Продолжить сварку получится только после остывания оборудования, на что уйдет 20-30 минут. Поэтому лучше не превышать ПН и давать остывать аппарату по регламенту — так сварочные работы пройдут быстрее.

Проверить модель на соответствие заявленным характеристикам можно только на практике. Если в магазине нет специально оборудованного места, куда можно зайти, выключить аппарат и поварить 4-8 минут, придется верить производителю на слово. Поэтому лучше покупать сварочные аппараты известных брендов, дорожащих своей репутацией.

Да, ведь по ГОСТ значение ПН устанавливается при +40 градусах, поэтому при понижении температуры, продолжительность нагрузки возрастает. Зимой, работая на улице, аппарат с ПВ 40% может функционировать как модель с ПВ 60-80%.

Мощность сварочного аппарата

Сварочный аппарат является незаменимым инструментом в любой мастерской. Многообразие конструкций может поставить в тупик мастера-новичка. Аппараты различаются по типу преобразователя, виду тока, параметрам регулятора и по мощности. Одним из ключевых параметров является именно мощность. Чтобы понять, на что она влияет и как определяется, надо рассмотреть основные понятия.



На что влияет?

В первую очередь мощность сварочного аппарата влияет на возможность работы электродами большого диаметра. Это позволяет производить сварку массивных деталей, в том числе листовых материалов толщиной более 3 мм. Кроме того, работа сварочника на пределе мощности приводит к перегреву. После непродолжительной работы маломощный аппарат потребует перерыва для охлаждения. В то же время агрегат, имеющий запас мощности, может длительное время работать без остановки.

С другой стороны, бытовые аппараты ограничены мощностью, которую может отдавать бытовая электросеть 220 вольт. При подключении мощного аппарата в обычную розетку в лучшем случае «выбьет» автомат защиты в электрощитке, в худшем — может оплавиться сама розетка или даже возникнуть пожар. Большинство современных сварочных аппаратов построены по «инверторной схеме». Это означает, что в их схеме переменный ток бытовой электросети сперва преобразуется в постоянный. Для этого используются мощные диоды. Пульсации сглаживаются конденсатором.

В цепи постоянного тока работает электронный регулятор, который управляется специальной схемой. Она контролирует фактический ток в цепи сварки и поддерживает его в установленных пределах. После этого постоянный ток ещё раз преобразуется в переменный («инвертируется»), и уже затем напряжение понижается до необходимого для сварки. На выходе стоят цепи контроля, измеряющие фактический ток в дуге и напряжение на электродах. Кроме того, схема управления может работать с током по особому алгоритму.

Такая конструкция позволяет достичь сразу нескольких целей:

  • понижающий трансформатор становится компактнее и легче;
  • электронный регулятор может более точно отслеживать и поддерживать параметры сварки;
  • использование электронного регулятора позволяет не только регулировать мощность, но и задействовать специальные режимы сварки;
  • автоматика регулятора позволяет реализовать такой сервисный режим, как «неприлипание электрода»;
  • параметры сварки перестают зависеть от напряжения электросети.



Стандартные параметры

Последний пункт в преимуществах инверторных аппаратов может показаться неочевидным. Проблема в том, что в электросетях стандартные параметры напряжения практически никогда не соблюдаются. Например, бытовые электросети формально рассчитаны на подачу напряжения 220 В. При этом правилами допускается напряжение от 210 до 235 В. Фактически же оно может оказаться как 190 В, так и 250 В.

Маломощный сварочный аппарат может включаться прямо в бытовую розетку. При этом можно не опасаться превышения допустимой потребляемой мощности. Мощный профессиональный аппарат тоже можно запитать от бытовой розетки и нормально работать с ним.

Но при ошибочном превышении фактического тока сварки (например, при работе электродом большого диаметра) может быть превышен предельный ток, допустимый в цепях 220 вольт.

Как определить мощность?

Для того чтобы определить необходимую мощность сварочного аппарата, необходимо знать потребный сварочный ток и коэффициент мощности. Напряжение стабильно горящей дуги для большинства применений мало отличается, и стандартным считается значение 24 В. Величина потребного тока дуги зависит от толщины свариваемого материала, точнее, диаметра электрода. Маломощные аппараты позволяют использовать электроды диаметром до 3 мм — это означает потребный ток 160 А. Аппараты для профессионального применения подразумевают работу с электродами диаметром до 6 мм. Это означает величину тока 220 А.

Второй параметр в расчёте — коэффициент мощности. В электроэнергетике он обычно является синонимом «косинуса фи». Но в случае расчёта мощности сварочного аппарат имеет совершенно иной смысл и вычисляется по определённой формуле. Чтобы узнать коэффициент мощности сварочника, необходимо знать предельно допустимое время его непрерывной работы на максимальном токе и время, необходимое для перерыва на охлаждение. Отношение времени непрерывной сварки к длительности полного цикла (работа + охлаждение) в данном случае называется коэффициент мощности сварочного аппарата.

Для дешёвых бытовых инверторов коэффициент составляет около 0,5. Профессиональные сварочные аппараты имеют коэффициент мощности от 0,6 до 0,75. Промышленные сварочные установки обладают коэффициентом мощности от 0,8 до 0,97. Для определения предельной потребляемой мощности необходимо также знать КПД аппарата. Трансформаторные сварочные агрегаты имеют КПД от 0,9 до 0,98. Аппараты, построенные по инверторной схеме, имеют КПД от 0,7 до 0,85. При этом маломощный бытовой инвертор вряд ли будет иметь КПД выше 0,65.

Кроме того, на КПД влияет длина сварочных проводов. На проводах длиннее 5 метров падение напряжения может достигать 5–10 вольт, что снижает общий КПД аппарата до 0,45.

Все своими руками

Здравствуйте друзья. Пару дней назад отдали мне блок управления от механизма протяжки полуавтомата. Он собственно пошел на запчасти для другого аппарата, а вот корпус с измерительными приборами отлично подошел для нагрузочного резистора для проверки сварочных аппаратов постоянного тока. Своя самодельная нагрузка для сварочного аппарата

Достаточно полезный прибор для определения реальных характеристик сварочных инверторов
Давно мечтал узнать какой ток у моего сварочного Procraft AWH-285, не вериться что там 285А

Сборка самодельной нагрузки

Вот так выглядит этот блок управления. Управлял блоком подачи проволоки Гранит ЗУЗ. Один рабочий, второй ушел на запчасти

Блоки управления протяжкой полуавтомата

Блок управления внутри

А вот так он выглядит внутри, тот что мне достался на запчасти

Измерительные приборы и шунт на 500А

Вот такой солидный шунт на 500А
Две измерительные головки Амперметр 500А и Вольтметр 75В

Изготовил три пружины из вязальной проволоки диаметром 1,5мм на оправке 35мм по 27 витков. Это примерно 3м проволоки. Все соединил на шпильке М8.

Нагрузочный резистор из проволоки первый вариант

Оправка труба с прорезью вдоль. Край проволоки фиксируется в этой прорези и кручу трубу, придерживая проволоку, так что бы она ложилась плотней виток к витку. Потом при установке пружина сама растянулась на сколько надо.

Соединил минус медной шиной, а плюс гибким соединением из сварочного кабеля 50мм кв.

Первый тест

Решил проверить сварочником и сварочник заодно и картинка такая, напряжение 8В, ток 80А

Первая проверка нагрузки для сварочного аппарата

Максимальный сварочный ток 80А

Но как оказалось мой аппарат всего 80А может отдать, а на индикаторе 295А. Купил его год назад за 4500 рублей на местном рынке. Рассчитывал на 160 хотя бы. То то я думал он не варит толком, а вот в чем дело то 80А всего

Самодельная нагрузка для сварочного аппарата

В итоге немного побаловавшись настроил аппарат свой на 120А, так же настроил индикатор. Хороший пример применения нагрузки.
Веря индикаторам и зная закон Ома, сопротивление резистора 0,19Ом. А это от того, что нагрелась проволока и повысилось сопротивление.

О настройке моей Китайской сварки расскажу в статье Настройка и честные характеристики ProCraft AWH-285, а вот нагрузкой очень доволен. Пружины хоть и греются, но не разу не покраснели за 3 минуты нагрузки. Думаю до 200А можно нагружать.

На счет крышки пока думаю, так же как и о кабеле соединения со сваркой. А если нравятся мои идеи, подпишитесь на обновления в группах Вконтакте или Одноклассниках и всегда будьте в курсе последних обновлений.

Читайте также: