Металлургические процессы при сварке

Обновлено: 24.01.2025

Особенности металлургической сварки. Тавровое соединения пластин. Металлургические процессы, протекающие в ванне жидкого металла под действием сварочного пламени: диссоциация газов и соединений, окисление металла, взаимодействие с азотом и водородом.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 25.08.2013
Размер файла 19,4 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Бюджетное образовательное учреждение

Начального профессионального образования

«Профессиональное училище № 28»

Выпускная квалификационная работа

Тема: Металлургические процессы при сварке

Работу выполнил: Носов Илья Сергеевич,

Руководитель: Прохоров Александр Леонидович,

Содержание

1. Металлургические процессы при сварке

2. Особенности металлургических процессов

3. Практическая работа. Тавровое соединение пластин

В решение задач научно- технического прогресса важное место принадлежит сварке. Сварка является технологическим процессом, широко применяемая практически во всех отраслях народного хозяйства. С применением сварки создаются серийные и уникальные машины. Сварка внесла коренные изменения в конструкцию и технологию производства многих изделий. При изготовлении металлоконструкций, прокладке трубопроводов, установке технологического оборудования, на сварку приходится четвертая часть всех строительно-монтажных работ. Основным видом сварки является дуговая сварка.

Процессы расплавления и затвердевания металла, сопровождающиеся изменением его химического состава и кристаллического строения, называются металлургическими.

Сварка также является металлургическим процессом, но отличается от других подобных процессов следующими особенностями:

а) происходит при высокой температуре нагрева;

б) протекает с большой скоростью;

в) характеризуется очень малыми объемами нагретого и расплавленного металла;

г) при сварке имеет место быстрый отвод тепла от расплавленного металла сварочной ванны в прилегающие к ней зоны твердого основного металла;

д) на расплавленный металл в зоне сварки интенсивно воздействуют окружающие его газы и шлаки;

е) в ряде случаев для образования металла шва используется присадочный металл, химический состав которого может значительно отличаться от состава основного металла.

Высокая температура нагрева при сварке значительно ускоряет процессы плавления электродного металла, основного металла, электродного покрытия и флюса. При этом имеет место значительное испарение, разбрызгивание и окисление веществ, участвующих в химических реакциях в зоне сварки.

Молекулы ряда элементов, таких, как кислород, азот, водород, при высоких температурах дуги частично распадаются на атомы (диссоциируют). В атомарном состоянии эти элементы обладают более высокой химической активностью, чем в молекулярном. Вследствие этого окисление элементов, насыщение металла азотом и поглощение водорода в процессе сварки протекает более интенсивно, чем при обычных металлургических процессах.

Малые объемы расплавленного металла в сварочной ванне и интенсивный отвод тепла в окружающий металл, обусловливают кратковременность протекающих химических реакций при высоких температурах процесса, поэтому не всегда эти реакции могут полностью завершаться. С другой стороны, сильно ускоряются процессы затвердевания и кристаллизации металла шва, что существенно отражается на строении (структуре) твердого металла шва, получаемого после сварки, а также околошовной зоны основного металла.

Химический состав, структура и плотность металла шва зависят от состава основного и присадочного металла, характера и состава газов, окружающих жидкий металл, режима сварки и прочих факторов.

Указанные особенности металлургических процессов при сварке затрудняют получение сварных швов высокого качества, особенно для металлов, чувствительных к быстрому нагреву и охлаждению, легко окисляющихся, склонных к образованию пористости, закалочных структур, трещин и других дефектов. Для сварки конструкций из таких металлов приходится применять специальную технологию и режимы, особые присадочные металлы, электроды, электродные покрытия, флюсы, в ряде случаев использовать предварительный и сопутствующий подогрев, а также последующую термическую обработку швов и в некоторых случаях -- целых изделий.

сварка металлургический тавровый диссоциация

В ванне жидкого металла под действием сварочного пламени и окружающей газовой среды, а также в ряде случаев в присутствии флюсов протекают металлургические процессы. Процессов, протекающих в условиях дуговой сварки, много. Рассмотрим те, которые имеют общий характер во всех или большинстве случаев выполнения сварки.

Диссоциация газов и соединений. При диссоциации происходит распад более сложных компонентов на атомы или составные части. Этому процессу способствуют наличие высоких температур в зоне сварки и каталитическое действие расплавленного металла. При дуговой сварке в первую очередь диссоциации подвергаются молекулы газов как простых - кислород, азот, водород, так и сложных - углекислый газ СО2, пары воды Н2О и др. Диссоциация газов происходит по реакциям

Кислород и водород при температурах дуга практически полностью диссоциируют на атомы, азот диссоциирует в меньшей степени.

Следовательно, в зависимости от условий протекания реакций водяной пар может окислять или восстанавливать металл сварочной ванны.

Диссоциации подвергаются и более сложные соединения. Во многих электродных покрытиях и флюсах содержится плавиковый шпат CaF2. При высоких температурах он разлагается по реакции

Атомы фтора, соединяясь с электронами, превращаются в ионы с малой подвижностью. Это ведет к снижению проводимости дугового промежутка и ухудшению стабильности дуги. Но в то же время атомы фтора способны связывать водород в молекулы HF, не растворяющиеся в металле ванны, уменьшая насыщение металла шва водородом.

В состав многих покрытий электродов входят карбонаты, например СаСО3. Разлагаясь при высоких температурах, они выделяют углекислый газ, который в свою очередь диссоциирует с образованием кислорода.

Находясь в атомарном состоянии, газы становятся химически активными и, реагируя с металлом, резко ухудшают его качество.

Окисление металла при сварке. Металл сварочной ванны может окисляться за счет кислорода, содержащегося в газовой среде и шлаках в зоне сварки. Кроме того, окисление может происходить и за счет оксидов (окалины, ржавчины), находящихся на кромках деталей и поверхности электродной проволоки. При нагреве имеющаяся в ржавчине влага испаряется, молекулы воды диссоциируют, а получающийся кислород окисляет металл. Окалина при плавлении металла превращается в оксид железа также с выделением свободного кислорода. При недостаточной защите сварочной ванны окисление происходит за счет кислорода воздуха.

Кислород с железом образует оксиды: FeO (22,3% О2), Fe3O4 (27,6% О2), Fe2O3 (30,1% О2). При высокой температуре сварочной дуги за счет атомарного кислорода в результате реакции Fe + О

FeO образуется низший оксид, который при понижении температуры может переходить в другие формы высших оксидов.

Наибольшую опасность для качества шва представляет оксид FeO, способный растворяться в жидком металле. Этот оксид обладает температурой плавления меньшей, чем у основного металла. Поэтому при кристаллизации металла шва он затвердевает в последнюю очередь. В результате он располагается в виде прослоек по границам зерен, что вызывает снижение пластических свойств металла шва. Чем больше кислорода в шве находится в виде FeO, тем сильнее ухудшаются его механические свойства. Высшие оксиды железа не растворяются в жидком металле и, если они не успевают всплывать на поверхность сварочной ванны, остаются в металле шва в виде шлаковых включений.

Железо может окисляться также за счет кислорода, содержащегося в СО2 и парах воды Н2О.

В процессе сварки кроме железа окисляются и другие элементы, находящиеся в стали, - углерод, кремний, марганец. При переходе капель электродного металла в дуге окисление элементов происходит в результате взаимодействия их с атомарным кислородом газовой среды дугового промежутка:

С + О= СО, Мn + О= MnO,

Окисление этих элементов приводит к уменьшению их содержания в металле шва. Кроме того, образующиеся оксиды могут оставаться в шве в виде различных включений, значительно снижающих механические свойства сварных соединений, особенно пластичность и ударную вязкость металла шва. Повышенное содержание кислорода вредно влияет и на другие свойства - уменьшает стойкость против коррозии, повышает склонность к старению металла, сообщает ему хладноломкость и красноломкость. Поэтому одним из условий получения качественного металла шва является предупреждение окисления его в первую очередь путем создания различных защитных сред.

Раскисление металла при сварке. Применяемые при сварке защитные меры не всегда обеспечивают отсутствие окисления расплавленного металла. Поэтому его требуется раскислить. Раскислением называют процесс восстановления железа из его оксида и перевод кислорода в форму нерастворимых соединений с последующим удалением их в шлак. Окисление и раскисление, в сущности, представляют два направления протекания одного и того же химического процесса. В общем случае реакция раскисления имеет вид

FeO + Ме= Fе + МеО,

где Me - раскислитель.

Раскислителем является элемент, обладающий в условиях сварки большим сродством к кислороду, чем железо. В качестве раскислителей применяют кремний, марганец, титан, алюминий, углерод. Раскислители вводят в сварочную ванну через электродную проволоку, покрытия электродов и флюсы. Ниже приведены наиболее типичные реакции раскисления.

Оксид марганца малорастворим в железе, но сам хорошо растворяет оксид железа FeO, увлекая его за собой в шлак.

2FeO + Si= 2Fe + SiO2.

2FeO + Ti = 2Fe + TiO

Титан - энергичный раскислитель, при этом образуются легкоплавкие титанаты марганца и железа.

Оксид кремния плохо растворим в железе и всплывает в шлак. Раскисление кремнием сопровождается реакциями образования более легкоплавких комплексных силикатов марганца, кремния и железа, которые лучше переходят в шлак.

Марганец, кремний и титан вводят в сварочную ванну через электродную проволоку, легируя ее через покрытие электрода или флюс, вводя соответствующие ферросплавы.

Образующийся оксид углерода выделяется в атмосферу в газообразном состоянии, вызывая сильное кипение сварочной ванны и образуя поры в шве. Для получения плотных швов реакцию раскисления углеродом следует «подавить» введением в сварочную ванну других раскислителей, например кремния.

Взаимодействие с азотом. Азот воздуха, попадая в столб дуги, разогревается и частично диссоциирует. В атомарном состоянии азот растворяется в жидком металле. В процессе охлаждения азот выпадает из раствора и взаимодействует с металлом, образуя ряд соединений -нитридов Fe2N, Fe4N. Атомарный азот может соединяться и с кислородом, образуя оксид азота NO, который, растворяясь в каплях электродного металла, переходит в сварочную ванну. Содержание азота в металле шва вредно влияет на его механические свойства, особенно пластичность. Кроме того, насыщение металла азотом способствует образованию газовых пор. Снижение азота проводят для защиты расплавленного металла от воздуха или введения в него химических элементов, удаляющих азот в виде неметаллических включений.

Взаимодействие с водородом. Водород может попасть в зону сварки из влаги покрытия электрода или флюса, ржавчины на поверхности сварочной проволоки и детали, из воздуха. Атомарный водород хорошо растворяется в жидком металле, и с увеличением температуры нагрева растворимость увеличивается. Важной закономерностью в поведении газов является скачкообразное изменение их растворимости в металле при фазовых изменениях его и особенно при переходе из жидкого состояния в твердое. При охлаждении и кристаллизации сварочной ванны выделяющийся водород не успевает полностью удаляться из металла шва. Это приводит к образованию в нем газовых пор. Кроме того, атомы водорода, диффундируя в имеющиеся полости и несплошности в затвердевающем металле, приводят к повышению в них давления, развитию в, металле внутренних напряжений и образованию микротрещин. Снижение газонасыщения швов проводят за счет качественной защиты расплавленного металла при сварке очисткой и прокалкой свариваемого и сварочных материалов.

Реакции с серой и фосфором. Сера является вредной примесью в сталях. В сварочную ванну она попадает из основного металла, сварочной проволоки и иногда из покрытия электродов или флюса. В металле сера может находиться в виде соединений - сульфидов. Особо вреден сульфид железа FeS, хорошо растворимый в железе. Наличие в металле шва серы снижает его механические свойства и сильно повышает склонность к образованию трещин. Поэтому десульфурация, очистка металла от серы, имеет целью уменьшение общего содержания серы в шве и особенно FeS. Десульфурацию проводят введением в сварочную ванну элементов, имеющих большее сродство к сере, чем железо. Образующийся сульфид элемента должен плохо растворяться в металле и хорошо в шлаке. Таким элементом является марганец, обладающий большим сродством к сере. Сульфид марганца не растворяется в металле, имеет малую плотность и легко всплывает в шлак сварочной ванны.

Такого же эффекта достигают введением кальция по реакции

FeS + СаО = FeO + CaS.

Оксид кальция получают разложением в дуге мрамора СаСО3.

Реакции с фосфором. Фосфор также вредная примесь в сталях. Пути попадания его в шов те же самые, что и для серы. В металле фосфор находится в виде соединений - фосфидов железа с температурой плавления много ниже, чем у железа (1170°С).

Фосфор в металле шва располагается по границам зерен в виде легкоплавкой прослойки и приводит к сильной неоднородности металла, росту зерен и снижению пластичности, особенно при низких температурах, вызывая хладноломкость металла. Удаление фосфора проводят его окислением и последующим связыванием в прочное соединение, удаляемое в шлак.

Оборудование и материалы:

Средства индивидуальной защиты электросварщика

Источник питания сварочной дуги ВДМ - 1202С

Электрододержатель со сварочным кабелем.

Инструмент для подготовки металла под сварку и зачистки швов

Пластины из низкоуглеродистой стали 10 х 10 х 3 мм - 2 шт.

Электроды АНО - 21 - 3 мм

1. Подготовить рабочее место и проверить сварочную цепь.

2. Подготовить пластины из низкоуглеродистой стали 10 х 10 х 3 мм

- очистить пластину проволочной щеткой по металлу от ржавчины

3. Подобрать режим сварки на вспомогательной пластине для электродов диаметром 3 мм Iсв = 110 ± 10 А

4. Зафиксировать тавровое соединение - чтобы торец одной пластины примыкал под углом к основной поверхности другой пластины.

5.Выполнить две прихватки длинной 10 мм с обеих краев соединения на расстоянии 20 мм от края пластин, возбудив дугу электродом на основной пластине.

6. Отбить шлак и проконтролировать качество выполненной прихватки.

7. Наклонить изделие под углом 45є и выполнить сварку углового шва таврового соединения с обратной стороны прихваток. Возбудить дугу на основной горизонтальной пластине, отступив о края сборки на 5-10мм

Плавно переместить дугу к краю сборки и начать сварку

Вести электрод по не сваренным кромкам пластины

Закончить проход, заварив кратер шва, используя ранее приобретённые навыки.

8. Отбить шлак и зачистить шов щеткой не оставляя на пластине шлака и брызг металла.

9. Перевернуть пластину и выполнить сварку соединения со стороны прихваток

10. Закончить второй проход сварки шва.

11. Отбить шлак и зачистить шов щеткой не оставляя на пластине шлака и брызг металла.

12. Произвести контроль выполненной работы, обратить внимание на чешуйчатость и катет шва (при правильно выбранной скорости сварки и длины дуги, ширина шва должна быть на 2-3 мм больше диаметра электрода)

Сварочная металлургия отличается от других металлургических процессов высокими температурами термического цикла и малым временем существования сварочной ванны в жидком состоянии, т. е. в состоянии, доступном для металлургической обработки металла сварного шва. Кроме того, специфичны процессы кристаллизации сварочной ванны, начинающиеся от границы сплавления, и образования изменённого по своим свойствам металла зоны термического влияния.

Список литературы

1. Справочник электрогазосварщика и газорезчика: учебное пособие для нач. проф. образования/[Г.Г. Чернышев, Г.В. Полевой, А.П. Выборное и др.]; под ред. Г.Г. Чернышева. -- 4-е изд., стер. -- М.: Издательский центр «Академия», 2010. -- 234-237с.

Подобные документы

Металлургические процессы при сварке и основные методы подготовки кромок. Оборудование для установки и перемещения сварочного аппарата. Расчет сварных швов на прочность, нормы расхода присадочной проволоки, неплавящегося электрода и защитного газа.

курсовая работа [3,5 M], добавлен 05.02.2013

Характеристика материала и сварки стали 20Х12ВНМФ как разновидности жаропрочной высоколегированной стали. Виды сварки: ручная дуговая, под флюсом, электрошлаковая, в среде защитных газов. Схема переноса жидкого металла при электронно-лучевой сварке.

курсовая работа [99,6 K], добавлен 17.12.2014

Источники энергии для сварки, их классификация, виды и требования к ним. Особенности и этапы кристаллизации металла в сварочной ванне. Рафинирование металла при сварке плавлением, основные факторы, влияющие на скорость и эффективность данного процесса.

контрольная работа [203,2 K], добавлен 23.10.2014

Влияние пластических свойств металла на прочность при наличии сварочных напряжений. Угловые деформации при сварке таврового соединения, их определение от двухстороннего шва. Определение остаточного прогиба и продольного укорочения тавровой балки.

контрольная работа [1,9 M], добавлен 26.02.2010

Основы теории и технологии контактной точечной сварки. Процессы, протекающие при контактной точечной сварке: деформирования свариваемых деталей; формирования механических и электрических контактов, электрической проводимости зоны сварки; нагрева металла.

Отличительные черты металлургических процессов в сварке

Сваркой называется формирование неразъемного соединения деталей, при котором изменяются старые связи между атомами и образуются новые. Для обеспечения техпроцесса нужна энергия.

Соединение материалов может достигаться благодаря механическим усилиям. В результате происходит пластическое деформирование, называющееся сваркой давлением.

Сварочный процесс, который обеспечивается сильным нагреванием материалов, называют плавлением. Изменения металлов при высокотемпературной сварке подобны классическим металлургическим превращениям.

Плавление

Одним из основных металлургических процессов является плавление. Температура плавления – это показатель, при котором вещества переходят из твердого состояния в жидкое. В сварочных процессах температуры достигают 5-7 тысяч градусов.


В твердых материалах атомы расположены близко друг от друга. В металлах маленькая длина междуатомных связей приводит к обобществлению электронов.

Образующиеся группы подвижных электронов называются металлической связью. Она обуславливает все свойства металлов: высокие значения тепло- и электропроводности, пластичность, химическую активность.

Тепловые процессы при сварке приводят к отдалению друг от друга атомов на кромке соединяемых металлов, продвижению их в зону расплава, перемешиванию в ней. В результате металлургических процессов плавления в сварочной ванне образуется новый расплавленный материал, из которого после застывания получается шов.

Характер источника тепловой энергии определяет виды сварки. Чаще всего выполняется электродуговое, электрошлаковое, электроннолучевое, диффузное сваривание. При необходимости используют другие технологии термического воздействия.

Технологические особенности

Понятие о металлургических процессах, реализующихся при сварке, полностью формируется при рассмотрении всех физико-химических явлений, химических реакций в рабочей зоне.

Они подобны преобразованиям, проходящим на сталеплавильных комбинатах. Существует несколько технологических особенностей сварки, отличающих ее от металлургии:

  • в небольшом пространстве взаимодействует сразу несколько фаз;
  • в разных точках сварочной ванны значительно отличаются показатели температур. Для центральной части зоны характерен большой перегрев;
  • расплавленная масса интенсивно движется, перемешивается, обновляется;
  • место сплава быстро охлаждается, образуя новую твердую фазу.

В таких специфических условиях идет быстрое взаимодействие частиц расплава с молекулами окружающих газов, флюсов, присадок. Взаимодействие между плавящимся материалом и окружающей средой в зоне дуги разнообразны.

Одновременно протекают реакции окисления, раскисления (восстановления), легирования. В зоне шва могут поглощаться или выделяться газообразные продукты.

Часто реакции идут не до полного завершения. Все превращения сказываются на качестве шва. Чтобы обеспечить прочное соединение материалов, нужно регулировать процесс со знанием его металлургических особенностей.

Расщепление молекул


Расщепление молекул газов и других сложных веществ во время сварки часто называют диссоциацией. Это не совсем верно, но термин прижился.

При классической диссоциации образуются ионы. При распаде молекул в металлургических процессах сварки образуются только атомы или новые молекулярные вещества и атомы.

Так расщепление простых газов (водорода, кислорода, азота) приводит в каждой реакции к образованию атомов. Причем, первые два из приведенных газов расщепляются почти полностью.

Распад азота идет медленнее. Расщепление молекулы воды при разных температурах дает принципиально отличающиеся продукты. В одном случае образуется атомарный кислород, который инициирует реакции окисления. В других условиях выделяется атомарный водород – сильнейший восстановитель.

В состав покрытий электродов часто содержится фторид кальция, называемый плавиковым шпатом.

При его расщеплении образуется атомарный фтор. Его возможное влияние на сварку двояко. Атомы фтора могут понижать стабильность дуги, но при этом связывать атомарный водород, уменьшая, таким образом, восстановительное направление реакций.

Покрытия электродов часто содержат карбонаты, известные склонностью к термическому разложению с образованием углекислого газа.

При температуре сварочной зоны он разлагается с выделением атомов кислорода. Атомарный кислород внедряется в металлургический процесс, ухудшает качество расплавов.

Окислительные реакции


Окисление существенно влияет на качество сварного соединения. Реакция может стимулироваться кислородом среды, шлаками рабочей зоны, оксидами поверхностей деталей.

Из всех оксидов железа наихудшим образом на состояние шва влияет низший оксид. Он имеет небольшую температуру плавления, внедряется в расплав, затвердевает в нем первым при охлаждении.

Высшие оксиды всплывают вверх или остаются в виде шлаков, которые можно легко удалить. Ухудшают механические качества швов оксиды других элементов: кремния, углерода, марганца. Для обеспечения качественного металлургического процесса при сварке влияние окислителей нужно минимизировать.

Раскисление

Добиться полного отсутствия окислительных реакций в металлургических сварочных процессах очень сложно.

Для уменьшения влияния оксидов проводят восстановление металла из них, связывание кислорода с другими химическими элементами. Эта реакция называется раскислением.

Хороший результат наблюдается при образовании нерастворимых оксидов, которые легко переходят в шлак.

В качестве восстановителей в сварочных металлургических процессах чаще всего применяют кремний, титан, углерод, марганец, алюминий.

Восстанавливающие добавки вносят в рабочую зону посредством плавящихся электродов, флюсов, электродных покрытий. В результате взаимодействия с углеродом образуется газ, который в структуре шва сформирует поры. Если нужно получить плотный шов без пор, применяют другие восстановители.

При использовании в качестве раскислителей марганца, кремния свойства шва улучшаются. Эти добавки в металлургическом процессе выполняют одновременно легирующую функцию. Улучшать сварочное соединение можно кобальтом, никелем другими элементами легирования, которые хорошо растворяются в рабочей зоне.

Очистка и применение неплавящихся электродов

Негативно сказываются на прочности сварочного шва газообразные вещества водород и азот. Для уменьшения насыщения среды вредными газами в металлургических технологиях применяют специальные приемы, прежде всего очистка и прокаливание исходных материалов.


Особыми приемами рафинирования из рабочей зоны выводят серу, фосфор. Суть этой стадии металлургического процесса сводится к выведению серы и фосфора из сульфидов и фосфидов в состав шлаковых веществ.

При использовании тугоплавких электродных материалов количество химических компонентов в металлургическом процессе сварки значительно уменьшается.

Сварочную зону составляют только расплавы крайних частей деталей. Инертное газовое облако сводит на нет вероятность окислительных реакций. Шов образуется из атомов исходных материалов без инородных вкраплений.

При необходимости введения дополнительных компонентов в сварочную зону вводят присадочную проволоку. Хорошее сплавление возможно при использовании присадок из металлов, идентичных по составу материалу исходных деталей.

Электрошлаковая и плазменная технология

В электрошлаковой технологии дуга пронизывает сварочную ванну через расплавленный шлак, компоненты которого естественным образом участвуют в химических реакциях.


В первые мгновения металлургического процесса расплавляется флюс, через который затем проходит дуга и достигает расплавленный шлак. Система в данной технологии имеет много компонентов.

Для получения хорошего сварочного соединения нужно учитывать химические свойства каждого вещества, возможность их взаимодействия; направлять процесс в требуемое русло регулированием параметров.

Источником энергии, вызывающим расплавление в плазменной технологии, является ионизированный газ. Образование плазмы обеспечивается действием тока с большой плотностью через сдавленный газ.

Обычно используют инертные газообразные вещества, например аргон. Формируют шов электродами из вольфрама. Участие всех других веществ во время плазменной сварки исключается.

Металлургические процессы сваривания в плазме имеют специфику. Механизмы реакций существенно отличаются от изменения атомных связей при обычных взаимодействиях. Плазменная сварка используется для получения швов очень высокого качества.

Все виды сварки по сути происходящих технологических процессов являются разновидностью металлургических превращений. Понимание роли каждого химического компонента рабочей зоны, его влияния на результат, возможности взаимопревращений среды позволяет получить хорошее сварочное соединение.

Металлургические процессы при сварке

7. Что такое лучистая теплоотдача? Закон Стефана-Больцмана?

8. Краевые условия. Что это такое?

9. Термические циклы при сварке. Их назначение?

10. Плавление основного металла.

11. плавление присадочного металла и электродов.

12 Понятие мгновенной скорости охлаждения.

Основы физической химии.Основные понятия и величины. Быстропротекающие процессы образования сварного шва, состоящие из расплавления кромок основного металла, присадочного металла и кристаллизации образовавшейся сварочной ванны, являются необратимыми процессами.

Они оставляют в системе неисчезающий результат – сварной шов, а в окружающей среде создаётся нагрев за счёт неизбежных потерь тепла источником энергии при сварке.

В системе, за которую можно условно принять зону сварки на изделии, могут возникать новые вещества – продукты химических реакций между металлом и средой, так как при своих достаточно высоких температурах плавления, промышленные металлы проявляют очень большую химическую активность.

В любом процессе сварки металлов плавлением, независимо от принятой технологии, происходит изменение свойств металла шва в результате своеобразного процесса кристаллизации на готовой стенке полурасплавленных зёрен основного металла и изменения химического состава металла шва. Химические реакции в зоне сварки, изменяющие состав металла шва, при электродуговой или газовой сварке, протекают в условиях высоких и быстроизменяющихся температур, а при сварке в вакууме в результате встречи с частицами, имеющими высокие уровни энергий.

Для получения заданного состава металла сварного шва в процессе сварки необходимо вести металлургическую обработку сварочной ванны, образующейся из расплавленного основного и присадочного или электродного металла и существующей в жидком состоянии очень непродолжительное время, или создавать её в атмосфере инертных газов (Аr, Hе), или в вакууме.

Изучение сложных металлургических процессов при сварке требует знаний из области физической химии, хотя бы в минимально необходимом объеме, для понимания существа процессов, происходящих в зоне сварки.

Физическая химия рассматривает процессы изменения состава и свойств материальных систем в зависимости от физических условий, при которых они совершаются.

Все изменения в материальных системах происходят за счёт взаимодействия между собой отдельных элементарных частиц, обладающих вполне конкретными массами, что приводит к определённым отношениям масс веществ, участвующих в том или ином химическом или физико-химическом процессе.

Единицей массы, принятой в физико-химических расчётах, является киломоль (кмоль) – число килограммов вещества, численно равное атомному или молекулярному весу вещества, выраженному в углеродных единицах.

Ввиду того, что киломоль представляет собой слишком большую величину массы, в физико-химических расчётах чаще всего фигурирует в тысячу раз меньшая величина грамм-моль (г-моль) или просто моль.

Моль вещества содержит число Авогадро отдельных элементарных частиц, которыми могут быть атомы, молекулы, ионы, и даже электроны, и таким образом масса моля будет в число Авогадро раз больше массы элементарной частицы.

Число Авогадро, впервые определённое Ж.Перреном в 1910 г. имеет наиболее вероятное значение:

N = 6,02·10 26 кмоль -1 ,

или N = 6,02·10 23 моль -1 .

В газообразном состоянии при одинаковых температурах и давлениях моли любых веществ занимают одинаковые объёмы (следствие закона Авогадро). Так, при нормальных физических условиях (давление 1,013 · 10 5 н/м 2 или 1 физическая атмосфера, равная давлению 760 мм РТ. Ст., и температура 273,16°С или 0°С), объёмы молей:

ʋ =22,4 м 3 /кмоль, или ʋ =22,4 dм 3 /моль.

Общие сведения о термодинамических системах.Термодинамика представляет собой науку, изучающую переходы энергии из одной формы в другую, переходы энергии из одной системы в другую, энерговыделение при различных процессах, протекающих в системах, а также возможность самопроизвольного течения процессов в данных условиях.

Под термодинамической системой понимают комплекс физических тел, находящихся во взаимодействии между собой, мысленно обособленный от окружающей среды. Системы могут быть гомогенными и гетерогенными. Термодинамические системы могут быть или изолированными, т.е. не имеющими возможности обмениваться веществом и энергией с окружающей средой, или замкнутыми, т.е. такими системами, в которых возможен обмен энергией с окружающей средой, но не возможен обмен веществом.

Совокупность всех свойств термодинамической системы определяет её состояние.

Любая физическая величина, влияющая на состояние системы (объём, давление, температура, внутренняя энергия , энтальпия или энтропия), носит название термодинамического параметра состояния или просто параметра состояния. Изменение хотя бы только одного параметра состояния вызывает изменение всей системы, называемое термодинамическим процессом.

Последовательное изменение параметров состояния системы, в конечном итоге приводящее её вновь в исходное состояние, называется круговым процессом, или циклом.

Термодинамические процессы, в том числе и круговые, нужно разделять на обратимые и необратимые.

Обратимым процессом называется такой процесс, который будучи проведен в прямом и обратном направлении не оставляет никаких изменений в окружающей среде.

Первый закон термодинамики.Он выражает собой закон сохранения энергии для замкнутых или изолированных систем. В общем случае замкнутой системы обмен энергией с окружающей средой возможен и энергия, полученная системой Q, будет распределяться на увеличение запаса внутренней энергии ΔU (энергия состояния) и работу A, которую система может совершить:

Q = ΔU + A.4.1.

Нельзя построить машину, производящую работу без поглощения энергии извне.

Изменения внутренней энергии системы, возникающие при изменении её состояния, могут быть точно измерены или определены термодинамическим расчётом. Работа А, а следовательно, и количество энергии Qполученное из окружающей среды, не являются однозначными функциями изменения состояния, так как зависят от порядка изменения параметров состояния или от характеристики процесса (изобарический, изотермический и т.д.).

В математическое выражение первого закона термодинамики для конечных изменений системы входят величины:

Q = ΔU + A,

Где Q –энергия, полученная из окружающей среды (+) или отданная системой в окружающую среду (-);

ΔU – приращение внутренней энергии (+) или её уменьшение (-);

А- внешняя работа, совершённая системой (+) или совершённая над системой (-).

Понятие термохимии и основы термодинамических расчётов.Термохимия представляет собой раздел химии или физической химии, изучающей выделение или поглощение энергии при химических реакциях. Имеет место основные законы термохимии. Так , к примеру , звучит первый закон термохимии – закон Лавуазье-Лапласса: тепловой эффект реакции разложения какого-либо вещества в точности равен, но обратен по знаку тепловому эффекту образования этого вещества.

Второй закон термохимии – закон Г.И. Гесса имеет следующую формулировку: тепловой эффект данной химической реакции не зависит от характера и последовательности отдельных её стадий, а зависит только от начальных и конечных веществ и их физического состояния. Эти два закона термохимии – являются частными случаями первого закона термодинамики, исключающими возможность построения вечного двигателя за счёт химических процессов.

Второй закон термодинамики. Переход тепловой энергии от одного тела к другому определяется наличием разности температур; самопроизвольный процесс перехода теплоты от источника с более высокой температурой к источнику с более низкой температурой можно использовать для получения работы.

Следовательно, процесс получения работы сопровождается переносом теплоты от более нагретого источника теплоты к менее нагретому. Полная формулировка второго закона термодинамики может быть предложена в следующем виде:

Нельзя построить периодически действующую машину, которая только производила бы работу и охлаждала резервуар теплоты; в работу можно превратить лишь часть теплоты, самопроизвольно переходящей от нагретого тела к холодному. Или:

теплота не может самопроизвольно переходить от холодного тела к нагретому.

Металлургические процессы при проведении сварки

Металлургические процессы при сварке протекают в зоне формирования сварочной ванны. Металлургию сварки характеризуют определенные физические и химические реакции, которые определяются взаимодействием плавящегося сплава со сварочными спецфлюсами, формирующимися в результате сварки шлаками и газами. Дополнительно в процессе проведения сварки происходят реакции, связанные со снижением температуры расплавленного сплава и кристаллизацией металла сварочной ванны.

Сварка

Процесс плавления металла при скреплении деталей, с использованием специального инструмента, называется сваркой.

Физические и химические реакции, связанные с изменениями в металле, происходят на всех этапах осуществления дуговой электросварки. Основными этапами дуговой электросварки являются:

  • плавление электрода, используемого в процессе электросварки;
  • переход капель металла через электродуговой промежуток;
  • попадание сварочного металла в сварочную ванну.

Схема дуговой сварки.

В отличие от реакций общей металлургии, которые протекают в сталеплавильных агрегатах, условия плавления металлической заготовки и протекания всех реакций при электродуговой сварке сильно отличаются целым комплексом особенностей. Эти особенности влияют на развитие плавления и на конечный результат. Основные особенности металлургических процессов при сварке следующие:

  • небольшой объем зоны плавления;
  • высокие температурные показатели и перегрев расплавленных компонентов в ванне;
  • перемещение расплавленного сплава, его перемешивание и обновление;
  • высокая скорость снижения температуры и кристаллизации компонентов, входящих в состав сварочной ванны.

При таких условиях происходит интенсивное взаимодействие между компонентами сплава.

Реакции, возникающие при проведении электродуговой сварки

Среди огромного количества реакций, которые протекают в процессе осуществления электросварочных работ, основными являются следующие:

Схемы движения электрода при ручной дуговой сварке

Схемы движения электрода при ручной дуговой сварке.

  • диссоциация образующихся газов и химсоединений;
  • окисление расплавленного металла;
  • раскисление компонентов сплава;
  • раскисление под действием марганца;
  • раскисление под воздействием кремния;
  • раскисление под влиянием титана;
  • раскисление под воздействием углерода;
  • взаимодействие с газообразным азотом;
  • химвзаимодействие с водородом;
  • взаимодействие с серой и фосфором.

Все эти химпроцессы, происходящие при сварке плавлением, в той или иной мере оказывают воздействие на качество сварного соединения.

Характеристика реакций при дуговой сварке

При диссоциации осуществляется распад сложных компонентов на отдельные атомы или составляющие части. Возникновению диссоциации способствует высокий температурный режим в зоне проведения сваривания и каталитическое действие металлического расплава. При проведении электродугового сваривания диссоциации подвергаются молекулы различных газов: кислорода, водорода и азота, дополнительно происходит распад углекислого газа, водяных паров и некоторых других.

В зависимости от условий проведения электродуговой сварки, получаемые при диссоциировании молекул водяного пара компоненты могут как восстанавливать, так и окислять компоненты сплава, присутствующие в сварочной ванне.

, присутствующий в составе флюса, также подвергается распаду. Получающийся свободный атом фтора связывает атомы водорода, препятствуя его растворению.

Принцип газовой сварки

Принцип газовой сварки.

Окисление металлических компонентов происходит под влиянием газов, которые в процессе сваривания переходят в атомарное состояние. В первую очередь на процесс окисления огромное влияние оказывает атомарный кислород, получаемый из молекулярного, входящего в состав атмосферы, окисление металла снижает его качество. Дополнительно окислять атомы металла могут пары воды, которые в результате диссоциации образуют атомарный кислород. Получаемая при окислении окись двухвалентного железа, растворяясь в расплаве, резко снижает его физсвойства. При проведении дугового сваривания окислению подвергаются практически все компоненты, входящие в сталь заготовки, подвергаемой обработке.

Применяемая при проведении работы защита не всегда позволяет избежать окисления, поэтому для улучшения качества шва проводят раскисление компонентов сплава. Раскисление представляет собой восстановительный процесс, при котором осуществляется восстановление железа, содержащегося в электросварочной ванне. Образуемый при раскислении кислород переводится в металле в нерастворимые химсоединения. В качестве спецраскислителей применяется марганец, кремний, титан, алюминий и углерод. Раскислители вводятся в зону сваривания через проволоку, покрытие электросварочных электродов и флюсы.

Взаимодействие с азотом в атомарном состоянии возникает в процессе распада молекулярного газа при попадании в электросварочную дугу. Это ведет к синтезу нитридов, ухудшающих качество.

Взаимодействие с серой и фосфором понижает качество электросварного шва в области сваривания.

Физико-химические реакции, происходящие при проведении газосварки

Металлургические процессы при газовой сварке полностью зависят от состава сплава, вводимых в расплав добавок и состава газового пламени.

Способы и режимы газовой сварки: А — ванночками; Б — по отборочным кромкам.

При проведении газовой сварки осуществляется взаимодействие расплавленных компонентов сплава, находящихся в сварочной ванне с пламенем газовой горелки. Реакции, происходящие при взаимодействии, полностью определяются физическими и химическими свойствами металлического расплава и составом пламени горелки. Сваривание осуществляется в восстановительном секторе факела, который состоит из оксида углерода и водорода. Различные компоненты по-разному реагируют с пламенем факела. Легче всего происходит окисление компонентов расплава, которые имеют большое сродство к кислороду. Окисление осуществляется за счет участия оксидов, входящих в состав основного металла и присадочной проволоки, дополнительно на скорость окисления оказывает влияние кислород атмосферного воздуха. При увеличении концентрации кислорода происходит снижение качества сварного шва и ухудшение его мехсвойств. Для снижения воздействия окислителей при проведении газосварочных работ в присадки вводятся специальные химсоединения – раскислители.

Раскислители представляют собой химвещества, имеющие большее сродство к кислороду, нежели компоненты основного расплава, из которого формируется электросварной шов. При проведении сваривания стали раскисляющим действием обладает углерод, оксид двухвалентного углерода и водород, которые образуются в процессе горения сварочного пламени. Это позволяет производить сваривание углеродистых сталей без использования присадочных флюсов.

Образуемый при проведении сваривания оксид двухвалентного углерода вызывает кипение расплава. Во время кипения происходит удаление нежелательных включений из расплава. При осуществлении кипения в момент кристаллизации образуются пузырьки, что снижает качество газосварки. Для уменьшения этого эффекта вводятся марганец и кремний.

Влияние химсостава газосварочного пламени на окислительно-восстановительные реакции

Состав газосварочного пламени оказывает огромное влияние на химические и физические процессы, происходящие в расплаве при проведении газосваривания. В составе нормального ацетиленокислородного пламени в средней его части, имеющей восстановительную среду, содержится 60% оксида двухвалентного углерода и по 20% молекулярного и атомарного водорода. Основным восстановителем железа является водород в атомарном состоянии. Образуемые при газосварке окислы кремния и марганца не проникают в жидкий металл, а всплывают на его поверхности, превращаясь в шлак. В жидком расплаве содержится большое количество разных оксидов, которые взаимодействуют между собой. Результатом таких взаимодействий является формирование химических соединений с низкой температурой плавки, что позволяет значительно легче удалить окислы из состава расплава газосварочной ванны. Окислы удаляются в виде разных шлаков.

При проведении газосваривания латуни, меди или алюминия в зону сваривания вводятся разные добавки. Раскисление проводится углеродом, оксидом двухвалентного углерода и водородом. При проведении сварки пламя обеспечивает восстановление металла и защиту расплава от кислорода и азота атмосферы.

Читайте также: