Максимальный зазор для сварки

Обновлено: 24.01.2025

Диаметр электрода от толщины металла (листа или детали), сила тока сварки от диаметра электрода. Режимы - выбор режима ручной дуговой сварки. Траектории движения электрода. Схема, скорость сварки, влияние наклона электрода, силы сварочного тока , кромок, положение сварочной ванны.

  • Режимы дуговой сварки представляют собой совокупность контролируемых параметров, определяющих условия сварочного процесса. Правильно выбранные и поддерживаемые на протяжении всего процесса сварки параметры являются залогом качественного сварного соединения. Условно параметры можно разделить на основные и дополнительные.
  • Основные параметры режима дуговой сварки: диаметр электрода, величина, род и полярность тока, напряжение на дуге, скорость сварки, число проходов.
  • Дополнительные параметры: величина вылета электрода, состав и толщина покрытия электрода, положение электрода, положение изделия при сварке, форма подготовленных кромок и качество их зачистки.
  • Выбор диаметра электрода
  • Диаметр электрода выбирают в зависимости от толщины свариваемого металла, положения, в котором выполняется сварка, катета шва, а также вида соединения и формы кромок, подготовленных под сварку. Для того чтобы правильно выбрать диаметр электрода, можно воспользоваться таблицей 1:

Таблица 1. Примерное соотношение диаметра электрода и толщины свариваемых деталей

  • Однако такое соотношение является примерным, так как на этот фактор накладывает отпечаток размещение шва в пространстве и количество сварочных проходов. К примеру, при потолочном положении шва не рекомендуют применять электроды с диаметром более 4 м. Не пользуются электродами больших диаметров и при многопроходной сварке, так как это может привести к непровару корня шва.
  • Сила тока выбирается в зависимости от диаметра шва длины его рабочей части, состава покрытия, положения сварки и т.д. Чем больше сила тока, тем интенсивнее расплавляется его рабочая часть и тем выше производительность сварки. Но это правило может приниматься с некоторыми оговорками. При чрезмерном токе для выбранного диаметра электрода происходит перегрев рабочей части, что чревато ухудшением качества шва, разбрызгиванием капель жидкого металла и даже может привести к сквозным прогораниям деталей. При недостаточной силе тока дуга будет неустойчива, часто будет обрываться, что может привести к непроварам, не говоря уже о качестве шва. Чем больше диаметр электрода, тем меньше допустимая плотность тока, так как ухудшаются условия охлаждения сварочного шва.
  • Опытные сварщики силу тока определяют экспериментальным путем, ориентируясь на устойчивость горения дуги. Для тех, кто еще не имеет достаточного опыта, разработаны следующие расчетные формулы: Для наиболее распространенных диметров электрода (3 -6 мм):
    • Iсв = (20 + 6dэ )dэ
    • где Iсв — сила тока в А, dэ - диаметр электрода в мм
    • Icв = 30dэ
    • Для сварки потолочных швов сила тока должна быть на 10 - 20% меньше, чем при нижнем положении шва.
    • Кроме того, на силу тока оказывает влияние полярность и вид тока. К примеру, при сварке постоянным током с обратной полярностью катод и анод меняются местами и глубина провара увеличивается до 40%. Глубина провара при сварке переменным током на 15 - 20% меньше, чем при сварке постоянным током. Эти обстоятельства следует учитывать при выборе режимов сварки.

    Выбор режима дуговой сварки

    • При выборе режимов сварки следует учитывать и наличие скоса свариваемых кромок. Все эти обстоятельства учтены и сведены в таблицах 2 и 3. Особенности горения сварочной дуги на постоянном и переменном токе различны. Дуга, представляющая собой газовый проводник, может отклоняться под воздействием магнитных полей, создаваемых в зоне сварки. Процесс отклонения сварочной дуги под действием магнитных полей называют магнитным дутьем, которое затрудняет сварку и стабилизацию горения дуги.

    Таблица 2. Режим сварки стыковых соединений без скоса кромок

    Характер шва Диаметр электрода, мм Ток, А Толшина металла, мм Зазор, мм
    Односторонний 3 180 3 1,0
    Двухсторонний 4 220 5 1,5
    Двухсторонний 5 260 7-8 1,5-2,0
    Двухсторонний б 330 10 2,0

    Примечание: максимальное значение тока должно уточняться по паспорту электродов.

    Таблица 3. Режимы сварки стыковых соединений со скосом кромок

    Диаметр электрода, мм Ток, А Толщина металла, мм Зазор, мм Число слоев креме подваренного и декоративного
    Первого Последующего
    4 5 180-260 10 . 1,5 2
    4 5 180-260 12 2,0 3
    4 5 180-260 14 2,5 4
    4 5 180-260 16 3,0 5
    5 6 220-320 18 3,5 6

    Примечание: значение величины тока уточняется по паспортным данным электрода.

    Особенно ярко выражено магнитное дутье при сварке на источнике постоянного тока. Магнитное дутье ухудшает стабилизацию горения дуги и затрудняет процесс сварки. Для уменьшения влияния магнитного дутья применяют меры защиты, к которым относят: сварку на короткой дуге, наклон электрода в сторону действия магнитного дутья, подвод сварочного тока к точке, максимально близкой к дуге и т.д. Если полностью избавиться от действия магнитного дутья не удается, то меняют источник питания на переменный, при котором влияние магнитного дутья заметно снижается. Малоуглеродистые и низколегированные стали обычно варят на переменном токе.

    Техника ручной дуговой сварки

    Траектория движения электрода

    • Правильное поддержание дуги и ее перемещение является залогом качественной сварки. Слишком длинная дуга способствует окислению и азотированию расплавленного металла, разбрызгивает его капли и создает пористую структуру шва. Красивый, ровный и качественный шов получается при правильном выборе дуги и равномерном ее перемещении, которое может происходить в трех основных направлениях.
    • Поступательное движение сварочной дуги происходит по оси электрода. При помощи этого движения поддерживается необходимая длина дуги, которая зависит от скорости плавления электрода. По мере плавления электрода, его длина уменьшается, а расстояние между электродом и сварочной ванной - увеличивается. Для того чтобы это не происходило, электрод следует продвинуть вдоль оси, поддерживая постоянную дугу. Очень важно при этом поддерживать синхронность. То есть, электрод продвигается в сторону сварочной ванны синхронно с его укорочением.
    • Продольное перемещение электрода вдоль оси свариваемого шва формирует так называемый ниточный сварочный валик, толщина которого зависит от толщины электрода и скорости его перемещения. Обычно ширина ниточного сварочного валика бывает на 2 — 3 мм больше диаметра электрода. Собственно говоря, это уже есть сварочный шов, только узкий. Для прочного сварочного соединения этого шва бывает недостаточно. И поэтому по мере перемещения электрода вдоль оси сварочного шва выполняют третье движение, направленное поперек сварочного шва.
    • Поперечное движение электрода позволяет получить необходимую ширину шва. Его совершают колебательными движениями возвратно-поступательного характера. Ширина поперечных колебаний электрода определяется в каждом случае индивидуально и во многом зависит от свойств свариваемых материалов, размера и положения шва, формы разделки и требований, предъявляемых к сварному соединению. Обычно ширина шва лежит в пределах 1,5 — 5,0 диаметров электрода.
    • Таким образом все три движения накладываются друг на друга, создавая сложную траекторию перемещения электрода. Практически каждый опытный мастер имеет свои навыки в выборе траектории перемещения электрода, выписывая его концом замысловатые фигуры. Классические траектории движения электрода при ручной дуговой сварке приведены на рис. 1. Но в любом случае траекторию перемещения дуги следует выбирать таким образом, чтобы кромки свариваемых деталей проплавлялись с образованием требуемого количества наплавленного металла и заданной формы шва.
    • Если шов не будет закончен до того, как длина электрода уменьшится настолько, что требуется его замена, то сварку на время прекращают. После замены электрода следует удалить шлак и возобновить сварку. Для завершения оборванного шва зажигают дугу на расстоянии 12 мм от углубления, образовавшегося на конце шва, называемого кратером. Электрод возвращают к кратеру, чтобы образовать сплав старого и нового электродов, а затем снова начинают перемещать электрод по первоначально выбранной траектории.

    Схема дуговой сварки

    • Порядок заполнения шва по сечению и длине определяет способность сварного соединения воспринимать заданные нагрузки, влияет на величину внутренних напряжений и деформаций в массиве шва.
    • Швы различают: короткие — длина которых не превышает 300 мм, средние — длиной 300 — 100 мм и длинные — свыше 1000 мм. В зависимости от длины шва его заполнение может выполняться по различным схемам сварочного заполнения, которые представлены на рис. 2.
    • При этом короткие швы заполняют за один проход — от начала шва до его конца. Швы средней длины могут заполняться обратноступенчатым методом или от середины к концам. Для выполнения обратноступенчатого метода заполнения шов разбивают на участки длина которых равна 100 —300 мм. На каждом из этих участков заполнение шва выполняют в направлении, обратном общему направлению сварки.
    • Если для нормального заполнения шва одного прохода сварочной дуги мало, накладывают многослойные швы. При этом, если число накладываемых слоев равно числу проходов, шов называют многослойным. Если же некоторые слои выполняют за несколько проходов, такие швы называют многослойно-проходными. Схематически такие швы отражены на рис. 3.
    • С точки зрения производительности труда наиболее целесообразными являются однопроходные швы, которым отдают предпочтение при сварке металлов небольших (до 8—10 мм) толщин с предварительной разделкой кромок.
    • Но для ответственных конструкций (сосуды, работающие под давлением, несущие конструкции и т.д.) этого бывает мало. Внутренние напряжения, возникающие в процессе сварки, могут вызвать появление трещин в шве или в околошовной зоне из-за недостаточной пластичности шва и большой жесткости основного металла. При сварке изделий с относительно небольшой жесткостью внутренние напряжения вызывают местное или общее коробление (деформации) свариваемой конструкции. Кроме того, при сварке металлов толщиной более 10 мм. появляются объемные напряжения и возрастает опасность появления трещин. В таких случаях принимают целый ряд мер, позволяющих уменьшить напряжения и деформации: применяют сварные швы минимального сечения, сварку многослойными швами, наложение швов «каскадными методами» или «горкой», принудительное охлаждение или подогрев.
    • При сварке «горкой» сначала у основания разделанных кромок прокладывают первый слой, длина которого должна быть не более 200 — 300 мм. После этого первый слой перекрывают вторым, длина которого на 200 — 300 мм больше первого. Точно так же накладывают третий слой, перекрывая второй на 200 — 300 мм. Таким образом продолжают заполнение до тех пор, пока количество слоев в зоне первого шва не окажется достаточным для заполнения. Следующий слой накладывают в месте окончания первого слоя, перекрывая последний (если позволяет длина шва) на те же 200 — 300 мм. Если первый шов прокладывался не в начале шва, а в его средней части, то горку формируют последовательно в обоих направлениях (рис.2,е). Так, формируя горку, последовательно заполняют весь шов. Преимущество данного метода состоит в том, что зона сварки все время находится в подогретом состоянии, что способствует улучшению физико-механических качеств шва, так как внутренние напряжения получаются минимальными и предупреждается появление трещин.
    • «Каскадный метод» заполнения шва по существу является той же «горкой», но выполняют его в несколько другой последовательности. Для этого детали соединяют между собой «на прихватках» или в специальных приспособлениях. Прокладывают первый слой, а затем, отступив от первого слоя на расстояние 200 — 300 мм, прокладывают второй слой, захватывая зону первого (рис.2,д). Продолжая в той же последовательности, заполняют весь шов.
    • Угловые швы (рис. 4) можно выполнять двумя методами, каждый из которых имеет свои преимущества и свои недостатки. При сварке «в угол» допускается больший зазор между деталями (до 3 мм), проще сборка, но техника сварки сложнее. Кроме того, возможны подрезы и наплывы, снижается производительность из-за необходимости за один проход сваривать швы небольшого сечения, катет которых меньше 8 мм. Сварка «в лодочку» допускает большие катеты шва за один проход и поэтому более производительна. Однако такая сварка требует тщательной сборки.
    • Указанные приемы дуговой сварки рассматривались на нижних положениях шва, выполнение которых наименее трудоемко. На практике часто приходится выполнять горизонтальные швы на вертикальной плоскости, вертикальную и потолочную сварку. Для выполнения этих работ используются те же приемы, что и для швов с нижним положением, но трудоемкость работ и некоторые технологические особенности требуют более детального подхода и изменения некоторых методов.
    • При сварке таких швов появляется вероятность вытекания расплавленного металла, что приводит к падению капель к незаполненным сваркой местам, потекам расплавленного металла по горизонтальным плоскостям и т.д
    • Рассматривая суть процессов, происходящих в подобных швах, мы говорили, что удерживать металл в расплавленной ванне могут силы поверхностного натяжения. Для того чтобы эти силы были достаточными, сварщик должен владеть приемами сварки виртуозно. Здесь приходится понижать сварочный ток и применять электроды пониженного сечения. Это в конечном итоге сказывается на производительности, так как приходится увеличивать количество сварочных проходов. Поэтому на практике стараются в дополнение к силам поверхностного натяжения добавить «пленку поверхностного натяжения». Суть данного метода заключается в том, что дугу держат не постоянно, а с определенными промежутками, то есть импульсами.
    • Для этого дугу постоянно прерывают, зажигая ее с определенными промежутками времени, давая возможность расплавленному металлу частично закристаллизоваться. Именно здесь и проявляется умение сварщика выбрать такие интервалы, когда не успевает образоваться сварочный катет и одновременно металл потерял бы часть своей текучести.
    • Потолочный шов является самым сложным. Поэтому проводить его непрерывным горением дуги - дело бесперспективное. Сварку выполняют короткими во времени замыканиями дуги на сварочную ванну так, чтобы она не успела остыть, пополняя ее новыми порциями расплавленного металла.
    • При сварке данным методом следует следить за размером дуги, так как ее удлинение может вызвать нежелательные подрезы. Кроме того, при сварке таких швов создаются неблагоприятные условия для выделения шлаков из расплавленного металла, что может привести к пористости сварного шва.
    • Вертикальные швы можно варить в двух направлениях - снизу вверх и сверху вниз. И тот и другой метод имеет право на существование, но всегда предпочтительнее сварка на подъем. В этом случае расположенный снизу металл удерживает сварочную ванну, не давая ей растекаться.
    • При сварке на спуск труднее удерживать сварочную ванну, и поэтому добиться качественного шва гораздо сложнее. Суть такого метода практически не отличается от потолочной сварки, и применяют его тогда, когда сварка на подъем технологически невозможна.
    • Горизонтальные швы на вертикальной плоскости тоже имеют свои особенности. В данных швах особую сложность представляет удержание сварочной ванны у обеих кромок свариваемых деталей. Для того чтобы облегчить этот процесс, скос нижней кромки не выполняют. В таком случае получается полочка, которая способствует удержанию на месте расплавленной сварочной ванны. Уместен здесь и прием импульсной сварки с кратковременным зажиганием дуги, как и для потолочных швов.
    • Удаление сварочных шлаков выполняют обрубочным молотком. Для этого, подождав, пока заготовка остынет настолько, что ее можно брать рукой, прижимают крепко к столу и ударами молотка, направленными вдоль шва, удаляют шлак, покрывающий сварочный шов. После этого шов проковывают для снятия внутренних напряжений. Для этого боек молотка разворачивают вдоль шва и выполняют проковку по всей его длине.Завершают очистку жесткой проволочной щеткой, перемещая ее резкими движениями сначала вдоль шва, а потом - поперек, чтобы удалить последние остатки шлака.

    Дополнительная информация от Инженерного cправочника DPVA, а именно - другие подразделы данного раздела:

    Режимы ручной дуговой сварки

    Режимы дуговой сварки представляют собой совокупность контролируемых параметров, определяющих условия сварочного процесса. Правильно выбранные и поддерживаемые на протяжении всего процесса сварки параметры являются залогом качественного сварного соединения. Условно параметры можно разделить на основные и дополнительные.

    Основные параметры режима дуговой сварки: диаметр электрода, величина, род и полярность тока, напряжение на дуге, скорость сварки, число проходов.

    Дополнительные параметры: величина вылета электрода, состав и толщина покрытия электрода, положение электрода, положение изделия при сварке, форма подготовленных кромок и качество их зачистки.
    Выбор диаметра электрода

    Диаметр электрода выбирают в зависимости от толщины свариваемого металла, положения, в котором выполняется сварка, катета шва, а также вида соединения и формы кромок, подготовленных под сварку. Для того чтобы правильно выбрать диаметр электрода, можно воспользоваться таблицей 1.

    Таблица 1. Примерное соотношение диаметра электрода и толщины свариваемых деталей

    Толщина свариваемых деталей, мм 1-2 3-5 4-1С 12-24 30-60
    Диаметр этектрода, мм 2-3 3-4 4-5 5-6 6-8

    Однако такое соотношение является примерным, так как на этот фактор накладывает отпечаток размещение шва в пространстве и количество сварочных проходов. К примеру, при потолочном положении шва не рекомендуют применять электроды с диаметром более 4 м. Не пользуются электродами больших диаметров и при многопроходной сварке, так как это может привести к непровару корня шва.

    Сила тока выбирается в зависимости от диаметра шва длины его рабочей части, состава покрытия, положения сварки и т.д. Чем больше сила тока, тем интенсивнее расплавляется его рабочая часть и тем выше производительность сварки. Но это правило может приниматься с некоторыми оговорками. При чрезмерном токе для выбранного диаметра электрода происходит перегрев рабочей части, что чревато ухудшением качества шва, разбрызгиванием капель жидкого металла и даже может привести к сквозным прогораниям деталей. При недостаточной силе тока дуга будет неустойчива, часто будет обрываться, что может привести к непроварам, не говоря уже о качестве шва. Чем больше диаметр электрода, тем меньше допустимая плотность тока, так как ухудшаются условия охлаждения сварочного шва.

    Опытные сварщики силу тока определяют экспериментальным путем, ориентируясь на устойчивость горения дуги. Для тех, кто еще не имеет достаточного опыта, разработаны следующие расчетные формулы: Для наиболее распространенных диметров электрода (3 -6 мм)

    I = (20 + 6dэ )dэ

    где Iсв — сила тока.

    Для электродов диаметром менее 3 мм ток подбирают по формуле:

    Icв = 30dэ

    Для сварки потолочных швов сила тока должна быть на 10 - 20% меньше, чем при нижнем положении шва.

    Кроме того, на силу тока оказывает полярность и вид тока. К примеру, при сварке постоянным током с обратной полярностью катод и анод меняются местами и глубина провара увеличивается до 40%. Глубина провара при сварке переменным током на 15 - 20% меньше, чем при сварке постоянным током. Эти обстоятельства следует учитывать при выборе режимов сварки.

    Выбор режима дуговой сварки

    При выборе режимов сварки следует учитывать и наличие скоса свариваемых кромок. Все эти обстоятельства учтены и сведены в таблицах 2 и 3. Особенности горения сварочной дуги на постоянном и переменном токе различны. Дуга, представляющая собой газовый проводник, может отклоняться под воздействием магнитных полей, создаваемых в зоне сварки. Процесс отклонения сварочной дуги под действием магнитных полей называют магнитным дутьем, которое затрудняет сварку и стабилизацию горения дуги.

    Характер шва Диаметр электрода, мм Ток, А Толшина металла, мм Зазор, мм
    Односторонний 3 180 3 1,0
    Двухсторонний 4 220 5 1,5
    Двухсторонний 5 260 7-8 1,5-2,0
    Двухсторонний б 330 10 2,0

    Примечание : максимальное значение тока должно уточняться по паспорту электродов.

    Таблица 3. Режимы сварки стыковых соединений со скосом кромок

    Диаметр электрода, мм Ток, А Толщина металла, мм Зазор, мм Число слоев креме подваренного и декоративного
    Первого Последующего
    4 5 180-260 10 . 1,5 2
    4 5 180-260 12 2,0 3
    4 5 180-260 14 2,5 4
    4 5 180-260 16 3,0 5
    5 6 220-320 18 3,5 6

    Примечание : значение величины тока уточняется по паспортным данным электрода.

    Какой нужен зазор при сварке труб

    Сварка магистральных газовых нефтепроводных труб, водоснабжение, теплоснабжение. В любом из перечисленных случаях требуется герметичность и прочность к внутреннему давлению. Особое внимание уделяют сварным швам. Соблюдают определенную технологию сварки. Часто приходится варить не поворотные стыки. В ответственных местах технология сварки труб под просвет. Другими словами рентгеноскопия способна выявлять любой человеческий фактор. Внутренней части трубы невозможно увидеть шов и его качество визуально. На примере как проварена внутренняя часть трубы в разрезе покажу на фото и расскажу.

    Шов изнутри трубы

    • Под цифрой 1 идет прожиг. Сплавление кромок при коренном шве должно быть не больше 30% процентов. Это нормальное явление с разделкой кромок.
    • Цифра 2 прихватка трубы по периметру стыка. Не допускает деформацию в процессе сварки. Желательно её сточить снаружи потоньше. Для лучшего перехода шва
    • Сам переход обозначен 3 . Наблюдаем сужения корня шва в этом месте. Именно такие места могут быть слабыми, не удовлетворять рентгеноскопию.
    • Коренной шов под цифрой 4 . Выполнен при широком зазоре стыка. Катет шва выходит наружу достаточно много.

    Если варить маленький диаметр труб то с высоким катетом шва внутри произойдет рано или поздно засор в этом месте. Трубы с большим диаметром больше 900 мм допускается делать коренной шов изнутри. Расчет сварки труб предусматривает минимальный катет шва по внутренней части. Обеспечивает гладкий проход различных газов смесей, жидкостей. Я сделал выписку из ГОСТ 16037-80 по стыкам которые требуют внимание. Они выполняются различными видами сварки. Выбрал дуговую ручную сварку ММА , полуавтоматическую в защитном газе MIG/MAG, аргоновую с не плавящимся электродом вольфрам.

    Зозоры между труб при сварке

    В стыковых соединениях везде присутствует допуск в отклонении номинала от -1 мм до +2мм. Это относится к трубам большого диаметра.

    В технологии сварки труб малого диаметра с толщиной стенок до 4 мм можно сваривать без разделки кромок с зазором до 2 мм с двумя прихватками. Электрод по толщине равнозначных стенок. Ток подбирать лучше на куске такой же трубы. Прорезать болгаркой несколько зазоров в ряд. Каждый проваривать на разном токе в одном положении. Потом разрезать и посмотреть качество шва. Визуально должно быть хорошее проваривание кромок с небольшим катетом по высоте примерно 1мм максимум или заподлицо с внутренними стенками. Дальше варим именно на таком токе. Не допускается перегревание основного металла в зоне термического влияния. Даже хороший сваренный шов на испытании выдержит но вдоль ЗТВ произойдет разрыв металла. Хороший шов правильный подобранный режим сварки даст хороший результат. Разрыв произойдет в другом месте. На фотографии я указал места разрыва стрелкой.

    Испытание шва сварочного

    Здесь использовалось два вида электрода с рутиловым покрытием на корень шва и основным на облицовочный. У облицовочного шва кромки перекрывают с обеих сторон коренной по 3 мм. Особенность рутиловых электродов заключается в глубине проплвления сварочной ванны. С основным покрытием дают возможность работать на малом токе. При этом сохраняется пластичность и маленькая глубина смешивания металлов по шву. С помощью облицовочного шва перекрывается зона термического влияния. Исключает образования подрезов которые приводят к отправной точке разрыва. Достаточно маленького послабление и изменение структуры которая приведет к разрушению.

    Когда варят трубы большого диаметра задействую трех сварщиков. Трубы подготавливают согласно нормативной документации. Кромки срезают на нужную глубину и угол. Две части труб центрируют изнутри или снаружи. Длину стыка делят на равные три части. Напоминает в разрезе равносторонний треугольник. Корень шва начинают проваривать одновременно в одном направлении. В обязательном порядке после смены электрода последующий наложенный шов делают замок. Согласно документации где прописывают его длину. Не допускается перегрев свыше 450 градусов в ЗТВ. При соблюдении всех норм получится хороший шов на просвет.

    Иногда подрядчики не выполняю требований документации и предоставляют сварщикам другие электроды и оборудования. В таких случаях приходится опираться на знания сварочного дела и умело применять его в деле. Спрос будет со сварщиков именно по качеству.

    Сборка под сварку

    Нормируемые параметры сборки деталей под сварку

    • Смещение кромок (Линейное смещение стыковых соединений);
    • Зазор;
    • Отклонение от прямолинейности (Угловое смещение);
    • Требования к прихваткам (количество, длина, высота, место установки);
    • Смещение продольных швов смежных сварных труб;
    • Требования к приспособлениям, установке и снятию технологических креплений.

    Линейное смещение кромок

    Линейным смещением свариваемых кромок соединяемых листов или труб называют смещение между двумя свариваемыми элементами, у которых поверхности параллельны, но расположены не в одной плоскости.

    Смещение кромок при сборке

    Смещение кромок

    Допускаемое смещение кромок устанавливается нормативными документами (ПБ,ОСТ, СТО, РД).

    Важно! Большое смещение кромок может привести к непровару в корне сварного шва.

    Зазор

    Необходим для проплавления корня шва и формирования обратного валика.

    Устанавливается стандартом на конструктивные элементы сварных соединений для различных способов сварки или отраслевыми нормативно техническими документами (ГОСТ, СТО, РД).

    Важно! При заниженном зазоре возможен непровар, при завышенном прожог.

    Угловое смещение (перелом)

    Угловым смещением листов (труб) — называют смещение между двумя свариваемыми элементами, поверхности которых не параллельны и не находятся под заданным углом.

    Допускаемое угловое смещение (отклонение от прямолинейности трубопроводов) устанавливается нормативными документами (ПБ, ОСТ, СТО, РД)

    Угловое смещение труб, как правило, измеряют на расстоянии 200 мм. от стыка прикладыванием линейки длиной не менее 400 мм и измерением зазора.

    Требование к прихваткам

    Прихватки должны обеспечивать жесткость конструкции в процессе сварки за счет:

    • количества;
    • размеров (длины, высоты);
    • равномерности расположения по длине шва.

    Сборка на прихватках

    Расположение прихваток при сборке

    Прихватки не должны снижать качество сварного шва, поэтому:

    • должны выполняться аттестованными сварщиками;
    • должны располагаться на свариваемых кромках ( за исключением мест пересечения сварных швов);
    • должны выполняться теми же сварочными материалами, что и корневой слой шва;
    • должны зачищаться (или удаляться) для обеспечения формирования корневого слоя;
    • не должны иметь дефектов. При появлении дефектов в прихватке (пор, трещин) необходимо работы приостановить до выяснения причин;

    При недостаточной длине прихваток возможно их разрушение, при завышенной их длине будет большая поперечная усадка и уменьшение требуемого зазора, что приведет к непровару.

    Смещение продольных швов сварных труб

    Необходимо для исключения концентратора напряжений в месте перекрестия продольных и кольцевых швов.

    Для магистральных и промысловых газопроводов смещение преграждает лавинообразное разрушение по сварному шву на переходе с одной трубы на другую.

    Требования к сборке технологических трубопроводов

    Смещение кромок по наружному диаметру разнотолщинных труб не должно превышать 30% от толщины тонкостенного элемента, но не более 5 мм.

    Смещение кромок по внутреннему диаметру не должно превышать значений:

    • 0,10 S, но не более 1мм — для трубопроводов Рy свыше 10 МПа (100 кгс/см2) и трубопроводов I категории, работающих при температуре ниже — 70°C ;
    • 0,15 S,но не более 1мм — для трубопроводов II — V категорий.

    Если смещение кромок превышает допустимое значение, то плавный переход в месте стыка должен быть обеспечен путем проточки конца трубы под углом не более 15°.

    Для трубопроводов с Ру до 10 МПа (100 кгс/см2) допускается калибровка концов труб методом цилиндрической или конической раздачи.

    Условное смещение. Отклонение от прямолинейности, замеренное линейкой длиной 400 мм в трех равномерно расположенных по периметру местах на расстоянии 200 мм от стыка, не должно превышать: 1,5 мм — для трубопроводов Рy свыше 10 МПа (100 кгс/см2) и трубопроводов I категории; 2,5 мм — для трубопроводов II — V категорий.

    Требования к прихваткам. Количество прихваток для трубопроводов диаметром до 100мм-2шт.; 100-600мм.-3-4шт.; свыше 600мм.-через каждые 300-400мм.

    Длина прихватки для трубопроводов диаметром до 600мм. 2,0 — 2,5 толщины стенки, но не менее 15 и не более 60мм. Свыше 600 мм.-50-70мм.

    Высота прихватки для трубопроводов диаметром до 600мм. 0,4 — 0,5 толщины стенки при толщине стенки до 10 мм и 5 мм при толщине стенки от 10 мм и выше. Свыше 600 мм. 4-5мм.

    Требования к приспособлениям и технологическим креплениям

    Сборка осуществляется с помощью центраторов или привариваемых на расстоянии 50 — 70 мм. от торца труб временных технологических креплений. Технологические крепления изготовливаются из стали того же класса, что и свариваемые трубы. Для закаливающихся теплоустойчивых сталей технологические крепления могут быть изготовлены из углеродистых сталей.

    При сборке стыков из аустенитных сталей с толщиной стенки трубы менее 8 мм, к сварным соединениям которых предъявляются требования стойкости к межкристаллитной коррозии, приварка технологических креплений не допускается.

    Требования к смещению продольных швов

    При сборке труб и других элементов с продольными швами последние должны быть смещены относительно друг друга. Смещение должно быть не менее трехкратной толщины стенки свариваемых труб (элементов), но не менее 100 мм. При сборке труб и других элементов с условным диаметром 100 мм и менее продольные швы должны быть смещены относительно друг друга на величину, равную 1/4 окружности трубы (элемента).

    Требования к сборке трубопроводов газового оборудования

    Смещение кромок. Допускаемое смещение кромок свариваемых труб не должно превышать величины 0,15S + 0,5 мм, где S — наименьшая из толщин стенок свариваемых труб.

    Сварка стыков разнотолщинных труб или труб с соединительными деталями и патрубками арматуры допускается без специальной обработки кромок при толщине стенок менее 12,5 мм (если разность толщин не превышает 2,0 мм).

    на надземных и внутренних газопроводах низкого давления допускается производить нахлесточные соединения «труба в трубу» размеров d 50×40, 40×32, 32×25, 25×20 мм.при условии:

    — просвет между трубами, соединяемыми внахлест, не более 1—2 мм и равновелик по периметру;

    — величина нахлеста по длине соединяемых труб не менее 3 см;

    — на конце трубы меньшего диаметра выполняется фаска вовнутрь под углом не менее 45° на всю толщину стенки трубы;

    Требования к смещению продольных швов

    Сборку под сварку труб с односторонним продольным или спиральным швом производят со смещением швов в местах стыковки труб не менее чем на:

    15 мм — для труб диаметром до 50 мм; 50 мм —от 50 до 100 мм; 100 мм диаметром св. 100 мм.

    При сборке под сварку труб, у которых швы сварены с двух сторон, допускается не производить смещение швов при условии проверки места пересечения швов физическими методами.

    Требования к сборке трубопроводов котельного оборудования

    Требования к прихваткам

    Прихваточные швы должны быть равномерно расположены по периметру стыка. Не рекомендуется накладывать прихватки на потолочный участок стыка.

    В стыках, собираемых без подкладных колец, число прихваток и их протяженность зависят от диаметра труб и должны соответствовать следующим нормам:

    Сварка полуавтоматом в среде углекислого газа для начинающих


    Основной особенностью сварки в среде СО2 является вытеснение воздуха при сваривании частей. Это позволяет добиться высокого качества шва. Необходимо учитывать, что железо и углерод, находящиеся в составе заготовок, вступая в химическую реакцию с СО2, окисляются. Для предотвращения окисления следует использовать специализированную проволоку, имеющую в своем составе большое количество кремния и марганца.



    Технология накладывания сварного шва в углекислоте

    Еще одной особенностью полуавтоматической сварки в газовой среде является возможность применения как прямой, так и обратной полярности. Использование обратной полярности прямого тока отлично подходит для начинающих сварщиков. Такой метод дает возможность легко удерживать дугу. Прямая полярность применяется при необходимости наплавления металла.

    Сварка полуавтоматом возможна в различных режимах. Настройку аппарата необходимо производить исходя из толщины металла свариваемых деталей и диаметра проволоки. При повышении сварочного тока увеличивается глубина провара. Так, чем больше толщина металлических частей, тем большую силу тока необходимо установить в настройках.

    Подготовка металла к сварке в среде углекислого газа

    Зачистка металла перед сваркой

    Листы из углеродистой или низколегированной стали хорошо свариваются в углекисло-газовой среде. При толщине листов от 0.6 до 1.0 мм рекомендуется проводить отбортовку кромок. Если отбортовка не выполняется, тогда зазор между подлежащими сварке кромками не должен быть более 0.3-0.5 мм.

    При толщине листов от 1 до 8 мм кромки можно не разделывать. Максимальный зазор, который можно при этом допускать — не более 1.0 мм. Для листов толщиной от 8 до 12 мм принято делать V-образную разделку, а при толщине более 12 мм — Х-образную разделку.

    До начала сварочного процесса необходимо зачистить на кромке краску, окалину, масло, грязь, или другие загрязнения. Это можно сделать вручную, либо с использованием пескоструйной обработки.

    Характеристики сварки в углекислом газе

    Газ, применяемый для сваривания полуавтоматом, имеет более высокую плотность, чем воздух. Благодаря этому он вытесняет воздушную массу из сварочной ванны. Он бесцветен и не имеет запаха. К аппарату СО2 подается из баллона, в котором он находится в жидком состоянии под давлением. Подключение баллона осуществляется через специализированный редуктор. Он поддерживает требуемое давление в системе.

    Спаивание в среде СО2 можно выполнять на двух видах оборудования:

    • Выпрямитель. Полуавтоматический аппарат, применяется для дугового сваривания различных заготовок, в том числе и из нержавеющей стали.
    • Инвертор. Является преобразователем переменного тока в постоянный. Преобразованный ток используется для создания дуги.

    Управляемый и неуправляемый выпрямители

    Электродом при выполнении полуавтоматической сварки в среде углекислого газа является специализированная проволока. В зависимости от толщины деталей, диаметр и состав проволоки может отличаться.

    Какие особенности у этого метода

    Уникальность метода в том, что сварка полуавтоматом в среде углекислоты работает на обратной полярности постоянного тока, а это значит, что удержание дуги становится проще. Новичкам будет легче освоить этот способ. Если использовать прямую полярность, то такой шаг приведет к обильному распылению металлических частиц и удержание дуги будет проблематично. Но при многослойных швах, где необходимо сделать дополнительную наплавку, нужно применить прямую полярность, так как эффективность возрастает в два раза.

    При выставлении режимов сварки, необходимо обратить внимание на несколько факторов. Напряжение дуги прямо пропорционально диаметру проволоки и толщине свариваемого металла. Чем толще деталь, тем больше требуется диаметр прутка, а следовательно, и увеличение напряжения дуги, чтобы этот металл расплавить. Скорость подачи проволоки тоже будет увеличиваться, этот параметр нужно настроить, отталкиваясь от горения сварочной дуги.

    Характеристики углекислого газа для полуавтоматического режима

    Углекислота не имеет ни запаха, ни цвета, ни вкуса. Она не является опасной для здоровья мастера, если ее применять в количествах, необходимых для сварки. Также она тяжелее воздуха, что способствует его вытеснению из сварочной ванны.

    Под высоким давлением в разжиженном состоянии его пакуют в баллоны по 10,20 и 40 литров. Чтобы удалить излишнюю влагу, рекомендуется баллон перевернуть в вертикальное положение на некоторое время. После этого газ готов для сварочных работ. В аппаратах предусмотрен контроль для подачи углекислоты. Перед покупкой поинтересуйтесь у продавца о возможности дозаправки газа.

    Для сварочных работ в среде углекислого газа предусмотрены два вида оборудования:

    • выпрямители, где ток инвертируется из переменного в постоянный. Такие полуавтоматы используются для любых видов дуговой сварки с помощью разнообразных электродов. Доступно соединение различных металлов, за исключением алюминия;
    • инверторы. Работают от источника в 220В, они способны преобразовывать переменный ток (на входе) в постоянный, для лучшего удержания дуги.

    Подготовительные работы

    Для того чтобы получить качественный шов, необходимо подготовить заготовки и настроить оборудование. Спаиваемые части следует предварительно очистить от ржавчины, окислений, лакокрасочных покрытий и т. д.



    Настройка оборудования перед работой

    Окислы и посторонние примеси могут привести к разбрызгиванию электрода и нарушению качества сварного шва. Для очистки используется наждачная бумага, абразивный камень или пескоструйная обработка. При сваривании тонких листов следует предварительно отбортовать кромки заготовок.

    Помимо подготовки деталей перед началом сварки полуавтоматом в среде СО2, необходимо настроить оборудование. Все составляющие подключаются в строгом соответствии с определенной схемой. Для нормальной работы устройства нужно исключить утечку вещества из системы.

    После включения полуавтомата в электрическую сеть осуществляется его настройка. В зависимости от толщины металла устанавливается сила тока. При выборе скорости подачи электрода нужно опираться на скорость горения сварочной дуги.

    Перед началом работы нужно изучить правила техники безопасности во время выполнения сварочных работ полуавтоматическим сварочным аппаратом в среде углекислого газа. Во время работы используются специализированные средства индивидуальной защиты.

    ВНИМАНИЕ: Пренебрежение правилами безопасности может привести к различного рода травмам, ожогам или поражению электричеством!

    Технология и методы выполнения работ

    После подготовки деталей и правильной настройки оборудования можно приступать к выполнению сварочных работ. При спаивании в среде углекислого газа начальный шов лучше осуществлять при небольшой силе тока. Таким образом удастся избежать деформации спаиваемых заготовок и вероятности возникновения трещин. Подача электрода, независимо от полярности, осуществляется двумя способами:

    • Углом вперед. С использованием такого метода глубина провара будет небольшой, а шов — широким;
    • Углом назад. Применяя такой метод, сварщику удается добиться большой глубины провара при малой ширине шва.

    Как правильно варить полуавтоматом в углекислоте


    Как правильно варить полуавтоматом в углекислоте

    По окончании работ сварочная ванна заполняется металлом из проволоки. После того как шов положен, подача проволоки прекращается. Электричество, подаваемое на электрод, следует отключить. Углекислоту, в отличие от напряжения, нужно подавать до полного затвердевания шва. Это дает возможность защитить металл, находящийся под воздействием высокой температуры, от негативного влияния воздушных масс.

    После полного затвердевания шва металл кристаллизуется и происходит образование шлака. Для контроля над качеством спаивания необходимо удалить шлак. После остывания он становится хрупким и легко очищается.

    Контроль качества спаивания металла


    Контроль качества спаивания металла

    Расход газа при сварке полуавтоматом

    Расход защитной среды зависит от следующего:

    • тип металла или сплава;
    • собственный диаметр присадочной проволоки;
    • номинальная величина сварочного тока.

    Скорость подачи смеси регулируется при помощи редуктора. Приспособление устанавливают на баллоне с высоким давлением. Существует таблица, согласно, которой происходит настройка оборудования.

    При выполнении сварочных работ мастер может снизить потери газовой смеси, для этого необходимо следующее:

    • производить соединение в закрытом цеху;
    • применять вентиляцию, предотвратить сквозняки;
    • привлечение мастеров с высокой квалификацией;
    • использование смеси защитных веществ.

    При снижении количества газа может ухудшиться качество сварочного шва, защитной среды будет недостаточно для защиты от окисления.

    Сварка конструкции полуавтоматом с газом


    Мастер варит полуавтоматом

    Расход СО2

    Расход газа при спаивании в среде газа СО2 прямо зависит от толщины металлических заготовок, диаметра проволоки и силы тока. На расход влияют и другие факторы. Если работы выполняются на открытом воздухе, то расход газа будет гораздо больше, чем при сваривании в закрытом помещении. Это связано с тем, что ветер сдувает часть газа, подаваемого в сварочную ванну.

    Расход СО2 на открытом воздухе довольно такой большой

    Формула расчета

    Показатели расхода для сварочной смеси при сварке с полуавтоматом можно выполнить с помощью следующей формулы:

    • P = Py * T;
    • Py — показатели удельного расхода газа, о которых заявил производитель;
    • T — количество основного времени, необходимое, чтобы сварить один проход.

    В приведенной ниже таблице указаны нормы потребления газа, на которые оказывают влияние такие показатели: какая в диаметре проволока и какие средние показатели имеет силы тока.


    Так как 40-литровый баллон содержит сварочную смесь в количестве 6 000 литров, нетрудно произвести вычисления, сколько времени можно пользоваться одним резервуаром, если процесс сварки происходит непрерывно.

    К примеру, расход CO2 при полуавтоматической сварке, когда используется проволока 1 мм в диаметре, составляет от 10 до 11 часов при условии, что процесс происходит непрерывно.

    Показатели таких расчетов довольно грубые, ведь здесь не учитывают, сколько газа потребляется при выполнении подготовительных и финишных операций за один проход. Это поможет в определении приблизительной картины. Если потребуются более точные показания, для их проведения может потребоваться расходомер.

    Увеличение производительности при работе в среде СО2

    Выполняя сварочные работы полуавтоматическим аппаратом в среде углекислого газа, можно повысить производительность несколькими способами:

    Увеличить силу тока

    При нижнем положении сварки можно увеличить сварочный ток, тем самым повысив КПД. При вертикальном или потолочном положении шва силу тока можно увеличивать только при ускоренной кристаллизации металла.

    Сила тока при сварке

    Увеличение вылета электрода

    При применении тонкой проволоки можно повысить производительность, увеличив ее вылет. Такой метод дает возможность повысить скорость плавления электрода. Это увеличивает количество металла, попадающего в сварочную ванну за определенный промежуток времени.

    При увеличенном вылете электрода может возникнуть самопроизвольная подача проволоки. Во избежание этого нужно использовать специализированные наконечники. Они изготавливаются из фарфора или керамики.

    Увеличение вылета электрода

    Режимы полуавтоматической сварки в среде защитных газов

    На выбор режима напрямую влияет толщина свариваемого металла. Чем она больше, тем ниже получается скорость сварочного процесса, и тем больше нужна сила тока. Сварочная дуга должна быть как можно более короткой (от 1.5 до 4 мм), иначе она становится неустойчивой, повышается разбрызгивание металла, повышается вероятность насыщения азотом и окисления жидкой ванны.

    Сварка в среде защитных газов

    Что касается расстояния от мундштука горелки до металла, то оно равняется 7-15 мм при силе тока до 150А, а при значениях до 500А — 15-25 мм.

    Преимущества и недостатки

    Сварка в углекислом газе СО2 имеет ряд преимуществ. К ним относятся:

    • Возможность спаивать тонкие листы металла;
    • Хорошая дуга при выполнении работ. Это особенно удобно для начинающих сварщиков;
    • Возможна сварка деталей с различными характеристиками;
    • Металл, находящийся под действием высокой температуры, защищен от влияния воздуха. Это делает шов прочным и не допускает окислений;
    • Высокое качество места соединения заготовок;
    • Безопасность в использовании;
    • Доступность. Приобрести оборудование может любой желающий.

    Сварка в среде защитных газов

    К недостаткам полуавтоматической сварки в среде углекислого газа можно отнести то, что применяемое оборудование более сложное, чем в случае с другими газами.

    Из вышеперечисленного следует, что сварка в среде СО2 является доступным способом соединения металлических деталей. Такой способ спаивания отличается высоким качеством и простотой в применении.

    Читайте также: