Как получить углекислый газ в домашних условиях для сварки

Обновлено: 24.01.2025

Углекислый газ не является редким и получают его как побочный продукт, что положительно сказывается на его стоимости. Поэтому он является самым дешевым газом, применяемым для защиты, металла сварного шва в процессе сварки. Кратко о способах производства углекислоты говорилось в статье о свойствах углекислого газа и теперь настало время рассмотреть их более подробно.

Содержание

В промышленном масштабе углекислый газ получают следующими способами:

  1. из известняка, в котором содержится до 40% СО2, кокса или антрацита до 18% CO2 путем их обжига в специальных печах;
  2. на установках, работающих по сернокислому методу за счет реакций взаимодействия серной кислоты с эмульсией мела;
  3. из газов, образующихся при брожении спирта, пива, расщепления жиров;
  4. из дымовых газов промышленных котельных, сжигающих уголь, природный газ и другое топливо. Дымовой газ содержит 12-20% СО2;
  5. из отходящих газов химических производств, в первую очередь синтетического аммиака и метанола. Отходящие газы содержат примерно 90% СО2.

На данный момент наиболее распространенным способом производства углекислоты является – получение из газов при брожении.

Получение углекислого газа из газов при брожении

Отходящий газ при брожении представляет собой почти чистый углекислый газ и является дешевым побочным продуктом производства.

На гидролизных заводах при брожении дрожжей с опилками выделяются газы, содержащие 99% CO2.

1 - бродильный чан; 2 - газгольдер; 3 - промывочная башня; 4 - предварительный компрессор; 5 - трубчатый холодильник; 6 - маслоотделитель; 7 - башня; 8 - башня; 9 - двухступенчатый компрессор; 10 - холодильник; 11 - маслоотделитель; 12 - цистерна.

Схема получения углекислого газа на гидролизных заводах

Газ из бродильного чана 1 подается насосами, а при наличии достаточного давления поступает самостоятельно в газгольдер 2, где происходит отделение от него твердых частиц. Затем газ поступает в промывочную башню 3, заполненную коксом или керамическими кольцами, где он омывается встречным потоком воды и окончательно освобождается от твердых частиц и растворимых в воде примесей. После промывки газ поступает в предварительный компрессор 4, где он сжимается до давления 400-550 кПа.

Так как при сжатии температура углекислого газа повышается до 90-100°С, то после компрессора газ поступает в трубчатый холодильник 5, где охлаждается до 15°С. Затем углекислота направляется в маслоотделитель 6, где отделяется масло, попавшее в газ при сжатии. После этого углекислый газ подвергается очистке водными растворами окислителей (KMnO4, K2Cr2P7, гипохромитом) в башне 7, а затем осушке активированным углем или силикагелем в башне 8.

После очистки и осушки углекислота поступает в двухступенчатый компрессор 9. На ступени I происходит сжатие его до 1-1,2 МПа. Затем углекислый газ поступает в холодильник 10, где охлаждается со 100 до 15°C, проходит маслоотделитель 11 и поступает на II ступень компрессора, где сжимается до 6-7 МПа, превращается в жидкую двуокись углерода и собирается в цистерну 12, из которой производится заправка стандартных баллонов или других емкостей (танков).

Принципиально процесс производства углекислого газа другими методами ничем не отличается от вышеуказанного: сначала газ очищается, потом производят осушку, а на последнем этапе охлаждение и сжатие для превращения в жидкость, поскольку в данном виде его удобно хранить и транспортировать.

Углекислый газ, он же углекислота, он же двуокись углерода…

Формула углекислого газа

Углекислый газ бесцветный газ с едва ощутимым запахом не ядовит, тяжелее воздуха. Углекислый газ широко распространен в природе. Растворяется в воде, образуя угольную кислоту Н2CO3, придает ей кислый вкус. В воздухе содержится около 0,03% углекислого газа. Плотность в 1,524 раза больше плотности воздуха и равна 0,001976 г/см 3 (при нулевой температуре и давлении 101,3 кПа). Потенциал ионизации 14,3В. Химическая формула – CO2.

Как получилось так, что у данного газа столько много терминов неизвестно, но в сварочном производстве, согласно ГОСТ 2601, используется термин «углекислый газ». В «Правилах устройства и безопасной эксплуатации сосудов, работающих под давлением» принят термин «углекислота», а в ГОСТ 8050 - «двуокись углерода». Поэтому далее мы будем оперировать всеми этими понятиями.

Плотность двуокиси углерода зависит от давления, температуры и агрегатного состояния, в котором она находится. При атмосферном давлении и температуре -78,5°С углекислый газ, минуя жидкое состояние, превращается в белую снегообразную массу «сухой лед».

Под давлением 528 кПа и при температуре -56,6°С углекислота может находиться во всех трех состояниях (так называемая тройная точка).

Двуокись углерода термически устойчива, диссоциирует на окись углерода и кислород только при температуре выше 2000°С.

Жидкая двуокись углерода

Жидкая двуокись углерода бесцветная жидкость без запаха, плотность которой сильно изменяется с изменением температуры. Она существует при комнатной температуре лишь при давлении более 5,85 МПа. Плотность жидкой углекислоты 0,771 г/см 3 (20°С). При температуре ниже +11°С она тяжелее воды, а выше +11°С - легче.

Жидкая двуокись углерода превращается в газ при подводе к ней теплоты.

При нормальных условиях (20°С и 101,3 кПа) при испарении 1 кг жидкой углекислоты образуется 509 л углекислого газа.

Впервые жидкую двуокись углерода получили в 1823 г. Гемфри Дэви (Humphry Davy) и Майкл Фарадей (Michael Faraday).

Сухой лед

Твердая двуокись углерода (сухой лед) по внешнему виду напоминает снег и лед. Содержание углекислого газа, получаемого из брикета сухого льда, высокое - 99,93-99,99%. Содержание влаги в пределах 0,06-0,13%. Сухой лед, находясь на открытом воздухе, интенсивно испаряется, поэтому для его хранения и транспортировки используют контейнеры. Получение углекислого газа из сухого льда производится в специальных испарителях. Твердая двуокись углерода (сухой лед), поставляемая по ГОСТ 12162.

При чрезмерно быстром отборе газа, понижении давления в баллоне и недостаточном подводе теплоты углекислота охлаждается, скорость ее испарения снижается и при достижении «тройной точки» она превращается в сухой лед, который забивает отверстие в понижающем редукторе, и дальнейший отбор газа прекращается. При нагреве сухой лед непосредственно превращается в углекислый газ, минуя жидкое состояние. Для испарения сухого льда необходимо подвести значительно больше теплоты, чем для испарения жидкой двуокиси углерода - поэтому если в баллоне образовался сухой лед, то испаряется он медленно.

История открытия углекислого газа

Углекислый газ – это первый газ, который был описан как дискретное вещество. В семнадцатом веке, фламандский химик Ян Баптист ван Гельмонт (Jan Baptist van Helmont) заметил, что после сжигания угля в закрытом сосуде масса пепла была намного меньше массы сжигаемого угля. Он объяснял это тем, что уголь трансформируется в невидимую массу, которую он назвал «газ».

Свойства углекислого газа были изучены намного позже в 1750г. шотландским физиком Джозефом Блэком (Joseph Black).

Он обнаружил, что известняк (карбонат кальция CaCO3) при нагреве или взаимодействии с кислотами, выделяет газ, который он назвал «связанный воздух». Оказалось, что «связанный воздух» плотнее воздуха и не поддерживает горение.

Пропуская «связанный воздух» т.е. углекислый газ CO2 через водный раствор извести Ca(OH)2 на дно осаждается карбонат кальция CaCO3.

Джозеф Блэк использовал этот опыт для доказательства того, что углекислый газ выделяется в результате дыхания животных.

Способы получения углекислого газа

В статье "Как получить углекислый газ" рассказано все в мельчайших подробностях, здесь лишь скажем, что основными способами получения являются:

  • из известняка;
  • из газов при брожении спирта;
  • из газов котельных;
  • из газов производств химической отрасли.

Применение углекислого газа

Двуокись углерода чаще всего применяют:

  • для создания защитной среды при сварке полуавтоматом;
  • в производстве газированных напитков;
  • охлаждение, замораживание и хранения пищевых продуктов;
  • для систем пожаротушения;
  • очистка сухим льдом от загрязнений поверхности изделий.

Применение углекислоты для сварки

Плотность углекислого газа достаточно высока, что позволяет обеспечивать защиту реакционного пространства дуги от соприкосновения с газами воздуха и предупреждает азотирование металла шва при относительно небольших расходах углекислоты в струе. Низкий потенциал ионизации и теплопроводность способствуют образованию горячей зоны в центре столба дуги и как следствие более глубокое проплавление и меньшую ширину шва. Углекислый газ является активным газом, т.е. в процессе сварки он взаимодействует с металлом шва и оказывает на металл сварочной ванны окисляющее, а также науглероживающее действие.

Молекула углекислого газа CO2, попадая в зону сварочной дуги распадается на атомарный кислород О и угарный газ СО. В результате происходит выгорание легирующих элементов металла сварочной ванны и окисление основного металла (возникает окалина, шлак и дым). Реакция окисления расплавленного металла сварного шва имеет следующий вид:

Fe + CO2 = FeO + CO

Ранее препятствием для применения углекислоты в качестве защитной среды являлось образование большого количества дефектов в сварных швах (преимущественно пор). Поры при сварке возникают в результате кипения затвердевающего металла сварочной ванны от выделения окиси углерода (СО) из-за недостаточной его раскисленности. При этом поверхность сварного шва сильно окислена и имеет большое количество шлака ввиду окисляющей атмосферы внутри сварочной дуги. Помимо неудовлетворительного эстетического вида, при необходимости дальнейшего нанесения защитного покрытия потребуется дополнительная операция зачистки поверхности.

При высоких температурах углекислый газ диссоциирует с образованием весьма активного свободного, одноатомного кислорода:

Окисление металла шва выделяющимся при сварке из углекислого газа свободным кислородом нейтрализуется содержанием дополнительного количества легирующих элементов с большим сродством к кислороду, чаще всего кремнием и марганцем (сверх того количества, которое требуется для легирования металла шва) или вводимыми в зону сварки флюсами (сварка порошковой проволокой).

Как двуокись, так и окись углерода практически не растворимы в твердом и расплавленном металле. Свободный активный кислород окисляет элементы, присутствующие в сварочной ванне, в зависимости от их сродства к кислороду и концентрации по уравнению:

Мэ + O = МэO, где Мэ - металл (марганец, алюминий или др.).

Кроме того, и сам углекислый газ реагирует с этими элементами. В результате этих реакций при сварке в углекислоте наблюдается значительное выгорание алюминия, титана и циркония, и менее интенсивное - кремния, марганца, хрома, ванадия и др.

Особенно энергично окисление примесей происходит при полуавтоматической сварке. Это связано с тем, что при сварке плавящимся электродом взаимодействие расплавленного металла с газом происходит при пребывании капли на конце электрода и в сварочной ванне, а при сварке вольфрамовым электродом - только в ванне. Как известно, взаимодействие газа с металлом в дуговом промежутке происходит значительно интенсивнее вследствие высокой температуры и большей поверхности контактирования металла с газом. Для компенсации выгорания легирующих элементов в сварном шве, необходимо применять сварочную проволоку с повышенным содержанием раскислителей (кремния и марганца).

Уже давно известна зависимость, чем больше сила сварочного тока, тем больше размер капель расплавленного металла. В свою очередь увеличение размера капель электродного металла увеличивает разбрызгивание.

В настоящее время ввиду большого разбрызгивания металла сварочной ванны при сварке в углекислоте все чаще применяют сварочные смеси с аргоном. Производители сварочного оборудования не остались в стороне от данной проблемы и предусматривают специальный режим на сварочных полуавтоматах, при котором уменьшается эффект разбрызгивания. Еще один путь решения данного вопроса – это использование специальных спреев или жидкостей, которые не позволяют прикипать брызгам к металлу свариваемой детали. В любом случае применение любого из данных методов с лихвой окупит затраты времени и расходных материалов на удаление брызг путем механической зачистки.

При сварке тонких деталей применением оптимальных режимов сварки возможно добиться короткозамкнутого переноса электродного металла и тем самым получить минимальное разбрызгивание. Например, при использовании сварочной проволоки ? 1 мм, силе сварочного тока 150 А и напряжения дуги 16-23 В происходит перенос металла небольшими каплями за счет поверхностного натяжения.

Для MAG сварки толстостенных конструкций целесообразно применение проволоки большого диаметра и, следовательно увеличение силы сварочного тока, увеличение разбрызгивания, что ведет к уменьшению скорости наплавки электродного металла. Для уменьшения разбрызгивания уменьшают скорость подачи сварочной проволоки. Поэтому применение чистой углекислоты оказывает негативное влияние на производительность сварки и качества сварного шва. Углекислоту в качестве защитного газа рационально применять при сварке порошковой проволокой (FCAW) углеродистых сталей поскольку обеспечивается короткозамкнутый перенос и хорошее качество сварного шва.

Ввиду химической активности углекислого газа по отношению к вольфраму сварку в этом газе ведут только плавящимся электродом.

При выборе защитного газа стоит учитывать не только его стоимость, но и влияние потерь на разбрызгивание, последующую зачистку и общую трудоемкость процесса.

Вредность и опасность углекислого газа

Двуокись углерода нетоксична и невзрывоопасна. При концентрациях более 5% (92 г/м 3 ) углекислый газ оказывает вредное влияние на здоровье человека, так как он тяжелее воздуха и может накапливаться в слабо проветриваемых помещениях у пола. При этом снижается объемная доля кислорода в воздухе, что может вызвать явление кислородной недостаточности и удушья. Помещения, где производится сварка с использованием углекислоты, должны быть оборудованы общеобменной приточно-вытяжной вентиляцией. Предельно допустимая концентрация углекислого газа в воздухе рабочей зоны 9,2 г/м 3 (0,5%).

Хранение и транспортировка углекислого газа

Углекислый газ поставляется по ГОСТ 8050. Для получения качественных швов используют газообразную и сжиженную двуокись углерода высшего и первого сортов.

Углекислоту транспортируют и хранят в стальных баллонах по ГОСТ 949 или цистернах большой емкости в жидком состоянии с последующей газификацией на заводе, с централизованным снабжением сварочных постов через рампы.

В стандартный баллон с водяной емкостью 40 л заливается 25 кг жидкой углекислоты, которая при нормальном давлении занимает 67,5% объема баллона и дает при испарении 12,5 м 3 углекислого газа.

В верхней части баллона вместе с газообразной углекислотой скапливается воздух. Вода, как более тяжелая, чем жидкая двуокись углерода, собирается в нижней части баллона.

Для снижения влажности углекислого газа рекомендуется установить баллон вентилем вниз и после отстаивания в течение 10. 15 мин осторожно открыть вентиль и выпустить из баллона влагу. Перед сваркой необходимо из нормально установленного баллона выпустить небольшое количество газа, чтобы удалить попавший в баллон воздух. Часть влаги задерживается в углекислоте в виде водяных паров, ухудшая при сварке качество шва.

При выпуске газа из баллона вследствие эффекта дросселирования и поглощения теплоты при испарении жидкой двуокиси углерода газ значительно охлаждается. При интенсивном отборе газа возможна закупорка редуктора замерзшей влагой, содержащейся в углекислоте, а также сухим льдом. Во избежание этого при отборе углекислого газа перед редуктором устанавливают подогреватель газа. Окончательное удаление влаги после редуктора производится специальным осушителем, наполненным стеклянной ватой и хлористым кальцием, силикогелием, медным купоросом или другими поглотителями влаги.

Баллон окрашен в черный цвет, с надписью желтыми буквами «УГЛЕКИСЛОТА».

дешевая замена СО2 системы своими руками


Всем привет!
Всегда завораживали травники, где все настолько все подобрано, что не находишь слов от восторга.
Но для такой красоты нужны не только свет не менее 0,5 ватт на литр, питательный грунт и всяческие удобрения, но и подача СО2.
Итак, для чего вообще в аквариум подается СО2? Обычно подача СО2 упоминается в двух контекстах – для ускорения роста растений в декоративных аквариумах и для борьбы с черной бородой (для тех кто не знает, это такая паразитная и наносящая большой вред декоративности аквариума водоросль). Причем как в первом, так и во втором случае допускается множество ошибок и зачастую демонстрируется полное непонимание сути процесса. А значит, пора проводить ликбез.

Для начала вспомним для чего двуокись углерода (далее везде СО2) вообще нужна для жизнедеятельности растений? Из школьного курса ботаники все должны помнить (надеюсь что в школе все учились?), что растения на свету поглощают углекислый газ и выделяют кислород. Обычно на этом познания и заканчиваются, и вспомнить для чего там именно он поглощается, не может никто. На самом деле СО2 важнейший компонент фотосинтеза растений, если описать это химической формулой то получается вот что:
6CO2 + 6H2O + солнечная энергия -> C6H12O6 + 6O2
Получается, что из воды и углекислого газа строятся углеводы, аминокислоты и другие органические вещества. То есть, фактически, можно сказать, что растение “строит” себя за счет поглощения СО2. Выделяемый кислород, это побочный продукт, главное, что нужно растению это получить строительный материал для своих клеток, то из чего вырастут стебель, листья, цветоносы и все остальная биомасса растения. СО2 – главная пища, лишите растение СО2 и оно перестанет расти и даже начнет чахнуть, все удобрения, шарики под корни, таблетки в грунт, жидкие удобрения – все это не более чем добавки. Разумеется, такое сравнение некорректно, но специалисты меня простят, а чайникам будет понятнее – я бы сравнил все удобрения с витаминами. Вот вы, да да, лично вы, способны питаться одними витаминами? Пускай даже самыми лучшими и дорогими? Или вам для жизни все таки нужен поджаристый бифштекс, ну или хотя бы, овсянка на воде? То то и оно, вот растениям также главное что нужно – СО2, все остальное вспомогательно, вроде как нам с вами витамины. Запомните это крепко-накрепко и больше не путайте удобрения (витамины) с СО2 (вкусным обедом). Это разные вещи.

Теперь переходим к тому, откуда вообще возникает проблема с СО2 в аквариуме. Из тех же школьных учебников известно что СО2 содержится в атмосфере и его доля там достигает 0.3% (это примерно 1/700 от доли кислорода). В воде соотношение резко меняется – в литре воды может быть растворено до 0.5мг/л СО2, что примерно в 70 раз больше, чем в воздухе и всего 7см3/литр кислорода (против 0.01 СО2 и 210 кислорода в воздухе). Как видите соотношение резко изменилось, в воде СО2 растворяется намного лучше, а кислород наоборот существенно хуже. При этом, как ни парадоксально, но СО2 может так же быстро и освобождаться из воды, если ее турбулентно мешать или аэрировать.

Декоративный аквариумВ природе поглощение СО2 водой происходит на 99% за счет взаимодействия воздуха и поверхности воды. Можно поэтизировать процесс, сказав что волны похищают СО2 из воздуха. Остальное это дыхание водных организмов и самих растений. Да, да! Растения тоже дышат, причем на свету этот процесс параллелен фотосинтезу, то есть одновременно и поглощается СО2 и выделяется кислород, и поглощается кислород и выделяется СО2. Просто интенсивность фотосинтеза на свету намного выше, потому и кислорода получается намного больше. В темноте растения только дышат, то есть выделяют СО2. Но в общей массе, то что обычно выделяется за счет дыхания, это мизер. По этому говоря о природных водоемах, дыханием можно пренебречь. Жалкие проценты получаемого при этом СО2 не идут ни в какое сравнение с объемами захватываемыми из воздуха.
Но сравните общее соотношение растений и площадей поверхности природных водоемов! На каждое растение приходится огромное пространство поверхности воды. Ведь, фактически, растения живут в узкой прибрежной полосе, да и то половина их них торчит из воды получая столь нужную углекислоту и из воздуха. Теперь посмотрите в аквариум – это тот самый кусочек прибрежной зоны, кубик набитый растениями. Но где же огромные площади поверхности, через которые всасывается СО2? А нет их в аквариуме. Весь имеющийся в наличии СО2 растения выедают в считанные минуты после включения света, а затем получают только крохи от дыхания рыб. Разумеется что-то попадает в воду и в процессе аэрации, но вы помните, что СО2 как легко растворяется в воде, так и легко из нее и освобождается. Вот и получается, что аэрация это палка о двух концах – немного растворяет, столько же забирает, и как результат – почти ничего не меняет. А растения как сидели голодными, так голодными и остаются.

Конечно, большое количество рыб, может несколько сгладить ситуацию, но в большинстве случаев и рыб недостаточно для нормального роста растений. Особенно это касается декоративных аквариумов, густо засаженных растениями. Обычно рыб в таких аквариумах немного, а вот растений очень много. И соотношение для растений получается весьма плачевным. Большинству аквариумистов этого кажется вполне достаточным, листики растут, некоторые растут вроде даже вполне быстро, чего тут беспокоится? Для многих так даже проще, ничего буйно не разрастается, подходить к аквариуму надо не чаще раза в месяц и почти ничего не приходится подстригать. Все просто и приятно.
И все бы хорошо, но идиллия в какой-то момент может быть нарушена самым грубым образом – вторжением паразитных водорослей. Не буду вдаваться в причины, почему это вдруг происходит в прежде красивом и благополучном аквариуме, просто примите как факт – водоросли, особенно это касается “черной бороды”, внезапно появляются и все идет наперекосяк. Тогда аквариумист начинает искать пути спасения от нежданной напасти, изучает отзывы о всевозможной химии которая может потравить нежелательные водоросли, роется в интернете и в специальной литературе. И в конце концов, магическим ответом на поиски путей разрешения проблемы будет магическое словосочетание “Це-О-Два”, и озадаченный аквариумист впервые столкнется с такими вещами как баллон или “брагогенератор”, редуктор и реактор СО2.

Конечно, тут я привел крайний случай, но мой личный опыт показывает, что намного больше людей приходит к необходимости использования СО2 как раз для борьбы с водорослями, нежели те редкие любители, которые просто созрели до уровня создания у себя декоративного аквариума.

Прежде чем рассматривать способы и изобретенные механизмы подачи СО2 в аквариум, разберемся чем же повышения количества СО2 в воде может помочь в борьбе с водорослями. На самом деле тут все очень просто и сводится к конкурентной борьбе между растениями. Дело в том, что обмен веществ и эффективность фотосинтеза у высших растений намного более эффективны, нежели у более древних и примитивных водорослей. Поэтому водоросли могут выигрывать только в особых, “некомфортных” для высших растений условиях. И одним из таких условий как раз является углекислотное голодание. Имеющегося в воде мизера СО2 вполне хватает примитивным водорослям, но совершенно недостаточно для более сложных высших растений. В результате водоросли растут, успешно потребляют растворенные в воде питательные вещества, а высшие растения стоят почти без роста и тихо загибаются. Кто-то может решить – надо подать в воду СО2 и все сразу исправится! Он прав, но только наполовину. Потому что сам по себе СО2 панацеей не является. Вспомните формулу, там есть еще два компонента – вода и свет. Ну, положим, воды у нас предостаточно, полный аквариум, а вот достаточно ли света? А правильный ли это свет, усваивается ли он растениями? С вероятностью в 90% рискну предположить что нет Все фирменные (и не очень фирменные) аквариумы поставляются с очень слабым светом. Нередко можно видеть, как на аквариум в 120 литров ставятся две 15 ваттные лампочки. 2х15 делим на 120 и получаем мощность света 0.25 ватта на литр. Это мало, нормой для эффективного роста растений будет не менее 0.5 ватта на литр, причем еще надо учитывать глубину аквариума и спектральный состав ламп. То есть в такой стандартный аквариум придется добавить еще две лампы, просто для того чтобы дать растениям достаточно света для фотосинтеза.

Но давайте представим, что мы поставили в аквариум еще две лампы, но больше ничего не изменили, то есть количество СО2 осталось прежним. Думаете все у вас будет цвести и колосится? Как бы не так! Скорее всего у вас активно полезут зеленые водоросли, да еще и вода “зацветет” и станет по цвету как хорошее болото. Произойдет это от банального дисбаланса – света стало много, а пищи, то есть СО2 не хватает. В итоге растения расти по прежнему не могут, зато водорослям настоящее раздолье.

Исправим положение, подадим в аквариум СО2. Растения резко пойдут в рост, водоросли начнут угнетаться, но через некоторое время растения опять остановятся и прекратят расти. В чем же дело? Ведь теперь пищи достаточно? А они стоят, вон, даже листья стали желтеть и дырками покрываться… А дело в том, что мы забыли про “витамины”. Растения выжрали из воды все необходимые для развития микроэлементы и остановились. А паузой немедленно снова попробовали воспользоваться водоросли. Что же делать? Добавляем удобрения и микроэлементы в воду и вот уже листья снова сочные и зеленые, растения “прут как из пушки”, а водоросли грустят где-то на задворках дожидаясь очередного шанса.

Таким образом по отдельности ни один и факторов свет-СО2-удобрения успеха не даст. А вот если их применить все вместе, одновременно, тогда и только тогда вы получите настоящий подводный сад, и противная черная борода сама по себе отомрет, не выдержав конкурентной борьбы, а аквариум будет радовать глаз. Но прежде чем бежать в магазин заказывать себе систему СО2, правильные лампочки и мешок удобрений – давайте разберемся в моделях и принципах действия различных систем подачи СО2 в аквариум.
Но как известно система подачи углекислого газа стоит слишком дорого. Один знакомый травник подсказал мне замену баллона с СО2.
Система на основе приготовления не сложной браги.
Рецепт браги: 200 грамм сахара, чайная ложка дрожжей "Саф-момент", пол чайной ложки соды, 5 изюминок. Залить в 1,5-литровую бутылку одним литром теплой воды. Бродит стабильно около 10 дней. Потом перезаряжать надо
Вот только необходимо приобрести диффузор JBL Taifun или очень мелкий распылитель который бы продавливала брага.

Как получить диоксид углерода

wikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали авторы-волонтеры.

CO2 служит химическим символом для диоксида углерода. Это соединение вызывает шипение в газированной воде и многих алкоголесодержащих напитках, способствует разбуханию хлеба, выступает движущей силой для ряда аэрозолей, и является важной составляющей огнетушительной смеси. CO2 можно получить специально, либо в качестве побочного продукта других химических реакций.

Изображение с названием Make CO₂ Step 01

  • Если вы хотите получить CO2 для того, чтобы пополнить запасы диоксида углерода в аквариуме, такой бутылки будет как раз достаточно для 100-литрового (около 25 галлонов) аквариума.

Изображение с названием Make CO₂ Step 02

Насыпьте в бутылку 2 чашки (473,18 мл) сахара. При этом используйте нерафинированный сахар, в котором содержится большее количество сложных соединений, и поэтому распад дрожжей займет более длительное время. Кроме того, нерафинированный сахар дешевле.

Изображение с названием Make CO₂ Step 03

Залейте в бутылку теплую воду до того уровня, где бутылка начинает сужаться к горлышку. Используйте теплую воду из-под крана; не заливайте горячую воду, так как она погубит дрожжевые грибки.

Изображение с названием Make CO₂ Step 04

Добавьте в бутылку 1/2 чайной ложки (2,46 мл) гидрокарбоната натрия. Это вещество является основным ингредиентом пищевой соды, которую легко можно приобрести в магазине.

Изображение с названием Make CO₂ Step 05

  • Примером дрожжевого экстракта может служить мармит, производимый в Великобритании. Из других экстрактов можно упомянуть веджимайт, боврил, ценомис.

Изображение с названием Make CO₂ Step 06

Засыпьте 1/3 чайной ложки (1,64 мл) дрожжей. Пивные дрожжи бродят дольше, чем хлебные, но для наших целей будет достаточно и хлебных дрожжей, к тому же они дешевле.

Изображение с названием Make CO₂ Step 07

Изображение с названием Make CO₂ Step 08

Взболтайте бутылку, пока дрожжи и сахар не растворятся. На поверхности воды должна появиться небольшая пена.

Газирование воды дома


Захотелось самому делать газированную воду. Не с целью сэкономить, а потому что в покупной одна химия. Поизучал вопрос и узнал, что это делается в простых пластиковых бутылках довольно легко. Но все почему-то стараются сделать это как можно дешевле и используют сомнительные решения в виде огнетушителя с технической углекислотой. У меня же мотивация изначально была иная и я за минимальной ценой не гнался. И вот что получилось:


Далее все фото с сайтов магазинов.







Шланг и китайский переходник промыл моющим средством для посуды.

Выставляем давление 2-3 атмосферы, накручиваем на бутылку с охлаждённой жидкостью китайский переходник, подключаем соединение и трясём бутылку пока газ не перестанет растворяться. Это можно контролировать по пузырькам из переходника или по отсутствию падения давления после потряхивания.

Если кто знает где продаются натуральные сиропы, то пишите. Я пока нашёл только "соки ретро", но отзывы на них только у них. Лагидзе вообще не ищется, а только информация что буржуи угробили завод в Тихвине.


Поскольку в комментариях появилось несколько не умных, которые мало того, что не представляют опасность баллона с углекислотой, но ещё и бравируют тем, что постоянно работают с ней, плюя на технику безопасности, прошу не делать поспешных выводов и самостоятельно изучить вопросы работы с сосудами под давлением и, в особенности, со сжиженными газами.

Углекислота в баллоне находится в жидкой фазе. От изменения температуры объём жидкости меняется. Жидкость при этом несжимаемая. При правильной заправке углекислоту заливают по массе, взвешивая заправляемый баллон. Сколько заправлять в баллон грамотные заправщики знают. И ни в коем случае нельзя заливать полностью, иначе при повышении температуры жидкость расширится, сжаться она не сможет в силу физических свойств, давление будет расти и может разорвать баллон. Для недопущения этого, помимо правильной заправки, и применяется защитный клапан.

К вопросу о нужности предохранительный клапанов:

ПБ 03-576-03 «Правила устройства и безопасной эксплуатации сосудов, работающих под давлением»

5.5.1. Каждый сосуд (полость комбинированного сосуда) должен быть снабжен предохранительными устройствами от повышения давления выше допустимого значения.

10.3.6. Выпуск газов из баллонов в емкости с меньшим рабочим давлением должен производиться через редуктор, предназначенный для данного газа и окрашенный в соответствующий цвет.
Камера низкого давления редуктора должна иметь манометр и пружинный предохранительный клапан, отрегулированный на соответствующее разрешенное давление в емкости, в которую перепускается газ.

Метки: газирование воды, газировка

Комментарии 202

Войдите или зарегистрируйтесь, чтобы писать комментарии, задавать вопросы и участвовать в обсуждении.


Покупаешь на авито сифон, балончики от пневматических пистолетов . А ещё вареница добавить и класс.



Только в баллончиках для пневматических пистолетов не только углекислота, туда еще добавляют машинное масло для смазки механизма пистолета


🤔, ни разу не видел там смазки

его там несколько миллиграммов, но тем не менее оно там есть


"От изменения температуры объём жидкости меняется. Жидкость при этом несжимаемая. …иначе при повышении температуры жидкость расширится, сжаться она не сможет в силу физических свойств" Так Вы определитесь с законами физики. Что у вас сжимается, а что нет? Вы вроде все правильно пишите, а процесса не понимаете. Что больше подвергается расширению? Газ или жидкость? Жидкость в баллоне из жидкой фазы переходит в газообразную. Естественно с ростом температуры жидкость будет переходить в газ более интенсивно.При этом объем жидкости будет уменьшаться, а объем газа — увеличиваться.


Это не так.
Жидкость будет увеличиваться в объёме от нагрева, когда газа совсем не останется, то жидкость станет давить на сосуд, она при этом не сжимаема и давление будет огромным.

Дальше вы определитесь пришли ли вы сюда узнать что-то или попытаться наехать на других не разобравшись. Про увеличение газовой фазы при нагреве это вообще никак.

Ваши умозаключения противоречат законам физики. Вы транслируете бред! Когда больше жидкости в баллоне зимой или летом?Спросите у заправщиков баллонов.Жидкость при более высокой температуре стремится перейти в газ. Пример — вода и пар. Учите матчасть.

Вас прикалывает что ли дурачком быть? Всё в кучу смешали, и ещё гордитесь незнанием. Это не вода и пар, это газ, переведённый в жидкость увеличением давления. Вода тоже увеличивает температуру кипения при увеличении давления. И при нагревании расширяется. Вон, в бойлере для этого клапан ставят и при нагреве воды он стравливает излишек.

Что больше расширяется газ или жидкость? Чем испытывают баллоны?И почему? И тогда дальше будем разговаривать.

Не будем. Я не нанимался с ламерами воевать. Отдохните в бане.


В каждом вашем коментарии вы обзываете собеседника. Не хорошо это. Следите за своими словами иначе на вас будут жаловаться. А если не хотите дискутировать закройте комментарии совсем.

Не в каждом, не наговаривайте. Я веду с каждым так, как он того заслуживает. Я не подставляю вторую щёку, а ударяю в ответ, иногда даже сильнее. Если кто сюда пришёл для того чтобы наехать, то пусть не удивляется, что вылетает отсюда жопой вперёд. Богатый фидошный опыт.

Кто с мечом к нам придёт, тот от меча и… (с)

А вот нормальным собеседникам всегда рад.


Nissan-Dnepr

Баллоны испытывают водой, потому что она не сжимается и при разрыве баллона не происходит высвобождение большого объёма жидкости, то есть нет взрыва. Если испытывать газом, то он будет сжиматься, потом произойдет сжижение а дальше заполнится весь объем и если это всё рванет, то мало не покажется. Дак вот автор хотел сказать что если заполнить баллон полностью(а это не жидкость, а газ, просто сжиженный), то при нагревании ему некуда уже будет сжиматься, потому что он уже максимально сжат.


Осталось научится варить пиво ) при таком то оборудовании, именно так делают карбонизацию в кегах. Почитайте информацию о растворимости углекислоты при разных температурах, в идеале карбонизацию нужно делать охлажденной воды, растворимость будет лучше и карбон быстрее.

Там карбонизация иначе протекает; короче говоря — жрущие дрожжи и газируют пиво в процессе… Углекислота — не нужна…


Недавно возле пивоварни разгружали баллоны. Я глянул, что на них написано. Часть баллонов с чистым со2, а часть со смесью "биогон" — 80% азота и 20% со2.


Pathfinder970

разная методика, естественная карбонизация или принудительная. Все коммерческие сорта пива на полках магазинов и особенно фильтрованное это все принудительная карбонизация. Там после фильтрации и пастеризации нет дрожжей чтобы доесть сахара и создать давление.

ПБ 03-576-03 «Правила устройства и безопасной эксплуатации сосудов, работающих под давлением»
5.5.1. Каждый сосуд (полость комбинированного сосуда) должен быть снабжен предохранительными устройствами от повышения давления выше допустимого значения.

10.3.6. Выпуск газов из баллонов в емкости с меньшим рабочим давлением должен производиться через редуктор, предназначенный для данного газа и окрашенный в соответствующий цвет.

Камера низкого давления редуктора должна иметь манометр и пружинный предохранительный клапан, отрегулированный на соответствующее разрешенное давление в емкости, в которую перепускается газ.

Поболтайте тут ещё, что предохранительный клапан не нужен, работяги хреновы. На вас пофиг, но вы ещё и других опасности подвергаете.


дам совет, чем ниже температура воды, тем лучше насыщение
при температуре около 4-5*С насыщение воды углекислотой будет качественнее и быстрее.
Чиллер приобретать расточительно, конечно, но охладить в холодильнике надо до сатурации.
учтите, для газировки 4-5*С, для лимонада 2-3*С

Углекислота
Не существует "Пищевой", "Медицинской" и т.д. двуокиси углерода. Двуокись углерода производимая предприятиями по ГОСТ 8050-85 подразделяется на: Высший сорт (99.8%); Первый сорт (99.5%) и Второй сорт (98,8%)
Заметьте, в выданном вам ТУ ( что такое ТУ я расскажу позднее), показатель выше высшего! сорта 99,9%

Согласно ГОСТ 8050-85
"Двуокись углерода всех сортов применяется: для создания защитной среды при сварке металлов; для пищевых целей в производстве газированных напитков, сухого льда, для охлаждения, замораживания и хранения пищевых продуктов при прямом и косвенном контакте с ними; для сушки литейных форм; для пожаротушения и других целей во всех отраслях промышленности.
Жидкая двуокись углерода высшего и первого сортов применяется преимущественно для нужд сварочного производства."

таким образов видно, что она делится на сорта и что характерно, требования к сварочной ( которую вы называете "технической" ) выше, чем к остальным областям применения. Но при этом, заметьте, все сорта могут применяться в пищевой промышленности.

Теперь о той филькиной грамоте, которую вам выдали и которую вы называете Сертификатом.

Цена этой бумаге равна стоимости листа и типографской краски.
Объясняю. это не что иное, как Технические Условия которые создают сами производители и в которые можно вписать ЛЮБЫЕ значения.

Отсюда и родилось : Углекислота для пищевых целей, что так вас радует, но этого нет в документе более важном, так сказать главном — ГОСТе 8050-85.

Там вообще никак не сказано про субстанцию под названием углекислота, там оперируют правильными названиями и терминами — Двуокись углерода с формулой CO2

Выводы : использовать для приготовления газировки можно любую
двуокись углерода, сам газ ничем не отличается.
Основная разница в обслуживании баллонов, для пищевых и медицинских требований нужна более качественная обработка.

Читайте также: