Лазерная сварка с присадкой

Обновлено: 09.01.2025

Переход к принятию более легких и прочных материалов в повседневной продукции, от автомобилей до бытовой электроники, привел к ряду серьезных проблем при сварке этих конструкций, особенно в условиях больших объемов производства. Примеры в транспортной отрасли включают в себя электрическую транспортную инфраструктуру, где производство батарей часто требует соединения разнородных хорошо отражающих материалов, таких как алюминий и медь.

Еще одним связанным примером является дальнейшее применение высокопрочных сталей, а также алюминиевых и магниевых композитов для снижения веса автомобилей. В бытовой электронике требования к легким конструкциям с высокими индивидуальными тепловыми и электрическими свойствами постоянно вызывают потребность в более сложных конструкциях, часто с использованием тонкой фольги и требующих соединения разнородных металлов, а также алюминия и меди, являющихся сильно отличающимися материалами. Индустрия медицинских устройств также обуславливает необходимость соединения мелких металлических деталей, часто с разнородными материалами.

Рост лазерной сварки продолжается уже более десяти лет, а автомобильная промышленность — самая ранняя по применению технологии отрасль — первая, кто видит преимущества автоматизированного процесса сварки в сочетании с внутренними преимуществами технологии волоконных лазеров. Однако проблемы лазерной сварки многих из описанных ранее материалов оставались значительными и могли объяснить медленную скорость принятия лазерной сварки в некоторых приложениях.

В последнее время внедрение новой, экономичной и простой в использовании технологии, основанной на технике колебаний луча, помогает преодолеть некоторые из этих трудностей в сварочных материалах, таких как медь и алюминий, с мощными волоконными лазерами на длине волны 1 мкм. Этот метод помогает преодолевать пористость и проблемы с горячим растрескиванием при лазерной сварке некоторых материалов, помогая тем самым упростить требования к подгонке деталей при сборке в 3-X раза в некоторых примерах, обсуждаемых в этой статье. Благодаря возможности независимого контроля глубины проплавления, скорости колебания сфокусированного пятна, скорости сварки и ширины шва, техника имеет применение при сварке небольших, чувствительных к температуре узлов (для медицинских деталей), плохо подогнанных деталей, которые могут иметь затруднения при обычной лазерной сварке и могут быть косметически привлекательными при сварке с колебаниями без необходимости последующей обработки.

Технология сварочной головки с колебаниями

РИСУНОК 1 демонстрирует концепцию движения двумерного динамического луча или головки с технологией колебаний, где показаны четыре основные программируемые формы, доступные из стандартной сварочной головки, например, D30 из IPG Photonics. Независимый контроль амплитуды и частоты колебаний достигается с помощью контроллера гальво-зеркал, что обеспечивает большую гибкость в стабилизации расплава канала проплавления в процессе сварки с типичными частотами до 300 Гц, используемыми в большинстве приложений. Мощность обработки коммерческих сварочных головок с колебанием луча теперь доступна до 12 кВт.

РИСУНОК 1. Примеры форм колебаний из имеющихся в продаже сварочных головок с независимой регулируемой амплитудой и частотой до 300 Гц.

РИСУНОК 1. Примеры форм колебаний из имеющихся в продаже сварочных головок с независимой регулируемой амплитудой и частотой до 300 Гц.

Стабильность расплава канала проплавления является критическим фактором, когда лазерная сварка затрудняет использование материалов с высокой отражающей способностью, таких как медь и алюминий. Это отчасти объясняется тенденцией к разбрызгиванию и, в случае некоторых алюминиевых сплавов, демонстрирует высокий уровень пористости из-за вязкости и поверхностного натяжения расплава, что делает эти материалы трудными для сварки с использованием более традиционных методов лазерной сварки. Недавние исследования 3 показали уменьшение или устранение этих проблем методом лучевого колебания, включая недавнее систематическое исследование как с использованием, так и без присадочной проволоки на автомобильных алюминиевых сплавах [2].

В целом, метод колебаний позволяет лучше регулировать температуру детали, поскольку луч проходит несколько раз в любой точке сварного шва. Градиент роста температуры и скорости охлаждения медленнее, чем при традиционной лазерной сварке, что помогает устранить дефекты и управлять брызгами. Кроме того, этот метод сварки совместим с типичными сварочными аксессуарами, такими как вспомогательные газовые порты и коаксиальные сопла, которые обеспечивают подавление плазмы и могут помочь контролировать разбрызгивание, которые не могут быть легко совместимы с сканирующими головами, используемыми при дистанционной сварке.

В дополнение к стабилизации расплава канала проплавления и уменьшению пористости в последующем шве метод качания луча оказался ценным для облегчения требований к подгонке деталей для лазерной сварки, как указано в ТАБЛИЦЕ. Используя одну из программируемых фигур (знак бесконечности в этом случае) и оптимизируя амплитуду и частоту колебаний, видно увеличение допустимого зазора шва 3X, которое достигается при обычной лазерной сварке.

ТАБЛИЦА. Краткое описание сварки вобуляционной головкой с колебаниями в окне процесса для зазора шва и смещения, где коэффициент 2-3 увеличения обоих параметров процесса может быть достигнут по сравнению с обычной лазерной сваркой.

ТАБЛИЦА. Краткое описание сварки вобуляционной головкой с колебаниями в окне процесса для зазора шва и смещения, где коэффициент 2-3 увеличения обоих параметров процесса может быть достигнут по сравнению с обычной лазерной сваркой.

Примеры реализации лазерной сварки

Пример качества сварного шва и его однородности, достигаемого с помощью головки с колебаниями, показан на фиг. 2 для сварки алюминия 6061-T6, качество шва, которое было бы невозможно при обычной лазерной сварке. Метод может устранить пост-обработку сварного шва для достижения косметической отделки конечной детали.

РИСУНОК 2. Примеры алюминиевых сварных швов 6061-T6 с использованием метода лучевых колебаний.

РИСУНОК 2. Примеры алюминиевых сварных швов 6061-T6 с использованием метода лучевых колебаний.

При дальнейших проверках уменьшение пористости, связанное с техникой колебаний луча, очевидно (рис. 3), где поперечное сечение сравнивается с обычной лазерной сваркой на алюминии 6061, показывая отсутствие пор при использовании процесса сварки головкой с колебаниями. Сообщалось об аналогичных улучшениях пористости [2, 4] с использованием техники колебаний с объяснением смешением ванны расплава во время вращения канала проплавления, что происходит при процессе колебаний луча.

РИСУНОК 4. Сварка разнородных металлов, таких как нержавеющая сталь и медь (а), обеспечивается техникой колебаний для управления зоной взаимопроникновения (интерметаллической областью между двумя материалами) (б).

РИСУНОК 4. Сварка разнородных металлов, таких как нержавеющая сталь и медь (а), обеспечивается техникой колебаний для управления зоной взаимопроникновения (интерметаллической областью между двумя материалами) (б).

Лазерная сварка разнородных металлов является еще одной сложной технологической областью, где технология головки с колебаниями обладает значительным потенциалом, таким как сварка нержавеющей стали и меди (РИС. 4а). Плавление и затвердевание интерметаллического слоя можно контролировать с помощью технологии колебаний, чтобы значительно улучшить качество сварки между двумя разнородными металлами, как показано на EDS-изображении на фиг. 4b. В этом сварном шве мы использовали образец кругового колебания, показанный в ТАБЛИЦЕ.

Головка с колебаниями для сварки меди

Некоторые из проблем, связанных со сваркой меди с использованием лазеров, работающих на 1 мкм, хорошо известны и описаны ранее [1]. В этом исследовании мы использовали одномодовый волоконный лазер и небольшой размер пятна, чтобы увеличить плотность мощности на заготовке и помочь стабилизировать расплав в канале проплавления. Это было подробно изучено при микросварке тонких фольг [5], но эти особенности применимы к сварке головкой с колебаниями, где мы используем небольшое пятно и более эффективную сварку с каналом проплавления . По нашему опыту, линейные скорости и общий ввод тепла (мощность от лазера) часто сравнимы с традиционной лазерной сваркой. Как правило, при более низких скоростях взаимодействие лазера с материалом более неустойчивое с явным выбросом брызг из канала проплавлениясвязано с высокой отражательной способностью меди и низкой вязкостью и поверхностным натяжением материала. Тенденция на более высоких скоростях — стабильный сварной шов, обеспечиваемый высокой текучестью и небольшим размером пятна от одномодового волоконного лазера. Однако это происходит за счет уменьшения глубины проплавления окончательного шва.

Технология колебаний — это полезный инструмент для преодоления этих проблем (рис. 5 и 6). Используя амплитудную функцию колебаний, верхняя ширина шва может быть систематически увеличена, а функция частоты колебаний используется для стабилизации канала проплавления. Результаты были получены с использованием одномодового волоконного лазера с одинаковой мощностью, а линейная скорость сварки и мощность лазера поддерживались во всем диапазоне параметров.

РИСУНОК 5. Использование одномодового волоконного лазера с независимым управлением функциями амплитудной и частотной регулировки колебаний позволяет использовать сварные швы на меди.

РИСУНОК 5. Использование одномодового волоконного лазера с независимым управлением функциями амплитудной и частотной регулировки колебаний позволяет использовать сварные швы на меди.

Технология головки с колебаниями полностью совместима с многомодовыми волоконными лазерами, и в наших тестах [1] были продемонстрированы медные швы с использованием мощного (5 кВт) волоконного лазера, работающего вместе с головкой с колебаниями. В случае более высоких уровней мощности достигается большая глубина проплавления (до 4 мм в данном случае), и, как и в предыдущем исследовании, дополнительная гибкость процесса, связанная с технологией колебаний луча, используется для управления каналом проплавления и стабилизации расплав во время процесса.

РИСУНОК 6. Поперечные сечения сварных швов меди с использованием метода колебаний и одномодового волоконного лазера.

РИСУНОК 6. Поперечные сечения сварных швов меди с использованием метода колебаний и одномодового волоконного лазера.

Алюминиево-медная сварка для промышленности аккумуляторных батарей является последней заявкой, рассмотренной в этой статье. В этом случае глубина проплавления является критическим параметром для минимизации ширины интерметаллидной прослойки (в идеале менее 10 мкм), которая может контролироваться скоростью процесса при традиционной лазерной сварке. Однако в случае использования техники головки с колебаниями у нас есть дополнительная ширина контрольного шва и проникновение через амплитудные и частотные функции на головке с колебаниями.

В нашем исследовании мы видим эффект увеличения амплитуды колебания (от 0,2 до 1,2 мм). Это достигается за счет увеличения ширины сварного шва, минимизации глубины проплавления и последующего улучшения механических свойств сварного шва между элементами алюминия и меди.

Вывод

Трудности, связанные с лазерной сваркой таких материалов, как алюминий и медь с использованием 1 мкм-лазеров, в значительной степени могут быть преодолены за счет использования мощных волоконных лазеров вместе с новейшей двумерной технологией головки с колебаниями луча для дополнительного управления пучком расплава в канале проплавления во время процесса сварки. В свою очередь, это, как показано, помогает устранить пористость и разбрызгивание, связанные с лазерной сваркой этих материалов с использованием традиционных методов. Дополнительные степени свободы, достигаемые за счет независимой амплитуды и частоты колебаний колебательной головки, в сочетании с высокой мощностью, доступной для волоконного лазера, обеспечивают уровень контроля, необходимый для достижения качественной лазерной сварки в сложных материалах.

Примерами, представленными здесь, являются лазерная сварка сложных материалов, таких как алюминий и медь, а также сварка разнородных материалов, включая контроль области интерметаллического смешивания с технологией колебаний. Кроме того, технология предлагает значительные преимущества в частичной адаптации благодаря увеличенной толерантности к зазору шва и смещению в исследованиях, сравнивающих головку с колебаниями с традиционными процессами лазерной сварки. В исследовании также показана пригодность метода как с одномодовыми, так и с многомодовыми мощными волоконными лазерами. Наконец, технология совместима со стандартными сварочными аксессуарами, такими как вспомогательные порты подачи газа и коаксиальные сопла.

Ссылки

[1] T. Hoult et al., «Welding solutions for challenging metals with ytterbium fiber lasers,» ICALEO 2016 presentation, San Diego, CA (Oct. 2016).

[2] G. Barbieri et al., Mater. Sci. Forum, 879, 1057–1062 (2017).

[3] O. Berend et al., «High frequency beam oscillation to increase the process stability during laser welding with high melt pool dynamics,» Proc. ICALEO, 1041, 1032 (2005).

[4] G. Barbieri et al., Procedia Eng., 109, 427–434 (2015).

[5] I. Miyamoto et al., «Precision microwelding of thin metal foil with single-mode fiber laser,» Proc. SPIE, 5063, 297–302 (2003).

Лазерный мир

В работе, на основе нелинейной модели, проанализированы особенности процесса лазерной сварки с подачей присадочной проволоки.
Результаты моделирования подтверждены экспериментальными данными.

Введение
Лазерная сварка, обладая таким отличительным свойством, как максимально высокая плотность энергии в пятне фокусировки, становиться ключевой технологией для многих инновационных проектов авиакосмической отрасли. Важное преимущество лазерного метода состоит в возможности сварки труднодоступных мест в любом пространственном положении. Нетривиальным и многообещающим достоинством является синергетический эффект, возникающий при сочетании лазерной сварки с родственными процессами в едином технологическом пространстве [1]. Для авиационной промышленности особый интерес вызывают исследования процесса сварки, выполняемого посредством излучения волоконного лазера с подачей присадочной проволоки. Это связано, во-первых, с необходимостью создавать конструкции с усиленными сварными швами, обладающими равнопрочными с основным материалом свойствами, во-вторых, высокой эффективностью применения метода локальной лазерной сварки в технологии ремонта узлов и деталей ГТД.

В последнее время на рынке появилось лазерное сварочное оборудование, оснащенное современными, высокоресурсными и малогабаритными волоконными лазерными излучателями. Лазеры на основе кварцевого волокна, легированного иттербием, способны генерировать как в непрерывном (CW), так и импульсно-периодическом (QCW) режимах. Они обладают КПД достигающим 25% и высоким качеством излучения (BPP=2,2 мм×мрад). Оптические сварочные головки для этих лазеров опционно комплектуют механизмом подачи присадочной проволоки. В этой связи, важными представляются исследования кинетики процесса лазерной сварки с дополнительной подачей присадочного материала, на примере нержавеющей стали.
Проблема
Особенность лазерной сварки с подачей присадочной проволоки состоит в сложном взаимодействии множества различных физических явлений [2]. По сути, зона лазерной сварки представляет собой неравновесную, нелинейную, открытую систему, обменивающуюся с внешней средой энергией и веществом. Процессы нагрева и охлаждения, плавления и кристаллизации, испарения и конденсации происходят с высокой скоростью в ассиметричных условиях. Между ними могут возникать как прямые, так и обратные связи. Очевидно, что при проявлении сильной положительной обратной связи процесс может содержать стадии, носящие автоколебательный или взрывной характер.
В настоящей работе предлагается, используя современные представления о поведении сложных динамических систем [3], исследовать лазерную сварку с присадочной проволокой как эволюцию самоорганизующейся неравновесной системы.

Теория
Системный анализ показывает, что кинетика процесса сварки определяется, не только режимами лазерного воздействия и свойствами свариваемого и присадочного материала, но и законами внутреннего саморазвития искомой диссипативной системы. Действительно, основными внешними параметрами процесса лазерной сварки с присадочной проволокой являются: плотность мощности лазерного излучения q; длительность лазерного воздействия τL=dL/νL; длительность действия присадка τf=df/vf. Здесь dL диаметр лазерного пятна, νL=vX+vZ скорость сварки, df диаметр присадочной проволоки, vf скорость подачи присадочной проволоки (рис. 1).

Результаты эксперимента
Экспериментальные исследования процесса лазерной наплавки с подачей присадочной проволоки выполняли с помощью сварочной головки показанной на рис. 4. Использовали волоконный QCW-лазер. Сваривали образцы из стали ЭЯ1Т толщиной 3,0 мм. В зону сварки подавали проволоку той же марки, толщиной 1,5 мм Макроструктура сварного соединения представлена на рис. 5.

Выводы
Теоретическая модель процесса лазерной сварки с присадочной проволокой, позволила описать автоколебательный характер формирования сварного шва. Для анализа хаотической стадии искомой модели в систему уравнений следует ввести дополнительную степень свободы.

Все о лазерных сварочных аппаратах

Лазерная сварка подразумевает применение лазера как энергетического источника. Такой вид приборов используют для работ с радиодеталями, металлами, для сварки электронного оборудования и в других сферах. Данная статья поможет разобраться в особенностях и принципах работы лазерных аппаратов, их видах, лучших моделях, а также сферах применения.




Особенности

С помощью сварки лазерным лучом можно неразъёмно соединить металлические и неметаллические элементы и поверхности. Лазерный сварочный аппарат для сварки использует излучение, которое отличается высокой степенью концентрации в отдельной зоне. Благодаря монохромности и когерентности лазер значительно превосходит по концентрации другие источники излучения.

Уникальные свойства лазерного луча способствуют быстрому нагреву и охлаждению во время работы над свариваемыми поверхностями или металлами.

Такой локальный нагрев считается главной особенностью лазерных сварочных аппаратов и станков.

Еще одним из преимуществ считается небольшой объем расплавленного материала. Расплавление происходит при высокой скорости (20-40 мм/с), что повышает производительность. Небольшие зоны термического влияния тоже являются преимуществом лазерного излучения перед другими видами энергии.

Дополнительные особенности лазерных сварочных приборов:

  • работа с высокоточными конструкциями;
  • работа без исправлений и доработки;
  • высококачественные швы;
  • высокая скорость и производительность;
  • высокая степень безопасности в отличие от сварки традиционным методом.

Принцип работы

Работа лазерным сварочным устройством также имеет свои особенности. Принцип работы заключается в следующем.

  • Лазер попадет в систему фокуса, где происходит превращение лазерного излучения в пучок с меньшим сечением.
  • Далее излучение переходит на соединяемые сваркой детали и поверхности.
  • Процесс заключается в частичном отражении и проникновении луча внутрь детали. Материал поглощает излучение. Таким образом, деталь нагревается и расплавляется. При этом формируется сварочный шов.

Работать лазерным аппаратом можно в любом положении. Сварочные работы происходят сквозным или частичным проплавом при помощи непрерывного или импульсного луча.

Лазерные приборы для сварки представлены в нескольких видах. Первый тип работает на твердотельном лазере. Устройство имеет рубиновый стержень, который выступает рабочим телом.

Стержень располагают в световой камере. Для старта сварочных работ используют импульсную лампу накачки. Аппарат с твердым стержнем создает мощность в 1-6 кВт. Этого импульса вполне достаточно для сваривания мелких частей, радиодеталей, сварки элементов ювелирных украшений.



Аппарат с твердотельным излучением дает качественный результат благодаря определенной дозировке энергии.

Второй вид лазерных устройств работает на углекислом газе, азоте и гелии. Прокачка смеси из газов внутри камеры происходит за счет возникновения электрического импульса. Возникает пробуждение атомов и создание источника энергии. Мощность газового лазерного излучения доходит до 20 кВт. Этого хватает для сваривания металлических деталей толщиной до 2 см.

Более мощными считаются газодинамические устройства для сварки. Максимальная температура нагрева газа внутри камеры — 3000°С. Нагретый газ перемещается в резонатор. Происходит охлаждение. Возникают световые энергетические кванты. Накачка осуществляется за счет работы маломощного излучения или другого вида энергии. Мощность излучения достигает 100 кВт. Газодинамическими приборами можно сваривать детали толщиной 3 см на большой скорости.



Существуют ручные лазерные приборы для сварочных работ. Это компактные станки с разными характеристиками и функционалом. Устройства предназначены для ремонта небольших конструкций, пайки электронных элементов. С помощью ручного аппарата также проводят точечную сварку и дезинфекцию медицинских деталей.

Еще одной разновидностью лазерных устройств являются оптоволоконные модели. Это новейшая технология позволяет использовать оптоволоконное лазерное излучение.

Работа таким аппаратом выполняется импульсно и непрерывно. Аппарат подходит для создания точечных и цельных швов.

Лучшие модели

Обзор лучших лазерных приборов для сварки стоит начать с оптоволоконной модели XTW-750.

Основные характеристики:

  • мощность — 750 Вт;
  • вид лазерной энергии — Raycus;
  • непрерывная работа на протяжении 24 часов;
  • диаметр импульса — 0,1-20 мс;
  • длина волн — 1064 Нм;
  • частота — 1-50 Гц;
  • скорость до 120 мм/с;
  • мощность потребления — 7,5 кВт;
  • система охлаждения;

Устройство выполняет работы любой сложности.

Луч высокой плотности разрушает оксидные образования на обрабатываемой поверхности.

Прибор используют для обработки сварочными швами стальных, титановых, алюминиевых и медных изделий.

Ручной прибор Sekirus P2613M/SVR/1000W. Устройство позволяет выполнять различные виды работ. Предусмотрена сварка под углом, внахлест и встык. Мощность лазерного излучения – 1000 Вт, максимальный показатель мощности достигает 1500 Вт. Главные особенности:

  • высокая скорость;
  • простая система управления;
  • ручной и гибкий режим работы;
  • выполнение качественных швов;
  • возможность работы с металлами, нержавейкой, алюминием, углеродистой и оцинкованной сталью.

Прибор для лазерной сварки Mega Hit (140 Дж). Особенности и характеристики:

  • наличие дисплея и камеры в 4 Мп;
  • простая настройка параметров лазера;
  • низкий уровень шума;
  • возможность работы с любыми сплавами и металлами;
  • двойной режим управления;
  • мощная система охлаждения;
  • съемное дно и широкие дверцы позволяют размещать в рабочей камере крупные детали;
  • специальный автоматический затвор для защиты глаз;
  • потребляемая мощность — 7 кВт;
  • время импульса — 0,1-20 мс;
  • частота — 0,5-30 Гц;
  • диаметр лазера — 0,2-2 мм.

Устройство предназначено для сварки ювелирных изделий, соединения металлов и различных сплавов.

Еще одна модель – Omec Wizard 60.00. Итальянский прибор для лазерной сварки подойдет для ювелирных и медицинских работ, задач повышенной сложности. Основные характеристики:

  • наличие экрана и микроскопа;
  • встроенная камера;
  • возможность подключения к компьютеру для создания архивов и внесения данных;
  • около 100 программ управления;
  • микроскоп имеет ультрафиолетовый фильтр и 10-кратное увеличение;
  • присутствует система охлаждения;
  • частота — 0,5-20 Гц;
  • максимальная мощность луча — 60 Дж;
  • длительность импульса – до 10 мс;
  • диаметр луча — 0,2-2 мм.

Устройство Master 100/3D. Главные особенности:

  • максимальная мощность — 100 Дж;
  • средняя мощность — 100 Вт;
  • частота — 0,5-40 Гц;
  • длительность — 0,1-20 мс;
  • диаметр пятна — 0,2-2 мм;
  • наличие дисплея;
  • 100 программ для сварки;
  • мощная система охлаждения;
  • микроскоп 3D с 10-кратным увеличением;
  • прибор дает возможность обходиться без флюса и припоя;
  • высокая производительность.

Аппарат применяется в ювелирной сфере, медицинских областях, в работе с микросхемами и мелкими деталями.

Сфера применения

Лазерные устройства для сварки имеют широкую сферу использования. Приборы применяют для сваривания деталей высокой точности. Лазером выполняют ремонт мелких радиоэлементов, схем, элементов кинескопов, электронный изделий.

Лазерные аппараты имеют узкую световую направленность луча, благодаря которой возможна работа в труднодоступных местах. Поэтому устройства особенно популярны в ювелирном деле.

Прибор используют для сваривания деталей из цветных металлов, пайки золотых колец и украшений. Аппараты для ювелиров отличаются своей компактностью и функционалом.

Некоторые модели нацелены на работу с чугунными и пластиковыми изделиями. Широкое распространение лазерные приборы имеют в оборонной промышленности и производстве. Сварочные станки применяют в работе с крупногабаритными деталями для соединения различных элементов и металлических поверхностей.

Современные технологии не стоят на месте, и сейчас лазерные аппараты для сварки широко распространены как на производстве, так и в быту. Лазерная сварка имеет свои определенные свойства, благодаря чему повышается скорость работы и производительность. Приведенная информация знакомит читателя с особенностями приборов, а обзор лучших моделей поможет выбрать устройство для той или иной сферы применения.

Обзор лазерного аппарата для сварки SEKIRUS SVR-500 MINI в видео ниже.

Технология лазерной сварки: особенности и оборудование

Технология лазерной сварки: особенности и оборудование

Лазерная сварка – это технология соединения металлов и других материалов плавлением, которое производится благодаря нагреву рабочей зоны лазерным лучом. Технология часто применяется для высокоточного соединения деталей, для сварки изделий, имеющих сложную конфигурацию соприкосновения, для соединения разнородных материалов, деталей сверхмалых и крупных размеров, деталей, имеющих разные толщины.

Принцип действия лазерной сварки

Изделия, подлежащие сварке, плотно соединяют друг с другом по линии будущего сварного шва. Сфокусированный лазерный луч нагревает и расплавляет кромки изделий, в результате чего расплавленный материал заполняет зону соединения, проникая во все микронеровности материалов. Лазерный луч и, соответственно, зона расплава перемещаются вдоль линии соединения, создавая прочный, плотный, узкий и глубокий сварной шов. Глубину проплавления материалов можно регулировать от поверхностной до сквозной.

В целях предотвращения окисления металлов при сварке применяется газовая защитная среда, которая может состоять из аргона, гелия, азота (он используется реже) или смеси других газов.

Материалы, поддающиеся лазерной сварке

  • сталь: нержавеющая, высокопрочная, легированная, углеродистая;
  • чугун;
  • титан и его сплавы;
  • алюминий и сплавы на его основе;
  • медь, латунь и другие сплавы на основе меди;
  • магниевые сплавы;
  • серебро;
  • пластик;
  • стекло;
  • керамика.

Преимущества технологии лазерной сварки

  • Высокая плотность сварного шва. Соединение полностью лишено дефектов, которые образуются при сварке другими методами. Например, в сварном шве практически полностью отсутствует пористость. Для сравнения, нормативами разрешено равномерное распределение пористости для дуговой сварки ≤20%. Данный показатель для лазерной сварки не превышает 0,8%.

Отсутствие пор обусловлено особенностью процесса лазерной сварки: для нее не требуются использование электродов и формирование дуги, технология имеет ряд других существенных отличий от прочих методов сварки.

Поры чаще всего образуются при сварке алюминия и его сплавов иными методами без использования лазера. При этом уменьшается толщина сечения сварного шва, что негативно влияет на прочность и эластичность готового изделия. Лазерная сварка позволяет выполнять соединение деталей из алюминия и его сплавов без возникновения пор и потери качества готовой продукции.

  • Механические и физические свойства сварного шва сопоставимы с аналогичными свойствами соединяемых материалов.
  • Наименьшая ширина сварного соединения среди всех технологий сварки. Шов выглядит аккуратно и почти незаметен.
  • Гладкий сварной шов не нуждается в шлифовке.
  • Высокая плотность энергии в лазерном пятне создает условия для быстрого разогрева и охлаждения зоны соединения. В процессе сварки значительно сокращается воздействие тепла на околошовную зону, благодаря чему в ней не происходят деформации и разупрочнение материала, не образуются трещины.
  • Существует возможность встраивания оборудования в любую производственную линию.
  • Сваривание элементов производится за один проход без необходимости разделки кромок.
  • Скорость выполнения работ в несколько раз выше по сравнению с другими методами сварки.
  • Возможность выполнения сварки в узких, труднодоступных и удаленных местах.
  • Возможность быстрой перенастройки лазерного оборудования на выполнение новой сварочной операции.
  • Технология позволяет сваривать изделия, находящиеся за прозрачными материалами.
  • Технология, за исключением гибридной лазерной сварки, не предусматривает использование присадок, флюсов, электродов, что обеспечивает высокую химическую чистоту процесса сварки.
  • Безопасность процесса сварки для персонала.

Недостатки лазерной сварки

  • Достаточно высокая стоимость оборудования и комплектующих, в связи с чем технология лазерной сварки применяется в основном на производственных предприятиях.
  • Эффективность процесса сварки зависит от способности металла отражать лазерное излучение.
  • Низкий КПД.
  • Особые требования предъявляются к показателям влажности, вибрации и запыленности в помещении.
  • Высокие требования к квалификации персонала. Сварщик, не обладающий достаточным опытом, может неправильно настроить оборудование, что приведет к возникновению дефектов: непроваривание шва, прожоги, появление пор и трещин, кратеров, наплывов, инородные включения.

Классификация видов лазерной сварки

По глубине проплавления:

  • микросварка – материал проплавляется на глубину до 0,1 мм;
  • минисварка – на глубину проплавления от 0,1 мм до 1 мм;
  • макросварка – на глубину проплавления свыше 1 мм.

По величине поверхности контакта соединяемых изделий:

  • Шовное сваривание, при котором образуется глубокий сварной шов. Эта технология широко распространена при сварке труб и изделий из нержавеющей стали. Для сварки применяется как непрерывное, так и импульсное лазерное излучение.
  • Точечное сваривание, применяемое, в первую очередь, при производстве электроники. Данную технологию используют при соединении мелких деталей (≤100 мкм) и тонких материалов. При точечной сварке используют, в основном, импульсное лазерное излучение. При этом необходимо установить минимальную мощность, повысить скважность импульса и сократить его длительность.

По способу выполнения:

  • Стыковая сварка: между свариваемыми элементами допускается наличие стыка не более 0,2 мм. Соединение производится путем кинжального проплавления материалов на полную толщину, использование присадок и флюса не требуется. Интенсивность лазерного излучения не превышает 1 мВт/см2. Сварной шов следует обязательно защищать от окисления при помощи инертных газов (азот, аргон). Для защиты от пробоя используют гелий.
  • Сварка внахлёст: листы металла накладывают друг на друга и обязательно прижимают, чтобы зазор составлял менее 0,2 см. Затем листы сваривают мощным лазерным излучением, при необходимости выполняют двойной шов.

Гибридная лазерная сварка

Эта технология предполагает использование присадочных материалов, например, проволоки. Лазерный сварочный аппарат оснащают механизмами подачи присадочной проволоки. Она подается в рабочую зону синхронно с движением лазерной головы. Толщина проволоки равна диаметру лазерного пятна и ширине сварного шва.

Сферы применения лазерной сварки

  • Производство приборов, электронных устройств и сложных механизмов. Лазерная сварка применяется для соединения миниатюрных и тонкостенных деталей, например, элементов микроэлектроники. Метод дает возможность сваривать элементы, находящиеся вблизи от кристаллов микросхем и других деталей, чувствительных к нагреву.
  • Производство и ремонт кузовов автомобилей: соединение кузовных элементов из тонколистовой стали, деталей из алюминиевых и магниевых сплавов.
  • Производство различных конструкций.
  • Производство деталей из титана и титановых сплавов для оборонной, аэрокосмической, судостроительной отраслей и атомной энергетики. В расплавленном состоянии титан вступает в химические реакции с кислородом и водородом, что приводит к насыщению расплава газами и появлению трещин. Лазерная сварка в защитной среде из аргона и гелия позволяет избежать образования трещин.
  • Сварка чугуна, применяемая при производстве запорной арматуры, корпусов, элементов шестерен и других компонентов.
  • Сварка металлов, имеющих разные химические и физические свойства.
  • Производство изделий из пластмассы.

Основные типы оборудования для лазерной сварки

Автоматические лазерные сварочные станки используют на крупных предприятиях, например, в машиностроительной и судостроительной отраслях. Это оборудование отличается высокой стоимостью и трудно доступно малому бизнесу.

Ручные лазерные сварочные аппараты предлагаются по более доступным ценам и широко применяются на средних и малых предприятиях. Хотя эти станки названы «ручными», они обладают достаточно внушительными габаритами. Для удобства перемещения многие модели станков оснащены колесами.

Комплектация ручного станка для лазерной сварки

Независимо от бренда и модели оборудования станок имеет следующие ключевые компоненты:

  • Лазерный источник, генерирующий лазерное излучение. Самыми надежными являются волоконные лазерные излучатели производства IPG Photonics Corporation. Это предприятие основано в 1991 г. российским физиком В.П. Гапонцевым. Компания IPG – всемирно признанный лидер в производстве волоконных лазеров. Производственные мощности IPG расположены в США, Европе и России (в г. Фрязино). Источники IPG демонстрируют лучшее качество и стабильность формируемого лазерного луча и лучший коэффициент преобразования электроэнергии в энергию луча лазера. В конструкции источников предусмотрена двойная защита от отраженного излучения, которая гарантирует стабильную работу станка в случае попадания луча в волокно или диодную сборку.
  • Сварочная голова, обеспечивающая фокусировку лазерного луча и его подачу в рабочую зону.
  • Программный блок управления.
  • Блок питания.
  • Чиллер – система охлаждения оборудования.
  • Блок подачи присадочной проволоки.

Оборудование для лазерной сварки на маркетплейсе INLASER.PRO

На маркетплейсе INLASER.PRO можно приобрести как станки лазерной сварки, так и комплектующие – сварочные головы, волоконные лазерные излучатели, чиллеры, системы газоподготовки, а также оптические элементы. Мы предоставляем комплекс услуг по подбору оборудования, его доставке, монтажу, запуску, настройке и обучению сотрудников. Оборудование для лазерной сварки предлагается по приемлемым ценам.

Услуги лазерной сварки металлов и сплавов

На базе производственного предприятия INLASER функционирует наш Центр лазерных услуг, который принимает заказы на выполнение лазерной сварки металлов и сплавов, а также оказывает другие услуги в области лазерной обработки металлов и неметаллических материалов. Современное высокопроизводительное оборудование позволяет выполнять заказы любого объема и сложности.

Читайте также: