Как проверить транзисторы в сварочном инверторе
Принцип работы IGBT транзисторов основан на применении n-канального МОП-транзистора малой мощности для управления мощным биполярным транзистором. Таким образом, удалось совместить достоинства биполярного и полевого транзистора. Малая управляющая мощность, высокое входное сопротивление, большой уровень пробивных напряжений, малое сопротивление в открытом состоянии - позволяют применять IGBT в цепях с высокими напряжениями и большими токами.
Биполярные транзисторы с изолированным затвором (IGBT или БТИЗ) целесообразно использовать в сильноточных, высоковольтных ключевых схемах. Сварочные аппараты, источники бесперебойного питания, приводы электрических двигателей, мощные преобразователи напряжения – вот сфера применения таких элементов.
Названия выводов IGBT: затвор, эмиттер, коллектор.
Биполярные транзисторы с изолированным затвором способны коммутировать токи в тысячи ампер, напряжение эмиттер-коллектор может достигать несколько киловольт. Но частота работы этих транзисторов значительно ниже, чем частота полевых транзисторов.
Как проверить IGBT транзистор мультиметром
Проверяется IGBT FGH40N60SFD. IGBT часто пробиваются накоротко, такие неисправные транзисторы легко выявить с помощью мультиметра. Перед проверкой IGBT транзистора мультиметром, необходимо обратиться к справочным данным и выяснить назначение его выводов.
Затем произвести следующие действия:
1. Переключить мультиметр в режим «прозвонка». Произвести измерение между затвором и эмиттером для выявления возможного замыкания.
2. Произвести измерение между затвором и коллектором для выявления возможного замыкания.
3. На секунду замкнуть пинцетом или перемычкой эмиттер и затвор. После этого транзистор будет гарантированно закрыт.
4. Соединить щуп мультиметра «V/Ω» с эмиттером, щуп «СОМ» с коллектором. Мультиметр должен показать падение напряжения на внутреннем диоде.
5. Соединить щуп мультиметра «V/Ω» с коллектором, щуп «СОМ» с эмиттером. Мультиметр должен показать отсутствие замыкания и утечки.
Для более надежной проверки IGBT транзистора можно собрать следующую схему:
При замыкании контактов кнопки лампочка должна загораться, при размыкании – тухнуть.
Решено Важно! Принципы ремонта импульсных сварочных преобразователей.
Эта инструкция поможет Вам в ремонте импульсных (инверторных) сварочных аппаратов при отсутствии схемы. Так же она применима при ремонте любых мощных импульсных источников питания, собранных по топологии полумоста, косого полумоста и полного моста (кроме обратнохода). Данная инструкция предназначена для мастеров обладающих начальными знаниями в области импульсных источников питания (ИИП).
НЕ ЗАБЫВАЙТЕ О ТЕХНИКЕ БЕЗОПАСНОСТИ. Часть схемы гальванически связана с сетью и её проверка заземлённым осциллографом невозможна без развязки.
Все описанное ниже носит рекомендательный характер, авторы не несут никакой ответственности за какие либо последствия использования материала.
Основная последовательность определения неисправности: открываем корпус, прозваниваем силовые элементы (мощные транзисторы и диоды) на предмет КЗ тестером. Ищем визуально подгоревшие элементы и цепи. Определяем тип ШИМ-контроллера. Ищем в Интернете даташит на него. Подаем на ШИМ-контроллер питание от внешнего источника питания, величина и ножки – из даташита. Проверяем наличие импульсов на выходах ШИМ-контроллера и затворах силовых ключей. Если все вышеописанное в норме то, не отключая внешнее питание ШИМ-контроллера, подаем на вход напряжение с ЛАТР-а вольт 40 или подаем сетевое напряжение через лампочку. Меряем напряжение на выходе, если отсутсвует, проверяем работу компараторов обратных связей. Если нет запуска без подключенного внешнего источника питания, проверяем исправность дежурного(ых) источника(ов) питания. Если имеет место быстрый перегрев, проверяем форму импульсов осциллографом на затворах мощных транзисторов, импульсы должны иметь крутые фронты.
1. Если ваш источник коротит сеть, то сначала отключите и проверьте тестером мощные транзисторы. Ключей может быть два в полумосте, косом полумосте; либо четыре в полном мосте. Учтите, что каждый ключ часто состоит из двух-четырех транзисторов. При этом коллекторы и эмиттеры (или стоки и истоки) этих транзисторов запараллелены, а затворы, каждый через свой низкоомный резистор 5-15 Ом, соединены с драйвером затвора. При проверке тестером (и для IGBT и для MOSFET) затвор не должен звониться ни с одним выводом, а коллектор-эмиттер (так же и сток-исток) звонятся как диод. Проверьте мощные высоковольтные диоды которые могут стоять параллельно ключам и выходные диоды (могут состоять из нескольких запараллеленных). При выходе из строя мощных транзисторов, как правило требуется замена резисторов в затворах.
2. Далее необходимо проверить схему управления. Для этого, не подключая мощные ключи, подайте питание на схему управления. Обычно она питается от отдельного маломощного источника напряжением 12-20В. Можно подать питание и извне. Проверьте осциллографом наличие управляющих импульсов на проводах идущих к затворам ключей. Амплитуда импульсов должна быть 12-15В Частота повторения 20-40кГц. Реже встречаются ИИП с частотой до 100 кГц. Коэффициент заполнения импульсов скорее всего будет близок к 45% т.к. при отсутствие выходного тока схема регулировки выведет ШИМ на максимум.
3. Если импульсы есть, то неисправна, как правило, только силовая часть. Заменяем неисправные ключи, проверяем затворные резисторы и через ЛАТР подаем на силовой каскад не более 40В, лучше через лампочку 100Вт. Можно не подключать выходные диоды, если нет уверенности в их исправности. На коллекторе (стоке) верхнего ключа должно быть постоянное напряжение 50-60В на его эмиттере и коллекторе нижнего должны быть импульсы амплитудой 50-60В совпадающие с управляющими. На выходных обмотках силового трансформатора должны быть те же импульсы, но с амплитудой в К раз меньше. Для сварочных ИИП, К обычно равен 3.
4. Теперь подключаем выпрямительные диоды и проверяем напряжение после них. Должно быть постоянное напряжение амплитудой равное импульсам во вторичной обмотке силового трансформатора.
5. Если всё нормально, то можно увеличивать сетевое напряжение до нормы (220-380) , ещё раз проверяем импульсы на затворах, коллекторах и вторичках транса. Теперь можно убрать лампочку и подключить нагрузку. В качестве нагрузки можно использовать нихромовую или железную проволоку диаметром несколько миллиметров. При необходимости для охлаждения её можно поместить в ведро с водой.
6. Если при проверке по п2 на затворах нет импульсов, то придётся ремонтировать схему управления. Проследите по плате цепи от затворов до ШИМ-контроллера. Обычно между ними включён(ы) ТГР (трансформатор гальванической развязки на маленьком кольце) и(или) микросхема-драйвер, например из серии IR21XX. Проследите с каких выводов ШИМ-контроллера снимаются управляющие импульсы и куда подается питание. Этой информации достаточно чтобы определить марку ШИМ-контроллера, если её маркировку не видно. Далее надо найти datasheet на этот контроллер, там есть вся необходимая информация по «обвязке» контроллера. Чаще всего используют контроллеры TL494, UC3825, UC384* UC3875 (для полного фазосдвигающего моста).
7. В схеме управления могут использоваться как встроенные операционные усилители контроллера, так и внешние ОУ. Сравнивая документацию с платой можно понять, используются ли встроенные ОУ. В сварочных ИИП на ОУ сигнал обратной связи поступает чаще всего с токового трансформатора (намотанного на маленьком кольце) имеющего один виток в цепи силовых ключей. В более сложных ИИП могут использоваться в качестве датчиков тока шунты, датчики Холла. Может обратная связь иметь и второй канал по напряжению.
Подготовили EvgeniS, lee
При снятии осциллограм с силовых каскадов, настоятельно рекомендую, использовать разделительный трансформатор, при этом корпус осциллографа никогда не окажеться под потенциалом относительно земли, что очень бережет нервы и здоровье. Я полюзуюсь 5 кВт трехфазным, вторички контакторами перекидываються со звезды на трехугольник и на выходе имеем и 310 и 550В( после моста ларионова с конденсатором) от него же, кстати можно запитывать и преобразователи частоты и нагружать их можно аналогичным трансом, но это другая тема
"Лампочный" метод хорош, но только для проверки на ХХ, при настройке под нагрузкой, особенно при "косячном" управлении, выходные каскады лучше включать через сверхбыстрый (ultra fast) плавкий предохранитель, ИГБТ и диоды, процентах примерно в 95, выдерживают ток КЗ на время сгорания указанных предохранителей.
Информация Неисправность Прошивки Схемы Справочники Маркировка Корпуса Сокращения и аббревиатуры Частые вопросы Полезные ссылки
Справочная информация
Этот блок для тех, кто впервые попал на страницы нашего сайта. В форуме рассмотрены различные вопросы возникающие при ремонте бытовой и промышленной аппаратуры. Всю предоставленную информацию можно разбить на несколько пунктов:
- Диагностика
- Определение неисправности
- Выбор метода ремонта
- Поиск запчастей
- Устранение дефекта
- Настройка
Неисправности
Все неисправности по их проявлению можно разделить на два вида - стабильные и периодические. Наиболее часто рассматриваются следующие:
- не включается
- не корректно работает какой-то узел (блок)
- периодически (иногда) что-то происходит
О прошивках
Большинство современной аппаратуры представляет из себя подобие программно-аппаратного комплекса. То есть, основной процессор управляет другими устройствами по программе, которая может находиться как в самом чипе процессора, так и в отдельных микросхемах памяти.
На сайте существуют разделы с прошивками (дампами памяти) для микросхем, либо для обновления ПО через интерфейсы типа USB.
Схемы аппаратуры
Начинающие ремонтники часто ищут принципиальные схемы, схемы соединений, пользовательские и сервисные инструкции. Это могут быть как отдельные платы (блоки питания, основные платы, панели), так и полные Service Manual-ы. На сайте они размещены в специально отведенных разделах и доступны к скачиванию гостям, либо после создания аккаунта:
Справочники
На сайте Вы можете скачать справочную литературу по электронным компонентам (справочники, таблицу аналогов, SMD-кодировку элементов, и тд.).
Marking (маркировка) - обозначение на электронных компонентах
Современная элементная база стремится к миниатюрным размерам. Места на корпусе для нанесения маркировки не хватает. Поэтому, производители их маркируют СМД-кодами.
Package (корпус) - вид корпуса электронного компонента
При создании запросов в определении точного названия (партномера) компонента, необходимо указывать не только его маркировку, но и тип корпуса. Наиболее распостранены:
- DIP (Dual In Package) – корпус с двухрядным расположением контактов для монтажа в отверстия
- SOT-89 - пластковый корпус для поверхностного монтажа
- SOT-23 - миниатюрный пластиковый корпус для поверхностного монтажа
- TO-220 - тип корпуса для монтажа (пайки) в отверстия
- SOP (SOIC, SO) - миниатюрные корпуса для поверхностного монтажа (SMD)
- TSOP (Thin Small Outline Package) – тонкий корпус с уменьшенным расстоянием между выводами
- BGA (Ball Grid Array) - корпус для монтажа выводов на шарики из припоя
Краткие сокращения
При подаче информации, на форуме принято использование сокращений и аббревиатур, например:
Сокращение | Краткое описание |
---|---|
LED | Light Emitting Diode - Светодиод (Светоизлучающий диод) |
MOSFET | Metal Oxide Semiconductor Field Effect Transistor - Полевой транзистор с МОП структурой затвора |
EEPROM | Electrically Erasable Programmable Read-Only Memory - Электрически стираемая память |
eMMC | embedded Multimedia Memory Card - Встроенная мультимедийная карта памяти |
LCD | Liquid Crystal Display - Жидкокристаллический дисплей (экран) |
SCL | Serial Clock - Шина интерфейса I2C для передачи тактового сигнала |
SDA | Serial Data - Шина интерфейса I2C для обмена данными |
ICSP | In-Circuit Serial Programming – Протокол для внутрисхемного последовательного программирования |
IIC, I2C | Inter-Integrated Circuit - Двухпроводный интерфейс обмена данными между микросхемами |
PCB | Printed Circuit Board - Печатная плата |
PWM | Pulse Width Modulation - Широтно-импульсная модуляция |
SPI | Serial Peripheral Interface Protocol - Протокол последовательного периферийного интерфейса |
USB | Universal Serial Bus - Универсальная последовательная шина |
DMA | Direct Memory Access - Модуль для считывания и записи RAM без задействования процессора |
AC | Alternating Current - Переменный ток |
DC | Direct Current - Постоянный ток |
FM | Frequency Modulation - Частотная модуляция (ЧМ) |
AFC | Automatic Frequency Control - Автоматическое управление частотой |
Частые вопросы
После регистрации аккаунта на сайте Вы сможете опубликовать свой вопрос или отвечать в существующих темах. Участие абсолютно бесплатное.
Кто отвечает в форуме на вопросы ?
Ответ в тему Принципы ремонта импульсных сварочных преобразователей. как и все другие советы публикуются всем сообществом. Большинство участников это профессиональные мастера по ремонту и специалисты в области электроники.
Как найти нужную информацию по форуму ?
Возможность поиска по всему сайту и файловому архиву появится после регистрации. В верхнем правом углу будет отображаться форма поиска по сайту.
По каким еще маркам можно спросить ?
По любым. Наиболее частые ответы по популярным брэндам - LG, Samsung, Philips, Toshiba, Sony, Panasonic, Xiaomi, Sharp, JVC, DEXP, TCL, Hisense, и многие другие в том числе китайские модели.
Какие еще файлы я смогу здесь скачать ?
При активном участии в форуме Вам будут доступны дополнительные файлы и разделы, которые не отображаются гостям - схемы, прошивки, справочники, методы и секреты ремонта, типовые неисправности, сервисная информация.
Полезные ссылки
Здесь просто полезные ссылки для мастеров. Ссылки периодически обновляемые, в зависимости от востребованности тем.
Прибор для проверки мощных IGBT и MOSFET транзисторов (n-канал)
Необходимость в таком приборе возникает каждый раз при ремонте сварочного инвертора – необходимо проверить мощный IGBT или MOSFET транзистор на предмет исправности, либо подобрать к исправному транзистору пару, либо при покупке новых транзисторов, убедиться, что это не «перемаркер». Эта тема неоднократно поднималась на множестве форумов, но так и не найдя готового (испытанного) или кем то сконструированного прибора, решил изготовить его самостоятельно.
Идея состоит в том, что необходимо иметь какую-то базу данных различных типов транзисторов, с которой сравнивать характеристики испытываемого транзистора, и если характеристики укладываются в определенные рамки, то его можно считать исправным. Все это делать по какой-то упрощенной методике и простым оборудованием. Необходимую базу данных придется собирать конечно же самому, но это все решаемо.
Прибор позволяет:
— определить исправность (неисправность) транзистора
— определить напряжение на затворе, необходимое для полного открытия транзистора
— определить относительное падение напряжения на К-Э выводах открытого транзистора
— определить относительную емкость затвора транзистора, даже в одной партии транзисторов есть разброс и его косвенно можно увидеть
— подобрать несколько транзисторов с одинаковыми параметрами
Содержание / Contents
Камрад, рассмотри датагорские рекомендации
🌼 Полезные и проверенные железяки, можно брать
Опробовано в лаборатории редакции или читателями.
↑ Схема
Он состоит из источника питания 16В постоянного тока, цифрового милливольтметра 0-1В, стабилизатора напряжения +5В на LM7805 для питания этого милливольтметра и питания «световых часов» - мигающего светодиода LD1, cтабилизатора тока на лампе – для питания испытуемого транзистора, стабилизатора тока на LM317 — для создания регулируемого напряжения (при стабильном токе) на затворе испытуемого транзистора при помощи переменного резистора, и двух кнопок для открытия и закрытия транзистора.
Прибор очень прост по устройству и собран из общедоступных деталей. У меня в наличии был какой-то трансформатор с габаритной мощностью около 40Вт и напряжением на вторичной обмотке 12В. При желании, и в случае необходимости прибор можно питать от АКБ 12В / 0,6 Ач (например). Так же был в наличии китайский цифровой вольтметр-показометр с пределом измерения 0-1 В .
Я решил использовать питание от сети 220В, т.к на рынок для покупок с прибором не сильно пойдешь, да и сеть все же стабильнее, чем «севший» АКБ. Но… дело вкуса.
Далее, изучая и адаптируя вольтметр, обнаружил интересную его особенность, если на его клеммы L0 и HI подать напряжение, превышающее его верхний порог измерения (1В), то табло просто тухнет и он ничего не показывает, но стоит снизить напряжение и все возвращается к нормальной индикации (это все при постоянном питании +5В между клеммами 0V и 5V). Я решил использовать эту особенность. Думаю, что очень многие цифровые «показометры» имеют такую же особенность. Взять, к примеру, любой китайский цифровой тестер, если в режиме 20В на него подать 200В, то ничего страшного не произойдет, он лишь только высветит «1» и все. Такие табло, подобные моему сейчас есть в продаже.
Возможные варианты цифровых вольтметров 0-2 Вольта с доставкой .
↑ О работе схемы
Дальше расскажу о четырех интересных моментах по схеме и ее работе:
1. Применение лампы накаливания в цепи коллектора испытуемого транзистора обусловлено стремлением (первоначально было такое желание) визуально видеть, что транзистор ОТКРЫЛСЯ. Кроме того, лампа выполняет здесь еще 2 функции, это защита схемы при подключении «пробитого» транзистора и некоторая стабилизация тока (54-58 mA), протекающего через транзистор при изменении сети от 200 до 240В. Но «особенность» моего вольтметра позволила первую функцию игнорировать, при этом даже выиграв в точности измерений, но об этом позже…
2. Применение стабилизатора тока на LM317 позволило НЕ сжечь случайно переменный резистор (когда он в верхнем по схеме положении) и случайно нажатых двух кнопках одновременно, или при испытании «пробитого» транзистора. Величина ограниченного тока в этой цепи даже при коротком замыкании равна 12 mA.
3. Применение 4 шт диодов IN4148 в цепи затвора испытуемого транзистора для медленного разряда емкости затвора транзистора, когда напряжение на его затворе уже снято, а транзистор находится еще в открытом состоянии. Они имеют какой-то ничтожный ток утечки, которым и разряжается емкость.
4. Применение «моргающего» светодиода в качестве измерителя времени (световые часы) при разряде емкости затвора.
Из всего вышесказанного становится абсолютно понятно, как все работает, но об этом чуть позже более подробно…
↑ Корпус и компоновка
Внешне получилось даже не плохо, за исключением того, что не умею я пока рисовать шкалы и надписи на компьютере, но… В качестве гнезд для испытуемых транзисторов замечательно подошли остатки каких то разъемов. Одновременно был изготовлен выносной кабель для транзисторов с «корявыми» ногами, которые не влезут в разъем.
Ну и вот так это выглядит в работе:
↑ Как пользоваться прибором
1. Включаем прибор в сеть, при этом начинает моргать светодиод, «показометр» не светится
2. Подключаем испытуемый транзистор (как на фото выше)
3. Устанавливаем ручку регулятора напряжения на затворе в крайнее левое положение (против часовой стрелки)
4. Нажимаем на кнопку «Откр» и одновременно потихоньку прибавляем регулятор напряжения по часовой стрелке до момента зажигания «показометра»
5. Останавливаемся, отпускаем кнопку «Откр», снимаем показания с регулятора и записываем. Это есть напряжение открытия.
6. Поворачиваем регулятор до упора по часовой стрелке
7. Нажимаем кнопку «Откр», зажжется «показометр», снимаем с него показания и записываем. Это есть напряжение К-Э на открытом транзисторе
8. Возможно, что за время, потраченное на записи, транзистор уже закрылся, тогда открываем его еще раз кнопкой, и после этого отпускаем кнопку «Откр» и нажимаем кнопку «Закр» — транзистор должен закрыться и «показометр» соответственно потухнуть. Это есть проверка целостности транзистора – открывается и закрывается
9. Опять открываем транзистор кнопкой «Откр» (регулятор напряжения в максимуме) и, дождавшись ранее записанных показаний, отпускаем кнопку «Откр» одновременно начиная подсчитывать количество вспышек (морганий) светодиода
10. Дождавшись потухания «показометра» записываем количество вспышек светодиода. Это и есть относительное время разряда емкости затвора транзистора или время закрытия (до увеличения падения напряжения на закрывающемся транзисторе более чем 1В). Чем это время (количество) больше, тем соответственно емкость затвора больше.
Дальше проверяем все имеющиеся транзисторы, и все данные сводим в таблицу.
Именно из этой таблицы и происходит сравнительный анализ транзисторов – фирменные они или «перемаркеры», соответствуют своим характеристикам или нет.
Ниже приведена таблица, которая получилась у меня. Желтым выделены транзисторы, которых не оказалось в наличии, но я ими точно когда то пользовался, поэтому оставил их на будущее. Безусловно, в ней представлены не все транзисторы, которые проходили через мои руки, кое что просто не записал, хотя пишу вроде всегда. Безусловно у кого то при повторении этого прибора может получиться таблица с несколько иными цифрами, это возможно, т.к цифры зависят от многих вещей: от имеющейся лампочки или трансформатора или АКБ, например.
Из таблицы видно, чем отличаются, транзисторы, например G30N60A4 от GP4068D. Отличаются временем закрытия. Оба транзистора применяются в одном и том же аппарате – Телвин, Техника 164, только первые применялись немного раньше (года 3, 4 назад), а вторые применяются сейчас. Да и остальные характеристики по ДАТАШИТ у них приблизительно одинаковы. А в данной ситуации все наглядно видно – все налицо.
Кроме того, если у Вас получилась табличка всего из 3-4 или 5 типов транзисторов, и остальных просто нет в наличии, то можно, наверное, посчитать коэффициент «согласованности» ваших цифр с моей таблицей и, используя его, продолжить свою таблицу, используя цифры из моей таблицы. Думаю, что зависимость «согласованности“ в этой ситуации будет линейной. Для первого времени, наверное хватит, а потом подкорректируете свою таблицу со временем.
На этот прибор я потратил около 3 дней, один из которых покупал некоторую мелочевку, корпус и еще один на настройку и отладку. Остальное работа.
Безусловно, в приборе возможны варианты исполнения: например применение более дешевого стрелочного милливольтметра (необходимо подумать об ограничении хода стрелки вправо при закрытом транзисторе), использовании вместо лампочки еще одного стабилизатора на LM317, применении АКБ, установить дополнительно переключатель для проверки транзисторов с p-каналом и т.д. Но принцип при этом в приборе не изменится.
Еще раз повторюсь, прибор не измеряет величин (цифр) указанных в ДАТАШИТАХ, он делает почти то же самое, но в относительных единицах, сравнивая один образец с другим. Прибор не измеряет характеристик в динамическом режиме, это только статика, как обычным тестером. Но и тестером не все транзисторы поддаются проверке, да и не все параметры можно увидеть. На таких я обычно ставлю маркером знак вопроса "?"
Можно соорудить и проверку в динамике, поставить маленький ШИМ на К176 серии, или что-то подобное.
Но прибор вообще простой и бюджетный, а главное, он привязывает всех испытуемых к одним рамкам.
Проверка боем: применение IGBT от ST в составе инверторов сварочных аппаратов MMA
STMicroelectronics выпускает несколько серий IGBT-транзисторов и мощных быстродействующих диодов, идеально подходящих для создания инверторов сварочных аппаратов. Сверхсовременные IGBT серий V, H, HB, M и диоды серии W отличаются малыми потерями на переключения и низким напряжением насыщения. Эти замечательные качества были подтверждены на практике при испытании MMA-инверторов мощностью 4 и 6 кВт.
Рынок сварочного оборудования представляет собой быстроразвивающуюся отрасль силовой электроники. На сегодня существует множество типов сварочных аппаратов:
- с различными технологиями – ручная дуговая сварка плавящимся электродом (manual metal arc, ММА), ручная сварка в среде защитных газов (tungsten inert gas, TIG), полуавтоматическая сварка в среде инертных (metal inertgas, MIG) или активных газов (metal active gas, MAG);
- с различными источниками тока – трансформаторные, инверторные;
- с постоянным выходным током (например, для сварки стали) или с переменным током (например, для сварки алюминия).
Наиболее распространенным типом сварочной технологии является MMA. Она отличается простотой и применяется как в профессиональных, так и в бытовых аппаратах. Структура такого сварочного аппарата достаточно проста и состоит из источника тока, выходного выпрямителя (опционально) и системы управления (рисунок 1).
Рис. 1. Упрощенная структурная схема сварочного аппарата
Источник тока может быть реализован на базе мощного сетевого трансформатора (трансформаторный аппарат), либо на базе инвертора (инверторный аппарат). Главными достоинствами трансформаторных аппаратов являются простота и максимальная надежность, а недостатками – большие габариты, грубое регулирование и низкое качество сварки. Инверторные аппараты, использующие современные полупроводниковые силовые ключи, не имеют этих недостатков.
Основными компонентами мощных инверторов являются IGBT-транзисторы и быстродействующие диоды. Компания STMicroelectronics выпускает силовые электронные компоненты, идеально подходящие для построения сварочных аппаратов [1]:
- IGBT серии V со сверхнизкой энергией выключения, работающие с напряжениями до 600 В на частотах до 120 кГц;
- IGBT серии HB с малым напряжением насыщения и низкой энергией выключения, работающие с напряжениями до 650 В на частотах до 50 кГц;
- IGBT серии H с низкой энергией выключения, работающие с напряжениями до 1200 В на частотах до 35 кГц;
- IGBT серии M с малым напряжением насыщения, работающие с напряжениями до 1200 В на частотах до 20 кГц;
- диоды серии W с малым прямым падением напряжения и минимальным временем восстановления.
Требования к IGBT в составе сварочных инверторов
Принцип работы инверторного сварочного аппарата достаточно прост (рисунок 2). Питающее напряжение сети выпрямляется и поступает на вход инвертора. Инвертор преобразует постоянное напряжение в переменное, которое передается в нагрузку через высокочастотный силовой трансформатор. Работу инвертора контролирует система управления (СУ). Увеличивая и уменьшая длительности управляющих импульсов, можно изменять передаваемую в нагрузку мощность. Кроме основных блоков, схема содержит и вспомогательные: корректор коэффициента мощности (ККМ) и выходной выпрямитель.
Рис. 2. Структура инверторного сварочного аппарата
Основным блоком инверторного сварочного аппарата является непосредственно инвертор, который может быть реализован по любой из известных топологий. Среди наиболее часто используемых схем можно отметить push-pull, мостовую, полумостовую, полумостовую несимметричную (косой полумост).
Несмотря на многообразие топологий, требования к IGBT оказываются примерно одинаковыми:
- Высокое рабочее напряжение. Для бытовой сети рейтинг напряжения транзисторов должен быть 600 В и выше.
- Большие коммутационные токи. Средние значения достигают десятков ампер, пиковые – сотен ампер.
- Высокая частота переключений. Увеличение частоты позволяет снизить габариты трансформатора и индуктивности выходного фильтра.
- Малое значение энергии на включение (Eвкл) и выключение (Eвыкл) для минимизации потерь на переключения.
- Низкое значение напряжения насыщения Uкэ нас. для минимизации кондуктивных потерь.
- Стойкость к жесткому режиму коммутации. Инвертор работает с индуктивной нагрузкой.
- Стойкость к короткому замыканию. Критично для мостовой и полумостовой схем.
К вышесказанному стоит добавить, что, во-первых, при выборе транзисторов для инвертора следует обращать внимание не только на рейтинги токов и напряжений, но и на параметры, определяющие мощность потерь. Во-вторых, требования к низкому напряжению насыщения и высокой рабочей частоте оказываются противоречивыми.
IGBT производства STMicroelectronics сочетают в себе уникальные характеристики: способны коммутировать большую мощность, отличаются высоким быстродействием, при этом – сохраняют низкое значение Uкэ нас. Это стало возможным благодаря использованию новейших технологий.
Мощности потерь и особенности технологии производства IGBT от ST
Основный причиной ограничения мощности инвертора является перегрев IGBT. Он является следствием потерь мощности, рассеиваемой в виде тепла.
Как известно, суммарные потери мощности в IGBT (Pd) складываются из двух составляющих: потери проводимости (Pконд, кондуктивные потери) и потери на переключения (Pперекл) (таблица 1).
Таблица 1. Потери мощности в IGBT
Кондуктивные потери определяются значением напряжения насыщения Uкэ нас. По этой причине его стараются максимально снизить.
Потери на переключения объединяют энергию, затрачиваемую на включение (Eвкл) и на выключение (Eвыкл).
Энергия на включение Евкл в большей степени определяется встроенным антипараллельным диодом. Для оптимизации этого параметра можно использовать внешний диод с лучшими характеристиками (меньшее время восстановления) или оптимизировать режим переключения (переключения при нулевых токах или напряжениях).
Энергия на выключение Евыкл определяется эффективностью рекомбинации неосновных носителей в структуре IGBT. Затягивание процесса рекомбинации приводит к появлению токового хвоста (рисунок 3), [2].
Рис. 3. Потери на выключение для планарного IGBT
Во время включенного состояния через IGBT протекает ток, и в его слое n- происходит накопление неосновных носителей (дырок из слоя p+). После выключения транзистора число этих накопленных носителей сокращается достаточно медленно, главным образом – за счет неэффективной рекомбинации в низколегированном слое n-. В результате образуется токовый «хвост», приводящий к дополнительным потерям мощности.
Один из способов повышения быстродействия заключается в уменьшении степени легирования области p+. Это приводит к уменьшению числа носителей, а значит – и к ускоренному процессу рекомбинации. Однако уменьшение числа носителей, очевидно, приведет и к возрастанию напряжения насыщения.
Рис. 4. Развитие технологий IGBT производства STMicroelectronics
Таким образом, увеличение быстродействия при сохранении напряжения насыщения возможно только благодаря качественным улучшениям и применению новых технологий. Например, для ускорения процесса рекомбинации между слоями p+ и n- создается слой n+ (рисунок 4а). Быстродействие возрастает, но остается достаточно низким.
Одним из революционных решений, позволившим качественно улучшить характеристики IGBT, стало применение технологии TGFS (Trench Gate Field Stop), (рисунок 4б). Суть TGFS состоит в изменении структуры затвора, который выполняется в изолированной канавке. Проводящий канал становится вертикальным, что уменьшает эффективную толщину слоя n-. Это, с одной стороны, приводит к снижению напряжения насыщения, а с другой – к уменьшению числа накапливаемых носителей.
Наиболее современное поколение IGBT производства STMicroelectronics серии V включает все лучшие технологические решения [2]: TGFS, снижение толщины исходной пластины p-, уменьшение толщин диффузных и эпитаксиальных слоев, увеличение глубины внедрения затвора (рисунок 4в). Это позволяет уменьшить энергию, затрачиваемую на выключение, при сохранении значения напряжения насыщения.
STMicroelectronics выпускает несколько серий IGBT с различными характеристиками. Богатый выбор позволяет найти оптимальные транзисторы с учетом требований к конкретному сварочному аппарату и используемой топологии.
Обзор серий IGBT от ST
Линейка IGBT производства STMicroelectronics содержит четыре серии, представители которых наиболее подходят для сварочных инверторов. Это серии V, HB, H, M. Все эти транзисторы отвечают перечисленным выше требованиям и имеют отличные характеристики [1, 4]:
- высокие рабочие напряжения – 600…1200 В;
- высокие показатели коммутируемых токов – до 80 А;
- рекордные значения энергии выключения – от 0,2 мДж;
- быстродействие – до 120 кГц;
- доступность версий со встроенным быстродействующим антипараллельным диодом;
- доступность различных корпусных исполнений (TO-247, D2PAK, TO-220 и другие);
- стойкость к импульсам короткого замыкания.
Серия M предназначена для коммутации напряжений до 1200 В и токов до 40 А (таблица 2). Отличительной особенностью серии является низкое напряжение насыщения (не более 2,2 В) и малая энергия на переключения (от 1,2 мДж). Это делает данные транзисторы оптимальным выбором для инверторов, работающих на частотах до 20 кГц.
Таблица 2. Характеристики IGBT серии M
Серия H способна коммутировать напряжения до 1200 В и токи до 40 А (таблица 3). По сравнению с транзисторами серии M, IGBT серии H имеют меньшее значение энергии переключения (от 0,85 мДж) и большее напряжение насыщения (до 2,4 В). По этой причине они подходят для более высокочастотных приложений и способны работать на частотах до 100 кГц.
Таблица 3. Характеристики IGBT серии H
Серия HB не является основной для построения сварочных инверторов, однако ее характеристики также на высоте (таблица 4). Напряжение насыщения для этих IGBT являются рекордными среди всех семейств и начинаются от 1,65 В. Энергия переключения, во многих случаях не превышает 0,6 мДж. Рабочая частота для представителей семейства достигает 50 кГц.
Таблица 4. Характеристики IGBT серии HB
Серия V, как было сказано выше, является флагманом в номенклатуре STMicroelectronics. Благодаря новейшим технологиям, у данных IGBT практически полностью отсутствует токовый «хвост», и энергия на выключение оказывается минимальной – от 0,2 мДж (таблица 5), при этом напряжение насыщения не превышает 2,15 В. Все это позволяет использовать транзисторы серии V в быстродействующих инверторах с максимальной частотой переключения до 120 кГц.
Таблица 5. Характеристики IGBT серии V
Для наименования IGBT представленных серий используется код, состоящий из восьми позиций (таблица 6). Он содержит тип компонента, обозначение корпуса, название семейства, напряжение пробоя, наличие диода и его характеристики. Стоит отметить, что версии транзисторов с диодом с низким падением напряжения (индекс DL) не подходят для работы в составе сварочных инверторов.
Таблица 6. Именование IGBT производства STMicroelectronics
- (пусто) – нет
- D – быстродействующий
- DL – с низким падением
Код напряжения пробоя:
- V – Very High Speed до 120 кГц
- H…B – High Speed до 50 кГц
- H – High Speed до 35 кГц
- M – Low Loss до 20 кГц
Максимальный ток при 100°С
B – D2PAK | W – TO-247 |
F – TO-220FP | WA – TO-247 Long Led |
FW – TO3FP | WT – TO-3P |
P – TO-220 | Y – Max247 |
Большинство IGBT представленных семейств выпускается в двух вариантах: со встроенным быстродействующим диодом и без него. Характеристики этих диодов достаточно хороши. Однако в случае необходимости требуется применять внешние диоды, например, в схеме асимметричного моста. При этом следует обратить внимание на мощные быстродействующие диоды серии W производства STMicroelectronics.
Обзор мощных диодов серии W от ST
Мощные быстродействующие диоды серии W разработаны специально для работы в составе мощных импульсных преобразователей с жесткими условиями переключений. Для этого их характеристики соответствующим образом оптимизированы (таблица 7):
- для снижения статической мощности прямое падение напряжения уменьшено (от 0,92 В);
- обратное напряжение достигает 600 В;
- средний ток достигает 200 А;
- время восстановления и обратный ток существенно снижены для сокращения энергии на переключение;
- большинство диодов выпускаются в сдвоенном исполнении.
Таблица 7. Мощные быстродействующие диоды производства STMicroelectronics
Результаты практического применения IGBT от ST в MMA-инверторах
Для подтверждения преимуществ транзисторов IGBT производства STMicroelectronics были построены и испытаны сварочные инверторы: MMA160 (входная мощность 3,8 кВт) и MMA200 (входная мощность 6 кВт) [3].
Условия проведения испытаний были одинаковыми [3]:
- в обоих случаях использовалась асимметричная полумостовая схема инвертора со спаренными параллельными IGBT (рисунки 5 и 6);
- в качестве питания использовалось сетевое напряжение 220 В, 50 Гц;
- температура окружающего воздуха составляла 25°C;
- в качестве нагрузки применялись керамические резисторы общим сопротивлением 145 мОм с активным охлаждением;
- максимальный коэффициент заполнения не превышал 50% для гарантированного исключения возможности насыщения сердечника выходного ВЧ-трансформатора;
- защитное отключение производилось при достижении транзисторами температуры 105°С.
Инвертор MMA160 был построен на базе транзисторов STGW40V60DF (рисунок 5). Частота переключений составляла 63 кГц.
Рис. 5. Схема инвертора MMA160
В ходе испытаний производились замеры входной мощности, входного тока и температуры корпуса транзисторов. При увеличении входной мощности от 2 кВт до максимальной мощности в 3,8 кВт происходил разогрев транзисторов и рост энергии на выключение (таблица 8).
Таблица 8. Результаты испытаний инвертора MMA 160
Инвертор показал устойчивую работу во всем диапазоне мощностей. Отключение при максимальной мощности произошло только по истечении 10 минут 17 секунд, после срабатывания защиты от перегрева (105°С). Максимальное значение энергии на выключение IGBT при этом увеличивалось с 311 мДж до 550 мДж, что является хорошим результатом и соответствует заявленному в документации значению (таблица 5).
Инвертор MMA200 был построен с использованием спаренных IGBT STGW60H65DFB (рисунок 6). Рабочая частота составила 63 кГц. Для дополнительной защиты транзисторов были применены снабберные RC-цепочки.
Рис. 6. Схема инвертора MMA200
В ходе испытаний входная мощность MMA200 увеличивалась с 2,6 кВт до 5,8 кВт. Инвертор продемонстрировал устойчивую работу во всех режимах и выключился после срабатывания температурной защиты спустя 8 минут 15 секунд после выхода на мощность 5,8 кВт. При увеличении входных токов происходил рост температуры транзисторов и увеличение энергии на выключение (таблица 9). Диапазон изменений энергии на выключение составил 586…947 мДж, что соответствует заявленному значению.
Таблица 9. Результаты испытаний инвертора MMA200
Проведенные испытания подтвердили отличные характеристики, заявленные производителем. Таким образом, IGBT производства компании STMicroelectronics идеально подходят для построения инверторов сварочных аппаратов.
Заключение
В номенклатуре компании STMicroelectronics есть четыре серии IGBT, предназначенных для работы в жестких условиях переключения в составе сварочных инверторов. Данные транзисторы отвечают всем необходимым для этого требованиям. Их основными достоинствами являются:
Кроме IGBT, STMicroelectronics предлагает разработчикам мощные быстродействующие диоды серии W, которые отличаются малым временем восстановления и низким прямым падением напряжения.
Отличные характеристики силовых компонентов производства ST подтверждены практикой. Для этого инженерами компании были созданы и испытаны сварочные инверторы MMA160 и MMA200, построенные на основе транзисторов STGW40V60DF и STGW60H65DFB.
Основные неисправности сварочных инверторов и методы их устранения
Оборудование
Множество домашних мастерских укомплектовано сварочным оборудованием на основе инверторного блока питания. Такие изделия обладают множеством преимуществ. Однако, время от времени любая техника ломается и может потребоваться ремонт сварочных инверторов.
Подобная операция легко выполнима в домашних условиях, поскольку внутренняя компоновка инверторной установки для розжига дуги хорошо поддается диагностике и обслуживанию. Успешность исправления неисправностей инверторной сварки зависит, прежде всего, от навыков и знаний мастера-ремонтника.
Особенности сварочных инверторов и их ремонт
Большинство пользователей подобных сварочных устройств отмечают:
- высокую мощность установки;
- мобильность аппарата;
- простоту обслуживания;
- надежность конструкции инвертора;
- минимальное потребление электрической энергии при выполнении работ по свариванию металлических изделий.
Характерной особенностью инверторных устройств для сварки служит более сложная электротехническая схема, по сравнению с трансформаторными или выпрямительными сварками.
Инвертор для сварочных работ.
Ремонт инверторных сварочных аппаратов следует начинать с проверки следующих элементов:
- транзисторы;
- диодный мост;
- система охлаждения.
Перед тем, как отремонтировать сварочные аппараты своими руками необходимо провести диагностику основных компонентов. Как правило, неисправные детали, например, транзисторы или диоды, можно легко определить по существенном изменении геометрии.
Если такие детали удается выявить визуально, то восстановление аппарата для сварки своими руками сведется к банальной замене неисправных электротехнических элементов при помощи паяльника и припоя.
Ремонт сварочных полуавтоматов своими руками должен производится мастерами, имеющими хотя бы базовые познания в электронике и умеющими пользоваться такими устройствами, как мультиметр, вольтметр и осциллограф.
Большинство моделей инверторных аппаратов для сварки комплектуются инструкциями. Проводить обслуживание данных устройств проще по схемам, имеющимся в соответствующем разделе документации.
Диагностика неисправностей инверторов
Непосредственно перед выполнением восстановления работоспособности инверторного оборудования для сварки следует ознакомиться с типовыми неисправностями и наиболее эффективными методами диагностики.
В большинстве случаев, ремонт полуавтоматов для сварки следует производить по такому алгоритму:
- Визуальный осмотр всех узлов инвертора.
- Зачистка окислившихся контактов при помощи растворителя и щетки.
- Изучение конструкции инвертора по идущей в комплекте документации.
- Диагностика неисправности.
- Замена нерабочих электронных компонентов.
- Пробный запуск.
Все неисправности, при которых может потребоваться ремонт своими руками сварочных аппаратов делятся на три вида:
- возникшие из-за неправильного выбора режима сварки;
- возникшие из-за нарушения в работе одного из элементов электронной схемы прибора;
- возникшие из-за попадания пыли или сторонних предметов в корпус инверторного блока питания.
Перед тем, как проверить сварочный аппарат на предмет неисправных радиодеталей, следует провести полную чистку от пыли и грязи. Засорение элементов охлаждения системы поддержания дуги может пагубно сказаться на работоспособности многих электронных компонентов.
Если при предварительной визуальной проверке не выявлены неисправности, то следует переходить к более глубокой диагностике.
Типичные причины выхода из строя инвертора представлены:
- попаданием жидкости внутрь корпуса инвертора, повлекшим за собой окисление токопроводящих дорожек и коррозию основных радиоэлементов;
- обилием пыли и грязи внутри корпуса, вследствие которых существенно ухудшилось охлаждение и произошел перегрев силовых микросхем;
- перегревом работы инвертора из-за выбора неправильного режима работы, вследствие которого может потребоваться ремонт сварочных выпрямителей.
Ремонт сварочного трансформатора, в отличие от инвертора, может выполняться без существенных навыков и умений. В трансформаторных сборках используются радиоэлементы, которые обладают невероятно длительным жизненным циклом.
Методика ремонта преобразователя и других ключевых узлов инверторного источника тока будут показаны в следующем разделе.
Основные виды поломок и их устранение
Прежде чем рассмотреть основные виды неисправностей инверторных устройств следует ознакомиться с устройством инвертора.
Электрическая схема сварочного инвертора.
Большинство популярных моделей состоит из:
- блока питания;
- блока управления;
- силового блока.
Неисправности и ремонт сварочных аппаратов в большинстве случаев связаны с поломкой силового блока, состоящего из:
- Первичного и вторичного выпрямителей.
В состав блока входят два диодных моста различной мощности. Первый мост способен выдерживать до 40 ампер ток и до 250 вольт напряжение. Второй диодный мост собран из более мощных элементов и способен поддерживать силу тока 250 ампер при напряжении порядка 100 вольт. Возможные ошибки данного модуля связаны с аварией диодов первичного или вторичного моста. - Инверторного преобразователя.
Поломка силового транзистора инверторного преобразователя часто является ответом на вопрос почему сварочный аппарат не варит. Ремонт инвертора можно произвести путем замены транзистора на аналог с параметрами силы тока 32 ампера и напряжением 400 вольт. - Высокочастотного трансформатора.
Как правило, трансформатор состоит из нескольких обмоток, повышающих силу тока до 250 ампер при напряжении до 40 вольт. Большинство инверторного оборудования имеет две обмотки, выполненные при помощи медной проволоки или ленты.
Перед тем, как отремонтировать сварочные аппараты своими руками следует внимательно продиагностировать прибор и четко определить, какой из элементов неисправен.
Не стоит даже пытаться самостоятельно отремонтировать инвертор из корпуса которого повалил плотный белый дым. В таких случаях самым правильным решением будет обращение в квалифицированный ремонтный центр.
Компоновка деталей сварочного инвертора.
Ремонт сварочного полуавтомата с инверторным источником может понадобиться при возникновении следующих неисправностей:
- Нестабильное горение раскаленной дуги или сильное разбрызгивание материала электрода.
Неисправность в большинстве случаев связана с неправильным выбором рабочего тока. В инструкции по эксплуатации сказано, что на 1 миллиметр диаметра электрода должна приходится сила тока от 20 до 40 ампер. - Прилипания сварки к металлу.
Такое поведение характерно для устройств, работающих при недостаточном напряжении. Подобные неисправности и способы их устранения четко описаны в сопроводительной документации. При прилипании электрода к свариваемому материалу следует очистить контакты клемм, к которым подключаются модули инверторного устройства. Кроме этого, не лишним будет замерить напряжение в электрической сети. - Отсутствие дуги при включении аппаратуры.
Дефект зачастую связан с банальным перегревом устройства или повреждением силовых кабелей кабелей в процессе длительной эксплуатации при повышенных температурах. - Аварийное отключение инвертора.
Если в процессе проведения работ аппарат внезапно отключился, то наверняка сработала защита от короткого замыкания между проводами и корпусом. Ремонт устройства в случае возникновения подобного дефекта состоит в нахождении и замене поврежденных элементов силовой цепи инвертора. - Огромное потребление электрического тока при холостой работе.
Типичная неисправность, возникающая вследствие замыкания витков на токопроводящих катушках. Восстановление работоспособности устройства после такой неисправности состоит в полной перемотке катушек и наложении слоя дополнительной изоляции. - Отключение сварочного оборудования через определенный промежуток времени.
Подобное поведение характерно для перегревающихся инверторных электроприборов. Если сварка внезапно выключилась, то нужно дать ей остыть и через 30-40 минут можно продолжить работу. - Посторонние звуки при работе блока питания.
Устранение дефекта заключается в затягивании болтов, стягивающих элементы магниторовода. Помимо этого, неисправность может быть связана с дефектом в крепеже сердечника или замыканием между кабелями.
Важно отметить, что большинство видов работ следует выполнять с использованием паяльника, укомплектованного специальным отсосом. Такой инструмент существенно облегчает работу по нанесению и удалению припоя на посадочные места радиотехнических элементов.
Рекомендации по самостоятельному ремонту
Электрическая схема сварочного аппарата.
Выполняя ремонт сварочных аппаратов инверторного типа следует придерживаться определенного алгоритма:
- При возникновении неисправности, нужно немедленно отключить электрический прибор от сети, дать ему остыть и лишь после этого следует открывать металлических кожух.
- Диагностику необходимо начинать с визуального осмотра электротехнических компонентов инвертора.
Нередки случаи, когда ремонт инверторного сварочного аппарата заключается в простейшей замене поврежденных деталей или пропайке токопроводящих контактов. Визуально увеличившиеся конденсаторы или треснувшие транзисторы нужно заменять в первую очередь. - Если при визуальном осмотре не удалось определить причину неисправности сварочного аппарата, необходимо перейти к проверке параметров деталей при помощи мультиметра, вольтметра и осциллографа.
Наиболее частые поломки силовых блоков связаны с нарушением работы транзисторов. - После замены электротехнических элементов стоит перейти к проверке печатных проводников, расположенных на плате инвертора.
При обнаружении оторванных или поврежденных дорожек на печатной плате сварочного инструмента нужно немедленно устранить дефект путем запаивания перемычек или восстановления дорожек при помощи медной проволоки необходимого сечения. - По завершению работы с дорожками имеет смысл перейти к обслуживанию разъемов.
Если инверторный прибор переставал работать постепенно, то возможно имеет место быть плохой контакт в соединительных разъемах. В таком случае достаточно промерять все контакты при помощи мультиметра и зачистить разъемы обыкновенным бытовым ластиком. - Несмотря на то, что неисправности сварочного инвертора редко бывают связаны с диодными мостами, будет не лишним проверить и их работоспособность.
Проводить диагностику данного электротехнического элемента лучше в выпаянном виде. Если все ножки моста прозваниваются накоротко, то следует выполнить поиск неисправного диода и произвести его замену. - Последним этапом в ремонте инвертора служит проверка платы и пультов управления.
Диагностика всех компонентов платы должна производиться при помощи высокоразрешающего осциллографа.
Если диагностика проведена, но обнаружить что сломалось в сварочном аппарате не удалось, следует прекратить самостоятельный ремонт и обратиться в специализированные мастерские.
При выполнении самостоятельных ремонтных работ следует не забывать о правилах безопасности:
- нельзя использовать электрические приборы без защитного верхнего кожуха;
- проведение всех диагностических и ремонтных работ следует осуществлять на полностью обесточенном оборудовании;
- удаление скопившейся пыли и грязи безопаснее всего проводить при помощи воздушного потока, формируемого компрессором или баллоном с сжатым газом;
- очистку печатных плат необходимо производить с использованием нейтральных растворителей, нанесенных на специальную кисточку;
- длительное хранение электрических приборов нужно производить в сухих помещениях в полностью выключенном состоянии.
Большинство инверторных электроприборов поставляется в комплекте с сопроводительной документацией. В этих бумагах можно отыскать описание наиболее типичных неисправностей и методов ремонта. Поэтому, при возникновении неисправностей следует внимательно изучить документацию и лишь потом приступать к ремонтным работам.
Самостоятельный ремонт может производится в домашних условиях. Основные неисправности инверторов связаны с выбором неправильного режима работы или выходом из строя радиоэлементов.
Некоторые неисправности сварочного полуавтомата можно определить визуально. Существует всего несколько причин из-за которых не включается сварочный инвертор. Большинство причин поломки работающего инвертора связаны с сгоревшими конденсаторами или пробитыми сварочными транзисторами.
Читайте также: