Какими параметрами оценивается режим работы сварочного оборудования
Режимы и параметры сварки изменяются при выполнении сварочных работ в зависимости от типа заготовок, толщины и свойств металла. При соблюдении рекомендуемых норм сварной шов будет качественным, а само соединение надежным.
Параметры сварки соблюдать несложно, для отдельных видов разработаны готовые таблицы, где учитываются основные факторы. Достаточно изучить их раз, чтобы потом варить как по накатанной. Что это за параметры и в чем их различие, читайте в нашем материале.
Основные параметры режима сварки
Режимом сварки называют основные характеристики сварочного процесса, благодаря которым получаются сварные соединения заданных параметров, форм и размеров. В данном случае этими характеристиками могут быть: плотность тока в электроде, сила варочного тока, скорость варочного процесса, марка и грануляция флюса, напряжение дуги, расход защитного газа.
VT-metall предлагает услуги:
Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы
Для того чтобы определить, какой режим сварки необходим, требуется определить толщину и тип конструкции, а также состав металлов. На основании полученных данных выставляют нужный режим. Существует две группы факторов, от которых зависит качество сварки: основные и второстепенные.
Количество энергии, способ ее передачи на поверхность металла – это зависит от основных параметров режима сварки. К ним относятся:
- сила тока, род и полярность;
- калибр электрода;
- число подходов;
- скорость движения по шву;
- напряжение и длина сварочной дуги.
Каждый из параметров очень важен, именно от них зависит формирование шва. Если изменить какой-либо показатель, можно получить соединение лучшего качества. Коротко проанализируем некоторые пункты.
От силы тока зависит, с какой интенсивностью расплавится материал. Производительность сварки напрямую зависит от этого показателя. Качество пострадает, если установить большую силу тока, используя малый диаметр электрода, и наоборот. Если низкая подаче тока, то сварная дуга может обрываться, появляются непровары.
Полярность тока – это направление движения энергии от катода до анода и наоборот. Одновременно с направлением тока выбирают, какой использовать – постоянный или переменный. Для получения более глубокого шва необходимо варить деталь постоянным током с обратной полярностью.
Для лучшей прочности необходимо, чтобы расплавленный материал своевременно и равномерно заполнял шов.
К второстепенным параметрам можно отнести:
- температуру деталей;
- вылет электрода;
- толщину покрытия электрода;
- форму кромок;
- качество подготовленной поверхности;
- положение заготовок.
Отношение силы тока к толщине электрода при сварке
Электроды подбирают в зависимости от толщины свариваемого шва и метода сварки. Они могут быть в соотношении 1:1. Так, для шва толщиной 3-4 мм подойдет электрод размером 3 мм. Многопрофильные детали сваривают постепенно. Начинают в основном с электрода в 4 мм.
Если не сделать расчет в начале работы и взять электрод диаметром меньше, то шов не будет заполнен полностью, что повлечет за собой непрочное соединение.
При выборе электрода нужно обратиться к таблицам для определения силы тока. Для диаметра 3 мм необходимая сила тока – 65–100 А. если вам предстоит вертикальный шов, то минимальное значение его диаметра должно составлять не менее 4 мм. Следует помнить, что при горизонтальной сварке силу тока необходимо понизить на 15–20 %.
Величина сварочного тока рассчитывается по формуле:
I – сила сварочного тока в амперах;
d – диаметр электрода в миллиметрах.
При вертикальной сварке силу тока убавляют на 10 %, в потолочных швах убавляют до 20 % от полученной величины. Из данной таблицы можно выбрать коэффициент К:
Диаметр электрода, мм | К, А/мм |
---|---|
1-2 | 25–30 |
3-4 | 35–40 |
5-6 | 45–50 |
Выбор диаметра электрода при сварке металлов
Для более правильного выбора электрода необходимо уточнить следующие показатели: толщину свариваемого изделия, расположение шва (горизонтальный, вертикальный, потолочный), форму разделки кромок и вид соединения. Главным показателем является толщина металла, а остальные факторы служат для более точной корректировки.
В данной таблице вы можете выбрать необходимый вам диаметр электрода, исходя из ваших показателей:
Толщина свариваемого металла | Диаметр электрода |
---|---|
1,5 | 1,6 |
2 | 2 |
3 | 3 |
4-5 | 3-4 |
6–8 | 4 |
9–12 | 4-5 |
13–15 | 5 |
16–20 | 5 и более |
Корневой слой можно выполнить электродами диаметром от 2,5-3 мм. Для этого кромки должны быть разделаны. Потолочные швы чаще всего делают электродами диаметром 3-3,2 мм. Табличные данные идеально подходят для горизонтальных швов.
Параметры длины дуги
В сварке напряжение дуги является важнейшим параметром, которое определяет ее длину. Если сказать проще, то это расстояние от конца электрода до предмета. Этот показатель напрямую зависит от электрода и представлен в таблицах. Качественной считается работа, в которой на протяжение всего шва нет ни одного недовара. В данной профессии важен опыт, только профессионал способен проследить за таким тонким нюансом.
Рекомендуем статьи:
Горение становится устойчивым, если увеличить напряжение дуги. При такой варке вероятность попадания воздуха в зону шва увеличивается, случается выгорание элементов, содержащихся в проволоке, вследствие чего образуются поры. Процесс зажигания дуги включает в себя три этапа: короткое замыкание электрода на заготовку, после чего электрод отводится на 3–6 мм и возникает устойчивый дуговой разряд.
Выбор полярности и типа тока
Сварочные аппараты способны перевести бытовой переменный ток в постоянный. Важно не перепутать полярность. Она подразумевает подключение детали к «+», а электрода к «-». Специалист выбирает параметр режима, опираясь на свойства детали.
Для сварки чугунных деталей подойдет прямая полярность. Она же подходит для среднеуглеродистой стали толщиной 5 мм.
При соединении низкоуглеродистой стали и тонколистовых конструкций выбирают обратную полярность.
Наклон электрода и заготовок при сварке
Важно учесть угол наклона электрода при работе с полуавтоматом, выполнить правильный расчет режимов сварки. В такой работе стержень по отношению ко шву должен отклониться от нормы на 10°. От расположения стержней к стыку зависит глубина и ширина соединения.
Соединение расширяется, а глубинные показатели уменьшаются при условии, если сваривание происходит под углом вперед, благодаря чему дуга нагоняет волну расплава перед собой, через которую и выполняют расплавление металла.
Расплав перейдет в конец варочной зоны, если выбрать режим с углом наклона назад. Электрическая дуга оказывает прямое влияние на соединяемые изделия. Благодаря чему увеличивается глубина проплавления стыка и уменьшается ширина шва.
Для качественного заполнения шва рекомендуется делать наклон детали под углом 8–10°. Иначе расплавленный металл может стекать или останутся непровары. При сварке труб изменить их угол невозможно, поэтому сварку производят сверху вниз.
Параметры режима сварки в среде защитных газов
Режим сварки определяют в зависимости от диаметра проволоки и силы сварочного тока. Специалисты увеличивают расход газа для улучшения газовой защиты, снижают скорость сварки, при работе используют защитные экраны.
При сварке в зону горения подается газ. Он вытесняет воздух из зоны горения дуги, тем самым защищает сварочную ванну от попадания кислорода и азота воздуха. Процесс разделяют на сварку в активных (СО2, Н2, О2, и др.) и инертных (He, Ar, Ar+He и др.) газах.
В сварке можно использовать плавящиеся и неплавящиеся электроды. В большей степени специалисты работают с плавящимися электродами. Такой способ является бюджетным при сварке углеродистых и низколегированных сталей, поэтому он занимает одно из первых мест по объему производства среди механизированных способов сварки плавлением. При использовании проволоки:
- диаметром до 1 мм, а силы тока от 60 до 160 А, расход газа должен быть до 8 л в минуту.
- диаметром до 1,2 мм, а силы тока от 100 до 250 А, расход газа должен быть до 9–12 л в минуту.
- диаметром до 1,4 мм, а силы тока от 120 до 320 А, расход газа должен быть до 12–15 л в минуту.
- диаметром до 1,6 мм, а силы тока от 249 до 380 А, расход газа должен быть до 15–18 л в минуту.
- диаметром до 2 мм, а силы тока от 280 до 450 А, расход газа должен быть до 18–20 л в минуту.
Таков средний расход газа при сварке полуавтоматом. Есть еще косвенные факторы, которые могут повлиять на дополнительный расход газа, например, если сварка происходит на улице. В этом случае газ будет быстро улетучиваться, тем самым увеличится его расход.
Не стоит забывать и про качество самого газа, ведь если газ разбавлен, вам просто не удастся сохранить показатели в норме, перерасход будет в любом случае.
Влияние скорости сварки
Стоит помнить, что скорость может повлиять на прочностные качества соединения. В процессе сварки расплавленный металл должен заполнить ванну. На выходе должен получиться равномерный переход с образованием нормального покрытия кромок.
Длина шва должна быть больше диаметра применяемого стержня в 1,5-2 раза. Если поторопиться, то металлическая структура не сможет нормально прогреться, прочность ее снизится.
Стандартная сварочная ванна имеет параметры 14 мм в ширину и до 6 мм в глубину. Длина может варьироваться в диапазоне от 10 до 30 мм. Если учитывать вышеуказанные рекомендации и следить за непрерывным, равномерным заполнением сварочной ванны, можно получить качественный шов.
Изучая все важные показатели, можно понять, что такое процесс сварки. Качественное соединение напрямую зависит от правильного определения параметров и выбора необходимых настроек. Все данные играют огромную роль, особенно при изготовлении больших конструкций специального назначения. Ведь так важно, чтобы готовое соединение было износостойким.
Почему следует обращаться именно к нам
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.
Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.
Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.
Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.
Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.
Проверка сварочного оборудования
Работа большей части промышленных предприятий невозможна без использования сварочного оборудования. Аппаратура, предназначенная для выполнения сварочных работ, требует периодического планово-предупредительного ремонта. В этой статье поговорим о том, что представляет собой проверка сварочного оборудования, в чем ее суть и для чего она необходима.
Суть проверок сварочного оборудования
Разные виды сварочного оборудования нуждаются в различных обслуживающих мероприятиях. Перечень самих мероприятий и их периодичность определены в нормативах и правилах, касающихся конкретной аппаратуры. Но, помимо индивидуальных требований, существуют также общие правила, относящиеся ко всему оборудованию.
Эксплуатация, проверка и техническое обслуживание электросварочной аппаратуры, относящейся к электроустановкам, осуществляется в соответствии с Правилами технической эксплуатации электроустановок потребителей.
Названные правила требуют проведения следующих проверочных мероприятий сварочного оборудования:
- проведения визуального осмотра установок;
- контрольного включения в режиме холостого хода как минимум на 5 минут;
- замеров величин сопротивления изоляции;
- оценки исправности цепей защитного заземления;
- проведения испытаний при повышении напряжения.
Проверка сварочного оборудования, включающая визуальный осмотр, контрольное включение, оценку сопротивления изоляции, в обязательном порядке выполняется, когда аппаратура вводится в эксплуатацию после продолжительного перерыва в работе.
Рекомендуем статьи по металлообработке
Периодичность подобных проверок – один раз в полгода, также они проводятся, если на оборудовании обнаружены механические или электрические повреждения. По окончании проверки выполнявший ее сотрудник должен сделать соответствующую запись в специально предназначенном для этих целей журнале.
В журнале проверок состояния сварочного и термического оборудования, приборов и аппаратуры предусматриваются графы, содержащие информацию о:
- дате и порядковом номере проверки;
- наименовании оборудования, аппаратуры, приборов и инструментов;
- заводском номере проверяемого оборудования;
- инвентарном номере;
- виде проводимой проверки;
- метрологической проверке контрольно-измерительных приборов/дате проверки;
- метрологической проверке контрольно-измерительных приборов/сроке следующей проверки;
- заключении о состоянии оборудования;
- лице, проводившем проверку, его должности, Ф. И. О., подписи.
Журналы проверки сварочного оборудования прошиваются, их страницы нумеруются.
Проверяемое оборудование должно соответствовать нормативам, закрепленным в вышеназванных Правилах (Приложение 3), а также в инструкциях по эксплуатации и проведению техобслуживания.
Сварочное и термическое оборудование является источником повышенной опасности. В связи с этим осуществление контроля его состояния должно выполняться в соответствии со специальным руководящим документом РД 34.10.127-34.
Документ предписывает проведение проверок, ремонтных, профилактических работ со сварочным оборудованием в строгом соответствии с графиком, который утверждается главным техническим специалистом предприятия.
Особое значение имеет своевременная проверка измерительных приборов, являющихся составными элементами сварочного оборудования. Поэтому в составлении графиков проверки аппаратуры обязательно участие специалиста, отвечающего за проведение метрологических испытаний на предприятии.
Соответственно, плановая проверка сварочного оборудования или его техническое обслуживание должно проводиться одновременно с поверкой измерительных приборов.
Периодичность проверки сварочного оборудования, установленная руководящим документом, должна быть следующей:
- осмотр сварочных аппаратов переменного и постоянного тока (трансформаторов и выпрямителей) – дважды в месяц;
- осмотр сварочных инверторных преобразователей – еженедельно;
- осмотр оборудования для автоматической и полуавтоматической сварки – ежедневно.
Параметры проверки сварочного оборудования
Проверяя сварочное оборудование, инструменты и приспособления, необходимо сравнивать полученные результаты с приведенными в таблице данными:
Назначение оборудования, инструмента, приспособлений и основные проверяемые показатели
Возможные отклонения от требований
I. Оборудование для контактной стыковой и точечной сварки
1. Напряжение первичного тока
2. Рабочее давление сжатого воздуха
3. Герметичность системы охлаждения
4. Циркуляция воды в системе охлаждения
Беспрепятственная, с расходом, указанным в паспорте оборудования или в Приложении 2 Указаний
5. Длина рычага механизма осадки у стыковых сварочных машин с ручным приводом
При сварке арматурной стали класса A-IV не меньше 1200 мм
6. Длина рукоятки ручных зажимов стержней в электродах стыковых сварочных машин
Не меньше 500 мм
7. Установка электродов
а) В машинах для стыковой сварки – соосное расположение свариваемых стержней
б) В машинах для точечной сварки с двусторонним подводом тока – соосное расположение верхнего и нижнего электродов
в) То же, с односторонним подводом тока – оси смежных электродов должны располагаться в одной вертикальной плоскости параллельно друг к другу
8. Закрепление электродов
Надежно, без люфтов
II. Оборудование для дуговой сварки
1. Тип источника питания током
В зависимости от способа сварки в соответствии с рекомендациями Указаний
2. Подключение источника питания к сварочным постам
К самостоятельным электрическим сборкам, получающим ток от отдельных фидеров ближайшего трансформаторного поста
3. Напряжение тока, питающего первичную обмотку сварочного трансформатора
4. Напряжение холостого хода генератора при полуавтоматической сварке
На 2–5 В выше начального напряжения сварки
5. Прикрепление гибких токоподводящих кабелей (к трансформаторам, друг к другу и т. п.)
Плотное, с помощью наконечников, скрепляемых болтами или другим способом, обеспечивающим хороший электрический контакт
6. Площадь поперечного сечения гибких токоподводящих кабелей
В зависимости от сварочного тока: до 200 В – 25 мм 2
200–300 – 50 мм 2
300–400 – 70 мм 2
400–600 – 95 мм 2
7. Длина гибкого кабеля
8. Изоляция гибких кабелей
9. Полярность дуги при сварке постоянным током
В соответствии с рекомендациями Указаний
10. Чистота контактных поверхностей электродов (губок) и токоподводящего электрода стола в машинах для сварки под слоем флюса тавровых соединений элементов закладных деталей
Зачистка до металлического блеска
11. Скорость подачи сварочной проволоки
В зависимости от диаметров проволоки и свариваемых стержней в соответствии с требованиями Указаний
12. Равномерность подачи сварочной проволоки
Подача без рывков и задержек
13. Диаметр отверстия в наконечнике держателя полуавтомата
Наконечник выбирается в зависимости от диаметра сварочной проволоки. Диаметр отверстия канала наконечника должен быть больше диаметра проволоки на 0,3 мм
14. Выработка канала в наконечнике держателя
Местная выработка не более 1,5 мм
Наконечник может быть повернут так, чтобы проволока прижималась к невыработанному участку канала
III. Инструмент (электроды) для контактной стыковой или точечной сварки
1. Геометрические размеры
В зависимости от диаметра свариваемых стержней в соответствии с требованиями Указаний
При точечной сварке увеличение диаметра или размеров овальной рабочей поверхности в плане вследствие деформации электродов не должно превышать 3 мм
2. Форма электродов для точечной сварки
В зависимости от вида свариваемых элементов в соответствии с рекомендациями Указаний
3. Форма гнезд в электродах для сварки арматурной стали встык
В зависимости от класса арматурной стали в соответствии с рекомендациями Указаний
4. Состояние рабочих поверхностей электродов
а) Чистые до металлического блеска.
б) Отсутствие вмятины – желобка в месте контакта со стержнями.
в) Форма поверхности в соответствии с требованиями Указаний
Вмятины глубиной не более 1,5 мм
IV. Приспособления для дуговой сварки швами или ванной сварки
1. Тип электрододержателя для дуговой многоэлектродной ванной сварки
Специальный, в соответствии с рекомендациями Указаний
2. Тип и размеры инвентарных форм
В зависимости от положения и диаметра свариваемых стержней в соответствии с рекомендациями Указаний
3. Износ инвентарных форм
Зазор между цилиндрическими поверхностями стержней и форм не более 2 мм, а толщина стенок уменьшена не более чем на 0,15 d
4. Состояние внутренней (рабочей) поверхности медных форм
Свободна от шлака
Особые проверки сварочного оборудования
В отношении сварочного оборудования, не использовавшегося в течение трех и более месяцев, вводимого в эксплуатацию после ремонта либо впервые поступающего на предприятие, проводится особая проверка.
В обязательном порядке проверяют, имеется ли у сварочного оборудования техническая эксплуатационная документация (паспорт изделия, инструкция по эксплуатации, схемы), в полном ли объеме она представлена.
Оборудование осматривается визуально, новые аппараты очищают от лишней смазки, удаляют транспортные крепежи (при наличии), проверяют состояние болтовых соединений, подтягивают при необходимости.
Отметка о поверке метрологических приборов, проставляемая на корпусе оборудования специализированной организацией, должна быть действующей (непросроченной). Данные о сроках поверки могут быть занесены в паспорт аппаратуры.
Проверка сварочного оборудования также включает в себя измерение уровня электрического сопротивления изоляции. Оценка работоспособности аппаратов проводится путем их включения.
Сопротивление изоляции замеряется между обмотками (при проверке трансформаторов и выпрямителей) и между каждой обмоткой и корпусом сварочного аппарата.
Проверки должны проводиться в соответствии с требованиями, прописанными в технических документах к оборудованию. Если инструкция по эксплуатации не содержит раздела о рекомендуемых методиках испытаний, при их выполнении необходимо руководствоваться ГОСТами, к примеру, при работе с автоматическими сварочными аппаратами – ГОСТом 8213.
Полуавтоматические сварочные устройства должны соответствовать требованиям, закрепленным в ГОСТе 18130. При испытаниях оборудования на основе сварочного инвертора необходимо руководствоваться ГОСТом 7237, аппаратов переменного тока (трансформаторов) – ГОСТом 7012.
Руководящим документом при испытаниях электрических генераторов является ГОСТ 304, аппаратов, работающих на выпрямленном сварочном токе, – ГОСТ 13821.
Хранение и обслуживание сварочного аппарата
Проверка сварочного оборудования также включает в себя регулярное базовое обслуживание, т. е. очистку установок от пыли и загрязнений. Для проведения технического обслуживания аппаратура либо сдается в сервисный центр, либо привлекается специалист с опытом такого рода работы. При отсутствии навыков заниматься техническим обслуживанием установок не рекомендуется.
Прежде чем приступить к обслуживанию аппаратуры, следует отключить ее от питания. Для удаления загрязнений на корпусе и кабелях необходимо воспользоваться влажной (но не мокрой) тряпкой, при сильных въевшихся загрязнениях – специальным средством. При отсутствии необходимости корпус оборудования разбирать не следует. Не стоит перегибать или заламывать провода, работа в целом должна выполняться аккуратно.
Специалисты для очистки оборудования используют сжатый воздух (воздушный компрессор). Постоянно замасливающиеся элементы нуждаются в регулярной очистке при помощи тряпки. Специалист проверяет надежность крепления деталей, при необходимости подгоняет их.
Проверке также подлежат кабели, которые не должны иметь разрывов и неисправностей. Периодичность подобных проверок – раз в месяц, а также перед тем, как установка будет отправлена на хранение.
Соблюдение правил при хранении оборудования влияет на срок его службы и частоту выхода из строя.
Для хранения инвертора можно использовать заводскую коробку, но лучшим вариантом станет пластиковая упаковка (плотный полиэтиленовый пакет, рулонная упаковка и пр.). Оборудование должно быть надежно защищено от пыли, грязи, воды и снега. Однако упаковочная тара не должна быть слишком плотной, воздух внутри нее должен циркулировать.
Несмотря на то, что температура хранения современного сварочного оборудования может варьироваться от +50 до -20 °С, оптимально хранить установки при комнатной температуре. Сырость, повышенная влажность, хранение аппаратуры непосредственно на земле отрицательно скажется на ее состоянии.
Режимы автоматической сварки
Режимы автоматической сварки под флюсом выбираются на основании сила сварочного тока, его рода и полярности, напряжения электрической дуги, скорости сварки, диаметра электродной проволоки, а также скорости, с которой проволока подается в зону сварки.
Не столь важными, но тоже имеющими значимость при выборе режима сварки являются данные о величине вылета электрода, угле наклона электрода и свариваемых кромок, составе флюса для автоматической сварки, виде сварного соединения, а также информация о подготовке металла под сварку. Важно уметь правильно подобрать режим, чтобы сварочный шов получился крепким, а сам процесс был правильно выстроен.
Режимы автоматической сварки и основные параметры
Технические условия (ТУ) для сварки различных изделий содержат всю информацию, необходимую для работы мастера. При отсутствии таких данных специалист подбирает нужный режим сварки, проводя эксперименты на заготовках, выполненных из аналогичного сплава.
Используется несколько различных методов создания соединений. Однако при применении автоматизированного процесса отдают предпочтение электродуговой сварке с защитой флюсом. Специалисты называют ее самой эффективной. В данной статье мы затронем режимы автоматической сварки и расчет основных параметров их проведения.
Примечание. Сварка под флюсом в автоматическом режиме целесообразна, если толщина обрабатываемого изделия (мм) в пределах 5–50.
Основные особенности процесса:
- Необходимо аккуратно и скрупулезно проводить обработку краев шва. Причина заключается в пористой структуре разъема, из-за чего часто образуются трещины, причем это относится ко всему шву.
- Проводить сварку следует сразу после обработки краев.
- Требования к материалам заготовки и электродов достаточно высоки.
Важными параметрами сварки являются:
Глубина провара во многом зависит от величины тока, проходящего через дугу. На нее оказывает влияние состав сплава, толщина заготовки, а также рисунок предстоящей сварки.
Для перераспределения тепла между заготовкой и электродом (плавящимся) чрезвычайно важна полярность электрического тока: прямая используется специалистами для того, чтобы повысить количество наплавляемого материала в шве. Однако она приводит к разбрызгиванию металла из сварочной ванны и снижает стойкость горения дуги.
Но чаще используют обратную полярность. Ее предпочитают для работы под защитой флюсом с большинством металлов, исключение составляет только алюминий.
Правильность формы сечения соединения во многом зависит от того, насколько оптимальным был выбор скорости сварки. Она оказывает прямое влияние на время прохождения сварочных процессов (металлургических и тепловых), а также на срок жидкого состояния ванны. Обратное влияние скорость оказывает на погонную энергию и расход тепла.
С изменением показателя скорости соединения меняются коэффициент формы сечения, ширина и глубина шва.
Напряжение влияет на размер контактного пятна дуги при ее соприкосновении с металлом. Увеличение приводит к его возрастанию. Низкое напряжение приводит к созданию вогнутого валика шва, не имеющего усиления. Кроме того происходит появление подрезов по линии шва. Высокое напряжение способствует узкой зоне проплавки и создает усиление шва.
Плотность тока обратно пропорциональна диаметру электродной проволоки при определенном токе.
Плотность тока увеличивается с уменьшением диаметра электрода. Возрастая, плотность тока уменьшает коэффициент формы соединения.
Пошаговый алгоритм расчета режимов автоматической сварки
- Определяются вводные – какой необходимо создать тип шва, толщина используемого металла, параметры используемого оборудования: его мощность и производительность.
- Конструктор создает чертеж шва с расчетом требуемых параметров. Он должен быть выполнен в масштабе и разрезе.
- Затем высчитываются размер силы тока, диаметр используемого электрода и скорость, с которой планируется его подавать.
- Проводится расчет скорости проведения сварки в автоматическом режиме.
- Последним необходимо определить площадь создаваемого провара. В дальнейшем, при выполнении шва, значение данного показателя должно совпадать с образцом на чертеже. Отклонение не может превышать 10 % в обе стороны. Если оно становится больше, то меняются параметры дуги, в первую очередь, напряжение, и скорость работ.
Конструкторская документация должна включать следующие параметры: толщину заготовок, тип разделки швов в соответствии с требованиями ГОСТа к определенным видам и маркам металла, а также их форма. Технологии, которыми планируется пользоваться для проведения работ, оказывают влияние на подготовку краев деталей к соединению и режимы автоматической дуговой сварки.
Используются следующие формулы для расчета параметров сварки:
Q – удельная тепловая энергия (кДж/мм);
I – сварочный ток (А);
U – напряжение на дуге (В);
V – скорость сварки (мм/мин.);
к – коэффициент полезного тепловложения (для сварки под флюсом К = 0,9).
Коэффициент формы сечения шва рекомендуется в диапазоне 1…1,5. F=S / h, где:
h – глубина проплавления.
Надо отметить, что статья содержит только общую информацию, включающую особенности и режимы автоматической сварки под слоем флюса. На работу оказывает влияние сорт (марки) стали, флюс, применяемый для сварки и прочие факторы. Важно также уметь находить и пользоваться таблицами, с помощью которых можно сделать расчет оптимального режима сварки.
Критерии выбора режима автоматической сварки под флюсом
К основным параметрам выбора различных режимов сварки автоматом с защитой флюсом относятся: толщина кромок соединяемых изделий, требования, предъявляемые к геометрии (размерам и формам) швов (они зависят от глубины, на которую проплавляется металл), и ширина соединения.
В ходе выбора режима работы, опираясь на толщину деталей, определяют диаметр проволоки. После чего рассчитывают сварочный ток, исходя уже из диаметра электрода. Затем высчитывается, с какими скоростями следует подавать проволоку в сварную ванну и производить сварку.
Электродная проволока, используемая для сварки автоматом, должна иметь сплошное сечение, а диаметр может колебаться от 1 до 6 мм. И это при силе тока от 150 до 2000 А. Напряжение дуги – от 22 до 55 В. Данные таблицы, которая приводится ниже, позволяют приблизительно определять режимы автоматической сварки под флюсом:
Свариваемый материал
Толщина металла, мм
Вид шва
Форма кромок
Зазор, мм
Диаметр электрода, мм
Сила тока, А
Напряжение, В при токе:
Скорость сварки, м/ч
переменном
постоянном (обратной полярности)
3
Односторонний
Без разделки
0–1,5
2
250–500
28–30
26–28
48–50
5
0–2
400–450
38–40
10
2–4
700–750
34–38
30–34
Двусторонний
1–3
650–700
32–34
20
5–7
950–1000
40–44
32–36
18–20
750–800
38–42
22–24
30
6–8
16–18
6
V-образная, 60°
250–280
30–32
25–28
350–380
17–20
12
500–550
30–36
Сварка титана и его сплавов
4
340–360
45–55
8
16
590–600
40–50
520–540
40–42
40
800–820
42–44
Влияние выбранного режима автоматической сварки на глубину проплавления и ширину шва
- Влияние силы тока и напряжения сварочной дуги.
С возрастанием силы тока увеличиваются и давление дуги, и тепловая мощность. Соответственно, глубже становится проплавка металла. Однако ширина сварного соединения практически не меняется.
При увеличении напряжения дуги ее подвижность также возрастает. Одновременно растет и доля тепла, расходуемого на расплавку флюса. Вместе с тем, шире становится сварное соединение, при этом глубина проплавки меняется мало.
При выборе большего диаметра электрода и неизменной величины тока снижается глубина проплава металла. Ширина соединения при этом возрастает из-за того, что подвижность дуги увеличивается.
При росте скорости сварки уменьшается глубина проплава и ширина соединения. Это происходит потому, что количество расплавляемого металла снижается по сравнению с работой на меньшей скорости.
Одновременно с изменением полярности и рода тока меняются форма и размер соединения. Причина кроется в больших переменах количества тепловой энергии, которая возникает на дуге (ее аноде и катоде). Глубина проплавки снизится от 40 до 50 % при прямой полярности постоянного тока и на 15–20 % – при переменном токе. И это в сравнении с постоянным током обратной полярности.
Следовательно, сварное соединение малой ширины, в котором глубина проплава должна быть достаточно большой (примером может служить стыковой шов или угловое соединение без разделки), следует выполнять с помощью постоянного тока обратной полярности.
Вылет проволоки возрастает вместе с увеличением скоростей подогрева и плавления. Следовательно, увеличивается объем сварной ванны из-за металла электродной проволоки, что создает препятствие плавлению основного металла. Соответственно, глубина проплава снижается. Зная данную особенность, можно в ходе автоматической наплавки увеличить ее производительность.
Иногда (большей частью в процессе той же автоматической наплавки) электрод перемещают с различными амплитудой и частотой поперек кромок. Это сильно меняет как размер, так и форму сварного соединения. Таким образом происходит уменьшение глубины проплава и увеличение ширины шва изделия.
Данный способ сварки снижает возможность прожога в ходе создания стыковых соединений, в которых зазор между кромками достаточно большой. Этого же можно добиться при работе сдвоенным электродом, расположив их поперек движения сварки. При их размещении вдоль сварного движения глубина проплава увеличится.
При наклоне электрода вперед возможно подтекание расплавленного металла в сварную ванну. По этой причине может снизиться глубина проплава и увеличиться ширина соединения. Если же наклонить электрод назад, сварная дуга будет отсекать расплавленный металл от рабочей зоны. Вследствие этого уменьшится глубина проплава и возрастет ширина соединения.
По аналогии с вышесказанным, при сварном соединении, выполняемом на спуск, уменьшается глубина проплава и увеличивается ширина шва. А при соединении на подъем происходит обратный процесс – увеличивается глубина проплава и уменьшается ширина шва.
Основные режимы и параметры сварки
Во время любых строительных и промышленных работ часто применяется сварка. При помощи нее можно сваривать различные металлические конструкции, осуществлять ремонт оборудования и других изделий.
Существуют разные виды сварочных технологий, которые используются в зависимости от типа металла, его толщины, прочности и других важных параметров. Но также качество соединения зависит и от правильно выставленных настроек на сварочном оборудовании. Стоит предварительно рассмотреть основные режимы сварки, их особенности и правильную настройку.
Параметры сварки
Чтобы выполнить правильный выбор режима сварки стоит рассмотреть параметры сварочной технологии. Каждый сварщик должен знать, из каких веществ состоит металла, отличия состава, толщину и вид конструкции. После получения требуемой информации выставляют правильный режим. Имеется много критериев, от которых зависят качественные характеристики работ. По этой причине их разделяют на основные и дополнительные параметры режима сварки.
Основные
Основные параметры режима сварки оказывают влияние на объемы требуемой энергии, а также они определяют ее передачу на металлическую поверхность.
Среди главных показателей сварочной технологии можно выделить:
- сила тока;
- вид полярности тока;
- род тока;
- размер диаметра стержней;
- показатель длины дуги;
- уровень напряжения;
- скорость движения вдоль соединения;
- число проходов.
Каждый критерий параметр оказывает влияние на свойства формирования соединения. В процессе сваривания можно изменять показатели, это позволит получить более прочный и надежный шов.
Существуют определенные особенности основных параметров, которые необходимо учитывать при проведении сварочных работ:
- От показателя силы тока зависит интенсивность расплавления металла. Чем выше данный параметр, тем производительнее сварочный процесс. Если будет установлена высокая сила тока без учета требуемого диаметра электрода, тогда будет отмечаться снижение качественных характеристик шва. А при низком токе происходит обрывание дуги, и в результате этого появятся области с непроварами.
- Полярность тока является направлением движения энергии (от катода к аноду и наоборот). Совместно с направлением подбирают ток - он может быть постоянного или переменного типа. Если осуществляется сваривание с использованием постоянного тока с обратной полярностью, то соединение получится глубже на 40 %.
- При сваривании расплавляемый материал должен равномерно заполнять соединение. Иначе прочностные характеристики снизятся.
Дополнительные
Однако чтобы режим сварки был правильным, стоит выставить правильные настройки. Но они обычно устанавливаются с учетом дополнительных параметров, среди которых можно выделить:
- вылет стержней;
- вид материала и толщина покрытия электрода;
- температурные показатели свариваемых изделий;
- вид расположения элементов;
- форма кромок;
- степень подготовки поверхности.
Как подобрать сварочный ток
Расчет режимов ручной дуговой сварки осуществляется с учетом выставления главных параметров тока, а именно рода, полярности и силы. В зависимости от рода ток бывает переменным и постоянным. Полярность делится на прямую и обратную.
Рассматривая основные параметры режима сварки, стоит обратить внимание на величину силы тока. Она подбирается при помощи определенных таблиц. Показатель тока определяется в соответствии с толщиной свариваемых изделий из стали, сварочной проволоки. А вот точные показатели юстировки определяются в зависимости от вида дуги и соединения. Стоит учитывать, что чем сильнее ток, тем температурные показатели под основанием дуги будут выше. Это все отразится на скорости сварочных работ.
Проведение сварочной технологии с использованием тока с высокой силой и сильно тонкого сварочного провода может к перегреву и разбрызгиванию расплавленного металла. Если применяются слишком тонкие элементы, то данный режим может привести к их прожиганию.
При использовании тока со слабой силой может происходить обрывание дуги, она становится неустойчивой. В итоге соединение выходит низкого качества, образуется много зон с непроварами. По этой причине многие сварщики не советуют использовать данный режим.
Важно! Глубинные показатели сварочной ванны зависят от типа используемого тока. Если оборудование используется на переменном токе, то показатель глубины провара будет на 15 % выше, чем у переменного тока.
При прямой полярности отмечается сильное нагревание металлического изделия. По этой причине данную полярность рекомендуется применять для сваривания толстых элементов, потому что для образования качественного соединения требуется большее расплавление металла. Если прямая полярность будет применяться для тонких деталей, то они быстро сгорят и шов выйдет низкого качества. Для тонких изделий стоит применять ток с обратной полярностью.
Взаимосвязь между силой тока и толщиной электрода
Рассматривая параметры сварки, стоит обратить внимание на связь между силой тока и толщиной электрода. Размер стержня должен подбираться в соответствии с толщиной свариваемого шва и с используемым методом сварочной технологии. К примеру, для изделия с толщиной 3-4 мм рекомендуется применять стержни 3 мм. Сваривание многопрофильных элементов осуществляется в несколько проходов, на начальном этапе используется электрод с размером 4 мм.
После выбора стержней стоит воспользоваться специальными таблицами, в которых указывают требуемые показатели силы тока, именно они позволяют выполнить правильный расчет режимов сварки. К примеру, для стержней 3 мм соответствует показатель 65-100 А. Для вертикальной и потолочной сварки подходит электрод с диаметром не менее 4 мм. При горизонтальном сваривании сила тока снижается на 15-20 %.
Особенности длины дуги
На выбор и расчет режимов сварки оказывает влияние длина дуги, а именно расстояние от конца стержня до заготовки. Этот критерий зависит от выбранных стержней, обычно он указывается в специальных таблицах.
Стоит отметить! Чтобы получить прочное сварное соединение и качественное проваривание требуется добиться единого значения длины дуги по всей области шва. Для этого требуется опыт и определенные навыки.
Для стержней с диаметром 4 мм показатель длины дуги должен быть 4,5 мм. Сохранить данное состояние в течение сварочного процесса достаточно тяжело. Обычно для этих целей применяются сварочные каретки.
Диаметр электрода
Выбор параметров режима сварки осуществляется с учетом типа электрода. Диаметр зависит от показаний толщины металлического изделия и положения соединения. Независимо от толщины швы в разных положениях свариваются при помощи стержней с диаметром 4 мм.
Если шов обладает многослойной структурой, то для сваривания первого соединения стоит использовать стержни 3 или 4 мм. Остальные швы обрабатываются при помощи электродов с большим диаметром. Ниже имеется таблица режимов сварки, в которой указана толщина металла, диаметр электрода и сила тока.
Угол наклона электрода
Выполняя расчет режимов сварки полуавтоматом необходимо брать во внимание критерии угла наклона электрода. При сваривании стержень по отношению к шву должен быть с небольшим отклонением от нормы на 10 градусов. Глубина и ширина соединения зависит от расположения стержней к стыку.
Если сваривание осуществляется углом вперед, то глубинные показатели уменьшатся, а соединение расширится. Это происходит потому, что дуга нагоняет волну расплава перед собой, через которую выполняют расплавление металла.
Если выбирается режим с углом наклона назад, то расплав будет переходить в конец сварочной зоны. Электрическая дуга оказывает прямое влияние на соединяемые изделия. В результате этого будет увеличение глубины проплавления стыка и уменьшение ширины шва.
Наклон заготовок
Если вы думаете над тем, как рассчитать режим сварки, то не стоит упускать показатель наклона заготовок, которые используются для сваривания. В момент, когда держак проводят сверху вниз, то под дугой происходит утолщение расплава. В итоге глубина провара становится меньше, а соединение расширяется. Если сваривание начинается с нижней части с последующим движением вверх, то слой расплава под дугой истончается. Глубина ванны повышается, а соединение становится уже.
Если соблюдать угол в пределах указанных параметрах, то будет формироваться нормальное соединение. При большем уклоне и при осуществлении сварки на спуск из кратера вытечет весь расплавленный металл. А при проведении сваривании сверху вниз будут возникать области с непроварами.
Скорость провара
Стоит учитывать, что расчет скорости сварки может влиять на прочностные качества соединения. При осуществлении сваривания расплавленная металлическая масса должна заполнять ванну. Должен выйти равномерный переход с образованием нормального покрытия кромок, а структура соединения должна быть без подрезов, наплывов.
Оптимальная длина шва должна быть в 1,5-2 раза больше диаметра применяемого стержня. Если будет превышена скорость сварки, то металлическая структура не сможет нормально прогреться, а прочность снизится.
Если изучить все важные параметры, то можно будет понять что такое режим сварки, и для чего он нужен. Правильные настройки и параметры позволяют выполнить качественное и прочное соединение, которое будет обладать высокой износостойкостью. Каждый показатель имеет огромное значение, особенно при изготовлении больших конструкций особого значения.
Интересное видео
Режимы ручной дуговой сварки
Несмотря на появление нового удобного оборудования, ручная сварка не сдает своих позиций. Привлекает простота использования и отсутствие необходимости больших затрат. Для того, чтобы сварной шов получился наиболее качественным, требуется провести подготовительные работы, в которые входит установление режимов, необходимых для конкретного вида материалов для соответствия требованиям технологического процесса.
Режим ручной дуговой сварки - это установка параметров, максимально гарантирующих образование сварного шва, имеющего требуемые габариты и конфигурацию, а также необходимые для конкретного соединения характеристики. Параметры режима ручной дуговой сварки делятся на основополагающие и дополняющие их. Выбор и установка параметров производится самим сварщиком согласно существующим требованиям. На выбор оказывают влияние вид сварного соединения, артикул металла свариваемых деталей и проводника тока, пространственное расположение.
Основные параметры
Наиболее значительные параметры ручной дуговой сварки:
- ток;
- напряжение;
- полярность;
- диаметр электрода;
- скорость;
- амплитуда колебаний поперек шва.
Вид и размер этих параметров подбираются сварщиком перед началом работы на основе рекомендаций и личного опыта.
Величина тока
Это значение значительно влияет на качество получаемого шва и скорость сварочного процесса. Между параметрами существует прямая зависимость: величину тока при сварке устанавливают согласно диаметру выбранного электрода, а диаметр, в свою очередь, зависит от толщины свариваемых элементов.
Для более точного расчета значения тока используют формулу, в которой оно прямо пропорционально диаметру электрода. При этом применяется поправочный коэффициент. Для разных диаметров он является различным. При каком значении силы тока проводят ручную электродуговую сварку? При слабом токе нарушается стабильность дуги, шов не будет провариваться целиком, что вызывает появление трещин. Повышенное значение тока вызывает быстрый процесс сварки и приводит к усиленному распространению брызг.
Диаметр электрода
Выбор режима сварки при ручной электродуговой сварке включает необходимость грамотного определения необходимых диаметров электродов. Электроды, имеющие диаметр свыше 6 мм, отличаются большим весом, при котором их трудно удерживать в нужном направлении длительное время. Кроме того, при использовании таких электродов плохо проваривается корень шва.
Если используется многопроходной вариант, то первый слой проводится электродом 2-3 мм, а для последующих можно использовать большее значение диаметра. Это имеет большое значение при сварке ответственных конструкций, поскольку меньший диаметр обеспечивает лучшую проварку корня. При одном заходе можно сразу применять электрод большого диаметра.
При решении задачи правильного выбора диаметра электрода рассматривается марка свариваемых поверхностей. Например, для сварки чугунных изделий хорошо себя зарекомендовали электроды небольшого диаметра. Уровень тепла при этом понижается и образуется валик небольшого сечения. Если была осуществлена предварительная разделка кромок, то допускается использование электродов диаметром 3 мм, не слишком ориентируясь на толщину деталей.
Напряжение дуги
Этот параметр зависит от длины дуги, то есть расстояния от конца электрода до металлической поверхности. Дуга имеет разные размеры. Больше дуга - больше напряжение. Для плавления расходуется значительное количество тепла. Сварочный шов становится шире, а глубина провара меньше.
Скорость
Режимы ручной дуговой сварки покрытыми электродами включают установление скорости. Чтобы избежать переполнения ванны и, как следствие, возникновения на металле подтеков, следует выбрать оптимальное значение скорости и поддерживать его постоянным на протяжении всего процесса. Большая скорость приведет к недостаточному провару шва, что вызовет появление трещин.
При слишком медленном перемещении жидкий металл начнет собираться впереди дуги. Шов получится неровным, появятся непровары. Для получения удачного шва скорость должна быть 35-40 м/час. Тогда сварочная ванна будет находиться сверху поверхности кромок, не образуя стекания вниз. Переход ее к соединению будет плавным, наплывы и подрезы не образуются.
Ширина шва уменьшается при увеличении скорости.
Полярность
Как правило, для сварочных работ применяют ток постоянной величины. Прямая полярность при постоянном токе дает возможность сваривать толстые детали. Чтобы избежать появления прожогов при соединении тонких металлов включают обратную полярность. Сварку переменным током практически не применяют, поскольку это снижает производительность.
Выбор режима сварки при ручной дуговой сварке заключается, в частности, в возможности проводить процесс при разных полярностях. При прямом варианте проводник тока подключают к клемме с минусом, а металлическое соединение к плюсу. Интенсивней, чем электрод, начинаются расплавляться элементы сварного соединения. Это дает преимущество при сварке толстых металлических деталей.
Обратная полярность получается при подключении электрода к плюсу, а металлических деталей к минусу. Это обеспечивает интенсивный расплав электрода, превосходящий плавление деталей.
Объяснение является достаточно простым и соответствует физическим законам. Где плюс, там нагревание больше. Соответственно, при прямой полярности выше нагреваются свариваемые детали. Становится возможным соединение крупных изделий. Применение такого вида полярности на тонких деталях вызовет прожоги, и шов будет некачественным. Поэтому для соединения тонких деталей обеспечивают обратную полярность.
Особенности при вертикальном расположении
Сварка в вертикальном положении является более сложной по сравнению с горизонтальным вариантом. Поэтому выбор режимов дуговой сварки в этом случае является особенно важным.
Как корректируют величину сварочного тока в вертикальном положении? Первое требование относится к дуге - она должна быть короткой. Объем сварочной ванны не должен быть большим. Для ее уменьшения следует использовать электроды небольшим диаметром, а величину тока устанавливать на 10-15% меньше, чем, когда сварка проводится в горизонтальном положении внизу.
Дополнительные параметры
Режимы сварки электродуговой включают не только основные, но и дополняющие их параметры. Такие режимы дуговой сварки так же оказывают влияние на конечное получение сварного шва.
Вылет электрода
Вылетом электрода называется расстояние от торца электрода до поверхности металлической детали. Он оказывает влияние на процесс сварки и размеры получаемого шва.
Увеличение этого параметра снижает стабильность горения дуги. Металл начинает сильнее разбрызгиваться. Маленький вылет делает затруднительным наблюдение за сварочным процессом. Набрызгивание происходит на сопло.
Толщина электродного покрытия
Режимы ручной дуговой сварки включают особенности электродов, в частности, его покрытие, а именно его толщина. Этот параметр регламентирует ГОСТ 9466. Оптимальное покрытие предполагает нахождение его торцевого размера в пределах 0,5-2,5 мм. Применение проводников тока с такой толщиной покрытия обеспечивает получение прочного шва, выдерживающего большие нагрузки.
Число проходов
Однопроходной способ сварки предполагает сваривание одним слоем. Колебательные движения при этом не делаются. Он применяется при сварке деталей небольшой толщины, когда ширина шва не превышает 14-15 мм. При этом уменьшается величина остаточных деформаций. Для стыковых соединений, особенно при сварке толстых элементов, используют несколько слоев, и этот способ называется многопроходным.
Шов, осуществленный за один проход, имеет ванну большего размера. Преимуществами являются высокая производительность процесса и экономичность способа. К недостаткам относятся снижение пластичности шва и слишком большая зона нагрева. Все швы при многопроходной сварке выполняют электродами одного размера.
Читайте также: