Как проверить сварочный шов керосином

Обновлено: 24.01.2025

Требования к проверке соответствия показателей качества сварных соединений регламентированы ГОСТом 3242-79 «Соединения сварные. Методы контроля качества».

Документ включает перечень неразрушающих методов контроля качества сварных соединений:

Приведены характеристики каждого метода, область применения, обозначения стандартов.

Характеристика некоторых методов контроля качества сварных соединений

Контроль готовых сварных соединений производится после проведения сварочных работ или после термической обработки готовой детали.

Методы контроля качества подразделяют на группы:

    (не нарушается целостность соединения);
  • разрушающий (выполняется разрушение контрольного образца).

Проверка качества сварки готового изделия обеих групп может включать:

  • внешний осмотр;
  • обмер соединений;
  • испытание на плотность;
  • просвечивание излучающими лучами;
  • магнитный контроль;
  • ультразвуковую дефектоскопию;
  • люминесцентный контроль;
  • металлографические исследования;
  • механические испытания.

Визуальный осмотр

Является обязательным, самым простым видом контроля. Внешний осмотр выполняется невооруженным глазом или с применением лупы 5-10 кратного увеличения.

Подготовка к осмотру заключается в очистке сварного шва и прилегающих к нему поверхностей от окалины, металлических брызг, шлака. При потребности выполняется травление.

Цель визуального осмотра заключается в выявлении:

  • наружных дефектов (непроваров, наплывов, подрезов, наружных трещин, прожогов);
  • смещений деталей;
  • несоответствия размеров требованиям технических условий и чертежам.

Для сравнения внешнего вида сварных швов практикуют использование специальных эталонов. Для проверки геометрических параметров применяют измерительные инструменты и шаблоны.

После визуального осмотра приступают к выявлению внутренних дефектов с использованием физических методов.

Капиллярный

Относится к методам неразрушающего контроля и основан на капиллярном проникновении индикаторной жидкости в капилляры поверхностного слоя материала контрольного объекта с целью ее выявления.

  • обнаружение поверхностных и сквозных дефектов;
  • определение протяженности трещин, расположения дефектов, ориентации по поверхности образца.

Капиллярный способ позволяет контролировать изделия любой формы и размера из металлов и их сплавов, пластмасс, керамики, стекла. Различают:

  • основные способы контроля, основанные на использовании капиллярных явлений;
  • комбинированные, включающие сочетание нескольких методов неразрушающего контроля, различных по их физической сущности, один из которых – капиллярный.
  • дефектоскоп капиллярный;
  • прибор контроля;
  • вспомогательные средства;
  • дефектоскопический ультрафиолетовый облучатель;
  • дефектоскопические материалы.

Перед проведением исследования проводится предварительная очистка поверхностей и полостей контрольного образца.

Проверка швов на герметичность

Метод применяется для сварных изделий, предназначенных для хранения и транспортировки жидкостей и газов. Способы проверки:

Суть испытания аммиаком основана на изменении окраски индикаторов (некоторых химических соединений) в результате воздействия сжиженного аммиака. При наличии в швах трещин и пор лента индикатора окрасится в серебристо-черный цвет.

Явление капиллярности (поднятие жидкости при определенных условиях по капиллярным трубкам) лежит в основе испытания керосином. Под капиллярными трубками в сварных швах подразумеваются поры и трещины. Наличие дефектов определяется по желтым пятнам, проявляющимся на меловом или каолиновом покрытии сварного шва.

Пневматические испытания

Этим способом проверяются трубопроводы и емкости, работающие под давлением.

Для герметизации малогабаритных сосудов используют заглушки. В сосуд под давлением, на 10-20% превышающим рабочее, подается инертный газ или азот. Сосуд погружается в емкость с водой. Дефектные места обнаруживаются по выходящим пузырькам воздуха.

Крупногабаритные сосуды герметизируют и наполняют газом повышенного давления. На сварные швы наносят мыльный раствор. Появление на поверхности шва пузырьков указывает на наличие дефектов.

Гидравлические исследования

Применяется для проверки на прочность и плотность сварных швов в водопроводах, газопроводах, котлах и сварных изделиях, работающих под давлением.

Перед испытанием контрольную емкость герметизируют заглушкой и заполняют с помощью насоса водой под избыточным контрольным давлением, превышающим рабочие цифры в полтора-два раза. В течение периода, заданного техническими условиями, делается выдержка, затем давление снижается до рабочего. Околошовная зона (15-20 мм от шва) простукивается специальным молотком.

Участки с обнаруженной течью помечаются и завариваются после слива воды. Проводится повторный контроль.

Вакуумирование используется при невозможности пневматического или гидравлического контроля. Суть метода — создание вакуума и обнаружение проникания воздуха через дефекты. Для контроля применяется вакуумная камера. Проверяемый участок образца смазывается мыльным раствором. В неплотностях сварного соединения образуются мыльные пузырьки.

Ультразвуковой

Суть метода – отражение ультразвуковых волн от границы раздела двух слоев с различными акустическими свойствами. Ультразвуковые колебания получают способом, основа которого – пьезоэлектрический эффект некоторых искусственных материалов или кристаллов. При подаче разноименных зарядов на противоположные грани кристаллической пластинки ее размеры будут изменяться при изменении знаков зарядов, соответственно передаваемой частоте.

Ультразвуковые колебания в сварной шов вводятся с помощью прибора — пьезоэлектрического преобразователя. Этим же прибором принимаются колебания, отраженные от дефекта, фиксируемые с помощью сигнала на экране дефектоскопа.

Ультразвуковой метод позволяет обнаружить в сварных швах:

Недостаток – сложность расшифровки и оценки дефектов.

Радиационный

Метод радиационной дефектоскопии основан на свойстве проникновения излучения через непрозрачные тела и его воздействия на различные индикаторы. Применяют рентгеновское и гамма-излучение – коротковолновые электромагнитные колебания.

Цель – выявление дефектов (внешних и внутренних) и их расположение без нарушения целостности проверяемых элементов.

Виды радиационного контроля:

Магнитный

Суть метода состоит в использовании эффекта магнитного рассеяния, проявляющегося над дефектом намагниченного контрольного образца.

Если дефект сварного шва отсутствует, силовые магнитные линии распространяются равномерно по его сечению. При наличии дефекта силовой магнитный поток огибает проблемную зону, создавая поток магнитного рассеяния.

В зависимости от метода фиксации потоков рассеяния различают способы:

Метод испытания керосином

Этот метод, при котором в качестве проникающего вещества используют керосин (керосиновая проба), получил широкое распространение благодаря своей простоте и сравнительно высокой чувствительности. С помощью керосина контролируют открытые изделия – емкости, элементы гидравлических и газовых систем. В ряде случаев этот метод используют и при испытаниях закрытых систем – топливных отсеков, баков, а также сварных соединений различных изделий.

Высокая проникающая способность керосина обусловлена тем, что он не является полярно-активной жидкостью, имеет сравнительно низкую вязкость, хорошо растворяет пленки жира и устраняет пробки в неплотностях. В качестве индикатора течи используют меловую обмазку того же состава, что и при гидравлических испытаниях.

Различают четыре способа испытаний: керосиновый; керосинопневматический; керосиновакуумный; керосиновибрационный.

Чувствительность и порядок осмотра изделий при испытаниях керосиновым способом:

Давление керосина,
Па
Чувствительность,
мм 3 · МПа/с
Порядок осмотра при толщине материала изделия, мм
до 6 свыше 6 до 25
- 6,6 · 10 -2 1. Сразу после подачи керосина
2. Через 15. 30 мин после подачи керосина
1. Через 3. 5 мин после подачи керосина
2. Через 30. 50 мин после подачи керосина
2,9 · 10 5 6,6 · 10 -3 1. Через 1. 2 мин после подачи давления
2. Через 15. 30 мин после подачи давления
1. Через 1. 2 мин после подачи давления
2. Через 30. 40 мин после подачи давления

Контроль керосиновым способом выполняют следующим образом. На места контроля, предназначенного для осмотра, наносят меловую обмазку. Противоположную сторону изделия несколько раз смачивают керосином либо укладывают на нее ленту или кусок ткани, смоченные керосином. После выдержки, определяемой ТУ на изделие, его осматривают, выявляя места течей по пятнам керосина цвета ржавчины на меловой обмазке.

Иногда для повышения чувствительности контроля керосин окрашивают, растворяя в нем краски ярких цветов. Керосиновым способом могут быть выявлены течи диаметром до 0,1 мм в изделиях толщиной до 25 мм.

При керосинопневматическом способе контроля изделие после смачивания керосином обдувают струей сжатого воздуха под давлением 0,3. 0,4 МПа, что повышает чувствительность контроля и ускоряет выявление дефектов.

Керосиновакуумный способ основан на применении переносных вакуумных камер, устанавливаемых на контролируемое изделие со стороны меловой обмазки. При этом так же, как и при керосинопневматическом способе, повышаются чувствительность и производительность контроля.

При керосиновибрационном способе на изделие, смоченное керосином, воздействуют ультразвуковыми колебаниями, что существенно ускоряет процесс проникновения керосина в неплотности и также повышает чувствительность и производительность контроля.

Чувствительность способов испытаний керосином существенно зависит от чистоты последнего. Примеси, растворяемые керосином, повышают его вязкость, что приводит к уменьшению потока через течь, которая при малых размерах может закупориться. Особое влияние на чувствительность испытаний оказывают компоненты смазок, применяемых при сборке гидро- и газовых систем и вымываемых керосином из объектов в процессе контроля. Использование загрязненной проникающей жидкости может привести к невыявлению скрытых дефектов, которые в дальнейшем, при эксплуатации изделия, могут проявиться в виде значительных течей.

Проверка непроницаемости сварных швов и соединений

Установки для автоматической сварки продольных швов обечаек - в наличии на складе!
Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки - в наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!

Сварные швы и соединения ответственных изделий и сооружений должны быть непроницаемыми для различных жидкостей и газов Неплотности в швах снижают их прочность при вибрационных нагрузках, уменьшают коррозионную стойкость, вызывают утечку хранимых и транспортируемых продуктов и создают недопустимые условия эксплуатации сварных конструкций.

Контроль непроницаемости сварных соединений проводят в соответствии с ГОСТ 3242-79, включая следующие виды испытаний: керосином, обдувом, аммиаком, воздушным давлением, гидравлическим давлением, наливом и поливом.

Кроме этого, непроницаемость сварных соединений определяют вакуумным методом и газоэлектрическими течеискателями.

Перед проведением испытаний должны быть устранены все дефекты, выявленные внешним осмотром.

Испытание керосином основано на способности многих жидкостей подниматься по капиллярным трубкам, какими в сварных швах являются сквозные поры и трещины. Керосин обладает высокой смачивающей способностью и сравнительно малой вязкостью, что обеспечивает большой эффект этого способа контроля. Например, в отличие от воды (полярная жидкость) керосин под действием поверхностных сил проникает в мельчайшие (10 -3 — 2,10 -4 мм) неплотности в металле.

Испытание сварных соединений керосином проводят следующим образом. После внешнего осмотра простукивают молотком или подвергают вибрации основной металл на расстоянии 30—40 мм от шва и тщательно очищают сварное соединение от шлака, ржавчины, масла и других загрязнений. Такое простукивание или вибрация способствует лучшему удалению шлака и развитию несквозных дефектов в сквозные.

Затем с помощью пульверизатора сварные швы покрывают меловым раствором (350—450 г молотого мела или каолина на 1 л воды) с той стороны, которая более доступна для осмотра.

После высыхания мелового раствора другую сторону шва обильно смачивают керосином и выдерживают в течение определенного времени.

Исходя из экспериментальных данных Института электросварки им. Е. О. Патона, Всесоюзного научно-исследовательского института строительства трубопроводов и ряда монтажных организаций время выдержки под керосином обычно устанавливают не менее 12 ч при окружающей температуре выше 0° и не менее 24 ч — при температуре ниже 0°.

Ввиду того что при повышении температуры вязкость керосина уменьшается и скорость проникания его через неплотности шва увеличивается, для сокращения времени контроля рекомендуется швы перед испытанием нагревать до температуры 60—70° С. В этом случае время выдержки под керосином сокращается до 1,5—2 ч. Керосин наносят в процессе испытания 3—5 раз.

Соединения внахлестку, у которых один шов сплошной, а второй прерывистый, опрыскивают струей керосина под давлением co стороны прерывистого шва. Соединения внахлестку, сваренные сплошным швом с обеих сторон, испытывают керосином путем нагнетания его под давлением в межнахлесточное пространство через специально просверленное отверстие.

О наличии пор, свищей, сквозных трещин и непроваров свидетельствуют жирные желтые точки или полоски керосина на меловом слое, которые с течением времени расплываются в пятна. Поэтому необходимо тщательно следить за появлением первых точек или полосок и своевременно отмечать границы дефектных участков.

Обнаруженные дефекты устраняют, после чего сварной шов подвергают повторному контролю.

Для лучшего наблюдения за керосиновыми пятнами применяют керосин, окрашенный в красный цвет краской «Судан-III» в количестве 2,5—3 г на литр.

Эффективность контроля непроницаемости сварных швов с помощью керосина можно повысить, применяя дополнительно продувку швов сжатым воздухом под давлением 3—4 кгс/см 2 , разрежение атмосферного воздуха с меловой стороны шва при помощи специальных камер, вибрацию швов. Все эти меры ускоряют проникание керосина через неплотности.

С помощью керосина выявляют не только сквозные, но и поверхностные дефекты. Для этого поверхность контролируемого сварного соединения после тщательной очистки обезжиривают бензином или ацетоном и обильно смачивают окрашенным керосином. По истечении 15—20 мин керосин вытирают или смывают 5%-ным водным раствором кальцинированной соды с последующим просушиванием. Затем на поверхность сварного соединения при помощи пульверизатора наносят тонкий слой разведенного в воде мела (или каолина).

Когда мел высохнет, изделие около шва обстукивают молотком, а сам шов прогревают горячим воздухом. При этом керосин, задержавшийся ранее на дефектных участках (в случае их наличия), просачивается на меловую краску в виде пятен и полосок, по которым судят об имеющихся дефектах.

При испытании обдувом одну сторону сварного шва промазывают мыльным раствором (вода 1 л, мыло хозяйственное 100 г), а другую — обдувают сжатым воздухом, подаваемым по гибкому шлангу с наконечником под давлением 4—5 кгс/см 2 . Расстояние между наконечником и швом должно быть не более 50 мм.

Если испытание проводят при температуре ниже 0° С, мыльный раствор готовят с частичной заменой воды спиртом (до 60%) или с применением незамерзающей жидкости, растворяющей мыло.

Сквозные дефекты обнаруживают по появлению пузырей на промазанной мыльным раствором стороне шва.

В основу испытания аммиаком положено свойство некоторых индикаторов, например спирто-водного раствора фенолфталеина или водного раствора азотнокислой ртути, изменять окраску под воздействием щелочей, в данном случае сжиженного аммиака.

Перед началом испытаний тщательно очищают металлической щеткой сварное соединение от шлака, ржавчины, масла и других загрязнений. Если сварку вели электродами с обмазкой основного типа, то швы, кроме того, промывают водой, иначе остатки щелочных шлаков будут реагировать в процессе испытания с индикатором, изменяя его окраску.

После такой подготовки на одну сторону шва укладывают бумажную ленту или светлую ткань, пропитанную 5%-ным раствором азотнокислой ртути (индикатором), а с другой стороны создают давление аммиака.

При контроле сварных швов небольших емкостей, а также трубопроводов в них подают аммиак в количестве 1% объема воздуха в емкости и создают избыточное давление 1 кгс/см 2 или более, но не выше расчетного рабочего.

При контроле отдельных участков шва над ними устанавливают герметичную камеру, в которой создают давление аммиака.

В обоих случаях спустя 1—5 мин аммиак, проникая через неплотности сварного шва, окрашивает пропитанную индикатором бумагу или ткань в серебристо-черный цвет. Скорость и интенсивность окраски, а также величина пятен характеризуют размеры дефектов, границы которых отмечают мелом или краской.

При использовании в качестве индикатора спирто-водного раствора фенолфталеина его тонкой струей льют на контролируемый шов. Если в шве имеются неплотности, аммиак проходит через них и окрашивает раствор фенолфталеина в ярко-красный цвет с фиолетовым оттенком.

Для испытания сварных швов днищ резервуаров или газгольдеров аммиак подают в пространство между днищем и основанием по трубкам с отверстиями и создают избыточное давление 8 — 10 мм вод. ст. Поливая швы спирто-водным раствором фенолфталеина, определяют неплотности в сварных швах и устраняют их.

Испытанию давлением газа подвергают емкости и трубопроводы, работающие под давлением, с целью контроля общей непроницаемости сварной конструкции.

Малогабаритные изделия герметизируют газонепроницаемыми заглушками и полностью погружают в ванну с водой. Затем в изделие через редуктор от воздушной сети или из баллона подают газ (воздух, азот, инертные газы) под давлением, величина которого на 10—20% больше величины рабочего. Имеющиеся неплотности определяют по появлению пузырьков газа в воде.

Крупногабаритные сварные изделия испытывают следующим образом. После герметизации в них создают испытательное давление и промазывают сварные швы мыльным раствором (100 г мыла на 1 л воды). Появление мыльных пузырей на промазанной поверхности свидетельствует о проницаемости шва.

Величину давления и время выдержки под ним устанавливают в соответствии с техническими условиями.

При испытании сжатыми газами следует тщательно соблюдать правила техники безопасности. Работы должны проводиться в изолированном помещении с ограждениями (на случай взрыва). Трубопроводы испытывают отдельными изолированными участками с предупредительными знаками об опасности. Гидравлическим давлением проверяют прочность и плотность сварных соединений различных емкостей, котлов паропроводов, водопроводов, газопроводов и других сварных конструкций, работающих под высоким давлением.

Перед испытанием сварное изделие герметизируют водонепроницаемыми заглушками, обтирают или обдувают сжатым воздухом сварные швы до получения сухой поверхности.

После полного заполнения изделия водой с помощью насоса или гидравлического пресса создают избыточное контрольное давление, величину которого принимают в соответствии со стандартами, инструкциями или техническими условиями (обычно в 1,5—2 раза больше рабочего). В процессе испытания давление определяют по проверенным и опломбированным манометрам.

В самой высокой точке испытываемого изделия устанавливают контрольную заглушку на резьбе для наблюдения за заполнением всего объема водой и выпуском воздуха в атмосферу. В противном случае не исключено образование воздушной подушки, находящейся под большим давлением, что может привести к разрыву изделия в процессе испытания.

По истечении 5—6 мин давление уменьшают до рабочего, а околошовную зону слегка обстукивают молотком на расстоянии 15—20 мм от края шва. Боек молотка должен быть круглым, чтобы не повредить основной металл изделия.

Проницаемость сварных швов и места сквозных дефектов устанавливают по снижению испытательного давления и появлению течи или просачиванию воды в виде капель, а также по запотеванию поверхности шва или вблизи него.

Во избежание ошибочных выводов следует иметь в виду, что при температуре воды в сосуде ниже температуры воздуха в помещении возможно полное запотевание всей поверхности металла испытуемого изделия. Кроме того, уменьшение испытательного давления не всегда указывает на наличие дефектов, а может быть вызвано неплотностями в нагнетательной системе, присоединительной арматуре, заглушках.

Недостатками этого способа контроля являются необходимость в источниках водоснабжения и трудности, возникающие при испытаниях в зимнее время на открытом воздухе.

Вертикальные резервуары для хранения нефти и нефтепродуктов, газгольдеры и другие крупные емкости испытывают наливом воды.

До испытания сварные швы тщательно обтирают ветошью или обдувают воздухом до получения сухой поверхности. Затем емкость заполняют водой и наблюдают за сварными швами и падением уровня воды. Продолжительность испытания, необходимого для осмотра всех швов, составляет от 2 до 24 ч в соответствии с техническими условиями. Если в течение этого времени не обнаружено пропусков воды и уровень ее не снизился, емкость считают выдержавшей испытание.

Категорически запрещается обстукивать сварные швы резервуаров, газгольдеров и других крупных емкостей в процессе испытания во избежание их разрушения. Испытание проводится при температуре окружающего воздуха не ниже 0° С и температуре воды не ниже +5° С.

Когда швов немного, их непроницаемость определяют, полива одну сторону шва водой из брандспойта под давлением 1—10 кгс/см 2 , устанавливаемым техническими условиями. Одновременно осматривают противоположную сухую сторону шва.

Проницаемость сварных швов и места дефектов определяют, следя за появлением течи, просачиванием воды в виде капель, запотеванием поверхности шва или вблизи его.

Вакуумный контроль сварных швов применяют в тех случаях, когда применение других способов почему-либо исключено. В частности, этот метод широко применяется при контроле сварных днищ резервуаров, газгольдеров, цистерн, гидроизоляционных ящиков. Он позволяет обнаружить отдельные поры диаметром до 0,004— 0,005 мм, а производительность при его использовании достигает 40—60 м сварных швов в час.

Вакуум создают при помощи переносной вакуум-камеры, которую устанавливают на наиболее доступной стороне проверяемого участка шва.

В зависимости от формы контролируемого изделия и типа соединения применяются плоские, угловые и кольцевые вакуум-камеры.

Механизированная вакуум-тележка укомплектована набором переносных вакуум-камер, позволяющих контролировать различные типы сварных соединений во всех пространственных положениях.

Контроль швов газоэлектрическими течеискателями. В настоящее время применяют два вида газоэлектрических течеискателей: гелиевые и галоидные.

Чувствительность газоэлектрических течеискателей к выявлению неплотностей в швах очень высока, но ввиду сложности конструкции и значительной стоимости изготовления их применяют только для контроля особо ответственных сварных конструкций.

Принцип работы гелиевого течеискателя основан на высокой способности гелия при определенном вакууме проходить сквозь неплотности сварных швов.

В зависимости от конфигурации и объема испытуемой сварной конструкции контроль неплотностей швов гелиевыми течеискателями производят следующими методами.

а) Контроль избыточным давлением состоит в том, что испытуемую емкость помещают в газонепроницаемую металлическую камеру, соединенную с насосами течеискателя. Внутри камеры создают вакуум, а в емкость подают под давлением гелий. При наличии сквозных дефектов в сварных швах гелий проникает в камеру и попадает в течеискатель, где фиксируется одновременно миллиамперметром и звуковым сигналом.

По окончании испытаний гелий перекачивают в другую емкость, подготовленную для контроля, или в резервуар для хранения.

б) При контроле с помощью гелиевой камеры вакуум создают в испытуемой емкости, а гелий подают в газонепроницаемую камеру. Если в сварных швах имеются неплотности, то гелий просачивается в испытуемый сосуд и попадает в течеискатель.

в) Метод установки специальной герметичной камеры-муфты применяют в основном для испытания стыков трубопроводов.

Камеру соединяют с насосом течеискателя, создают в ней вакуум и подают в трубопровод гелий. При наличии неплотностей в сварных швах гелий попадает в течеискатель и вызывает сигнал.

Эти три метода являются наиболее чувствительными к выявлению неплотностей в сварных швах, но не определяют место их расположения. С этой целью применяют обдувание струей гелия наружной поверхности испытуемой емкости, в которой создают вакуум. Места неплотностей фиксируют по сигналу течеискателя, соединенного с емкостью.

Для более точного определения расположения дефектных участков используют специальный щуп-улавливатель, соединенный с течеискателем. Щуп перемещают вдоль швов по наружной поверхности емкости, в которой находится гелий под давлением выше атмосферного. Малейшая неплотность в шве тотчас же фиксируется течеискателем.

Гелиевые течеискатели применяются для обнаружения неплотностей в сварных швах трубопроводов, находящихся под землей. Для этого над трубопроводами пробуривают несколько скважин, в которые опускают специальный щуп-улавливатель, а в каждую трубу подают гелий. Примерное место течи определяют в зависимости от того, какая из скважин показывает максимальную концентрацию гелия.

Суть проверки сварных швов на герметичность. Характеристика и технология основных способов

Кроме прочности, сварные соединения сооружений и изделий должны обладать герметичностью (непроницаемостью).

Понятие о контроле сварных швов на герметичность

Под контролем герметичности подразумевается вид неразрушающего контроля, при котором оценивается или измеряется суммарный поток (натеканий, утечек) рабочей среды (газа, жидкости), просачивающейся сквозь неплотности. Полученное значение сравнивается с допустимой нормой, приведенной в технических условиях.

Способы контроля герметичности подразделяются по критериям:

К простейшим методам контроля сварных швов на герметичность относятся капиллярные, компрессионные, вакуумные.

Испытание на непроницаемость проводится после визуального осмотра сварных швов. Контрольной проверке на непроницаемость подлежат швы изделий для транспортировки и хранения газа и жидкостей. Контроль осуществляется с применением аммиака, керосина, способом вакуумирования, гидравлических и пневматических испытаний.

Требования к сварным изделиям, подлежащим контролю на непроницаемость:

  • соответствие их изготовления чертежам, техническим условиям;
  • наличие сопроводительной документации;
  • поверхность должна быть подготовлена к испытаниям.

Способы проверки

Контроль сварных швов на герметичность проводится такими способами:

Керосином

Метод используется для проверки плотности сварных швов сосудов и резервуаров из металла до 10 мм толщиной, не работающих под давлением.

В основе проверки керосином лежит явление капиллярности. Суть способа состоит в способности керосина подниматься по сквозным порам и трещинам. Испытание керосином позволяет выявить дефекты, имеющие размер от 0.1 мм.

Технология заключается в обмазывании шва с одной стороны раствором мела или каолина в воде. После высыхания мелового состава шов с обратной стороны смачивается несколько раз керосином. Если имеются трещины, поры, несплошности, через них просачивается керосин и проявляется пятнами на меловой покраске.

Время испытания керосином:

  • при температуре выше 0 °С – от 4 часов, ответственных изделий – 12 часов;
  • при отрицательной температуре – от 8 часов, для серьезных объектов – 24 часа.

Аммиаком

Метод основан на свойстве индикаторов определенного вида (раствор азотно-кислой ртути или фенолфталеина) изменять окраску в результате воздействия сжиженного аммиака. Применяется для испытания замкнутых сварных сосудов на плотность.

Методика процесса состоит в оклеивании сварного шва снаружи полосками бумаги, пропитанными 5% раствором азотно-кислого серебра. В контрольный сосуд нагнетается сжатый воздух с содержанием 1% аммиака. Пары аммиака проходят сквозь неплотности шва, реагируют с азотно-кислой ртутью, вызывая окрашивание бумаги в серебристо-черный цвет напротив расположения дефекта. Если в качестве индикатора используется раствор фенолфталеина, окраска бумаги будет ярко-красной.

Характер и размеры дефекта зависят от скорости появления следов на бумаге, их размеров и формы.

Время проникновения аммиака сквозь неплотности сварного шва составляет от 10 минут до получаса.

Пневматическим способом

Метод предназначен для проверки плотности сварного шва изделий, работающих под давлением. В замкнутый сосуд небольшого размера, герметизированный заглушкой, до давления, на 10-20% превышающее рабочее, нагнетается сжатый воздух. Изделие погружается в воду. Наличие дефектов сварного шва определяется по пузырькам воздуха, выходящим через неплотности.

Крупногабаритные предметы герметизируют, швы промазывают мыльным раствором. В испытуемую конструкцию под давлением, превышающим рабочее на 10-20%, подается газ. Признаком дефекта является появление пузырей на шве, смоченном мыльным раствором.

Проверка крупных сосудов и газопроводов проводится на падение давления. Ввиду большой протяженности швы не обмыливают. Наличие дефектов определяется по падению давления за период 24 часа.

Испытание под давлением не допускает обстукивания сварных швов. Проверка проводится в изолированном помещении. Проведение контроля крупногабаритных изделий требует соблюдения осторожности.

Гидравлическим

В зависимости от типа конструкции существует 3 вида гидравлических испытаний:

  • гидравлического давления (гидравлические системы, трубопроводы);
  • налив воды (цистерны, баки, резервуары);
  • полив струей воды с одной стороны (изделия большой протяженности).
  1. Способ гидравлического давления. Проверяемый объект герметизируется и заполняется под давлением рабочей жидкостью или водой. Вид жидкости, ее давление и время испытания зависят от назначения контрольного образца. Цифра пробного испытательного давления указывается в проекте. Для трубопроводов составляет 1.25 и более значения рабочего давления. Пробный контроль проводится при температуре воздуха выше нуля. Результат считается удовлетворительным, если на сварном шве отсутствует запотевание и не обнаружена течь, а манометрическое давление не упало.
  2. Контроль наливом. Изделия до заданного уровня заполняется водой. При температуре воздуха выше 0° С, воды – выше 5° С, время выдержки – до 24 часов. Требуется постоянное наблюдение за понижением уровня воды и состоянием сварных швов. Шов, находящийся сверху, при обнаружении дефектов освобождается от воды, дефекты устраняются, вода доливается с целью испытания вновь заваренного участка шва. Операции повторяются до полного устранения всех дефектов.
  3. Полив струей воды. Испытание проводится струей воды из брандспойта с выходным отверстием от 15 мм. Скорость движения струи, направляемой вдоль шва, 1 м/мин. Давление воды в шланге – не менее 1 атм. Расстояние от наконечника брандспойта до поверхности изделия – до 2 м. Поверхность стороны исследуемого образца, обратная от поливаемой водой, должна быть сухой. Ее осмотр выполняется одновременно с поливом. Дефектные места проявляются возникновением течи, появлением капель воды, запотеванием поверхности сварного шва или околошовной зоны.

Вакуумом

Способ заключается в изоляции испытуемого изделия от внешней атмосферы путем откачки воздуха и проверки вакуума. При наличии в сварных швах дефектов вакуум будет нарушаться.

Метод подходит для контроля герметичности швов, к которым имеется доступ лишь с одной стороны – днищ вертикальных резервуаров, газгольдеров, гидроизоляционных ящиков, кровель цилиндрических нефтерезервуаров. Проверка осуществляется вакуум-прибором.

Камера устройства устанавливается на стык шва, обмазанный индикатором – мыльным раствором – и включается насос. Под воздействием атмосферного давления воздух проходит сквозь неплотности сварного соединения, и в местах дефектов возникают мыльные пузыри, которые можно наблюдать через стекло камеры. В условиях низких температур к пенному индикатору добавляется хлористый натрий (поваренная соль) или хлористый кальций.

Стилоскопирование, цветная дефектоскопия и метод контроля сварного соединения на «керосин»

Определение состава материала, а также поиск возможных дефектов сварных соединений выполняется с помощью совокупности методов спектрального анализа, основанных на изучении различных спектров взаимодействия. Для сварных соединений и металлических конструкций подобная методика называется стилоскопированием.

Определение методики

Стилоскопирование — простейший вид качественного спектрального анализа на наличие легирующих элементов в различных металлах и сплавах. Ему обязательно подвергают все нагревающиеся элементы котлов и трубопроводов, изготовленных из легированной стали, а также наплавленный металл сварных швов для установления марочного соответствия примененных сварочных материалов.

Стилоскопирование сварных швов проводится, как проверка визуального качества по фото. Для проведения испытаний и изучения полученных спектров используется специальный прибор — стилоскоп. От мощности данного оборудования зависят пределы возможностей стилоскопирования. Анализ на стилоскопе сопровождается минимальными повреждениями исследуемого образца, что позволяет проверять готовые детали и сварные соединения.

Стилоскоп

Стилоскопирование сварных швов

Объем контроля стилоскопированием

При проведении всех видов сварки с использованием легированных присадочных материалов металл полученного шва подвергается стилоскопированию. Методика применима до проведения термической обработки элементов конструкции, деталей.

Стилоскопирование относится к обязательным методам визуального контроля сварочных соединений, а нормативы контроля устанавливаются в зависимости от производства.

Данная методика контроля качества эффективно применяется для:

  • Контроля на наличие легирующих элементов (кроме марганцовистой и кремнемарганцовистой) в сплавах и металле для труб любого типоразмера, литых деталей, шпилек арматур, паропроводных и пароперепускных труб теплового оборудования, переходов, отводов, тройников и др.
  • проверки соответствия материала свариваемых элементов;
  • проведения анализа металлических деталей энергетических установок;
  • анализа тонкой проволоки, ленты, образцов малой массы из легкоплавких сплавов;
  • определения химического состава материалов крупногабаритных объектов, их сварных соединений;
  • определения в сварных швах малого содержания трудновозбудимого элемента (углерода от 0,1%, кремния от 0,1%, серы от 0,2%)
  • контроля сварных швов деталей и частей конструкций, которые работают под давлением;
  • качественного контроля чистоты различных марок сплавов сталей;
  • контроля металла коррозиестойкой наплавки;
  • определения наличия хрома, молибдена.

Области реализации данной методики

Стилоскопирование

1 — блок питания; 2 — источник света; 3 — стилоскоп; 4 — крепежное устройство; 5 — подставка; 6 — подставка; 7 — выдвижной винт; 8 — рельс; 9 — кабель

На производстве должны контролироваться стилоскопированием:

  1. Каждый сварной шов через каждые 2 м;
  2. все дефекты сварных швов после устранения;
  3. все места исправления сварного шва или повторного сварочного соединения;
  4. наплавка металла не менее чем в одной точке;
  5. предусмотренные положения ГОСТ 1435-99.

Стилоскопирование для контроля качества металлов и сварных соединений может использоваться:

  1. На складах машиностроительных заводов при контроле материалов;
  2. на шихтовых дворах при контроле качества;
  3. на пунктах сортировки металлического лома;
  4. в лабораториях литейных цехов;
  5. в нефтяном и химическом аппаратостроении;
  6. в газовой промышленности.

Рамки применения данного метода контроля значительно расширяются за счет возможности его использовать не только в условиях спектральной лаборатории (стационарный стилоскоп), но и в полевых условиях.

Цветная дефектоскопия (капиллярная дефектоскопия)

Одним из основных неразрушимых методов контроля качества сварных соединений является цветная дефектоскопия (капиллярный метод неразрушающего контроля (ГОСТ 18442-80))

Основной принцип действия метода

Цветная дефектоскопия предназначена для обнаружения поверхностных и сквозных дефектов, определения их расположения или протяженности (для протяженных дефектов некоторых типов) и их ориентации на поверхности исследуемого объекта. Метод основан на капиллярном проникновении внутрь дефекта, хорошо смачивающего исследуемый материал, жидкого индикатора, на визуальном изучении поверхности материала и на последующей регистрации индикаторных следов.

Процесс цветной дефектоскопии основан на пяти этапах:

  1. Очистка поверхности: механическая чистка от ржавчины, очистка очистителем и просушка поверхности.
  2. Нанесение первого жидкого индикатора (пенетрата). Наносится путем распыления, кистью или весь объект погружается в него.
  3. Аккуратное удаление лишнего пенетрата с исследуемой поверхности.
  4. Нанесение второго жидкого индикатора (проявителя).
  5. Контроль. Используют любой метод визуального контроля.

Из-за возникновения диффузионной реакции двух контролирующих жидкостей проявляются дефекты сварных швов и линии повреждений (трещины, царапины). Интенсивность окраски индикатора говорит о глубине и толщине дефекта. В этом методе контрастная чувствительность зрения играет основную роль и отвечает за точность.

  • Позволяет провести точную локализацию мелких дефектов и охарактеризовать их с большой точностью;
  • позволяет расширить область применение других визуальных методов контроля качества сварочных соединений;
  • увеличивает спектр обзора для поверхностных дефектов;
  • является не дорогостоящим методом.
  • Для выездного контроля применим только при температуре от 5 до 50 0 С, при отрицательных температурах точность падает в разы;
  • большая длительность процесса (1 — 2 часа);
  • высокая трудоемкость процесса;
  • человеческий фактор, субъективность;
  • невозможность механизировать и автоматизировать процесс контроля;
  • инструменты контроля (индикаторные жидкости) нуждаются в определенных условиях хранения и имеют ограниченный срок пригодности.

Возможности капиллярного метода контроля

Способы контроля сварных швов в основном ограничены применяемым инструментом, но для цветной дефектоскопии подобного ограничения нет. Класс чувствительности реагентов выбирается в зависимости от необходимой точности. Только этап визуальной фиксации дефектов зависит от разрешения прибора для наблюдения и использованной в данном случае точности.

Метод является широко востребованным и в основном используется для выявления дефектов шириной не менее 1 мм и глубиной не менее 3 мм:

  • Для контроля качества поверхности и общей целостности объекты любых размеров и форм;
  • при проведении дефектоскопии сварных швов на выявления трещин, пор, раковин, непроваров;
  • для обнаружения межкристаллитной коррозии и других несплошностей;
  • для обнаружения открытых волосовин.

Практическое использование цветной дефектоскопии

В условиях лаборатории или при визуальном контроле технического состояния объектов используется при:

  • Проведении технадзора строительных объектов;
  • контроле рабочего состояния трубопроводных (нефтепровод, газопровод) систем;
  • контроле сварных швов соединений патрубков с корпусом сосудов;
  • проверке качества кованых и литых деталей трубопроводов, арматуры;
  • при проведении гамма — или рентгеновского контроля;
  • при невозможности произвести контроль сварочных швов методами просвечивания;
  • при последнем контроле выпускаемой продукции из черных и цветных металлов, пластмасс, твердых сплавов;
  • при контроле срока эксплуатации.

Методика проведения цветной дефектоскопии практически всегда совмещается с другими методами контроля или усложняется (люминесцентная дефектоскопия или дефектоскопия по фото).

обработка металла от ржавчины перед покраской

Для того чтобы заниматься пескоструйной обработкой металла, необходимо приобрести специальное оборудование.

Ультразвуковой метод контроль сварных соединений — один из самых эффективных. Подробнее читайте в этой статье.

Метод контроля сварного соединения на «керосин»

Одним из самых распространенных методов контроля непроницаемости сварных соединений является капиллярный метод керосином.

Определение методики

Принцип действия метода основан на физическом свойстве керосина, капиллярности — способность подыматься по капиллярным ходам, сквозным порам и трещинам.

Испытание швов на керосин

Методом контроля на керосин

Проверка сварных швов на герметичность методом контроля на «керосин»:

  1. С контролируемой стороны (более удобной) сварные швы покрываются водным раствором мела (правильный раствор — 450 г на 1 л).
  2. После полного высыхания обратную сторону покрывают (смачивают, заливают) обильным слоем керосина не менее 3-х раз.
  3. На меловой поверхности наличие следов керосина свидетельствует о неплотности швов, о дефекте.
  4. Отдельные пятна указывают на свищ в сварном шве, сквозные трещины или непровары.

Для повышения наглядности результатов методики используют окрашенный керосин и наносят его под давлением сжатого воздуха.

Рамки применения метода

Проверка сварных швов керосином является точной методикой на подтверждения целостности шва. Подобный метод не дает возможности охарактеризовать дефекты. Благодаря высокой проникающей способности керосина степень чувствительности метода — трещины от 2×10 -4 мм.

Практическое использование метода контроля

“Керосиновая проба” — метод контроля плотности сварных соединений на “керосин” используется для проверки:

  • Резервуаров, работающих под давлением;
  • газопроводов, нефтепроводов;
  • сварных стыков ответственных конструкций;
  • при проведении проверки на уровень герметичности;
  • при контроле непредусмотренного расхода транспортируемых или хранимых веществ.

Данная методика не подходит для количественной характеристики и оценки характера дефектов, но для первоначального контроля герметичности этот дешевый способ используется повсеместно.

Читайте также: