Как определить марку алюминия перед сваркой

Обновлено: 23.01.2025

Нелегированный алюминий – это алюминий без легирующих элементов при содержании алюминия не менее 99,00%, остальное – примеси. Примесь – металлический или неметаллический элемент, присутствующий в металле, минимальное содержание которого не контролируется.

Рафинированный алюминий – нелегированный алюминий высокой чистоты (содержание алюминия не менее 99,950%), который получают в результате специальных металлургических обработок.

Первичный алюминий – нелегированный алюминий:

  • который произведен из глинозема, обычно электролизом, и
  • который имеет содержание алюминия не менее 99,70%.

Нелегированный алюминий подразделяется на марки в зависимости от содержания в нем примесей.

Русскому термину “марка” соответствует английский термин “grade” [1].

Алюминиевые сплавы

Алюминиевый сплав – это алюминий:

  • который содержит легирующие элементы,
  • в котором содержание алюминия выше, чем любого другого элемента и
  • в котором, содержание алюминия не более 99,00%

Легирующий элемент – это металлический или неметаллический элемент, содержание которого контролируется в заданном интервале, чтобы обеспечивать сплаву заданные специфические свойства. Обычно легирующие элементы преднамеренно добавляют в расплав алюминия.

Легированный алюминий подразделяется на сплавы.

Каждый алюминиевый сплав имеет свое обозначение, например, сплав АД31 или сплав 2017. Это обозначение сплава однозначно определяет его химический состав, в том числе, интервалы содержания легирующих элементов и допуски на максимальное содержание примесей. Необходимо отметить, что иногда, в том числе, в стандартах, применяется выражение “марка сплава”. Однако, чем отличается смысл выражений “марка сплава” и “сплав” совершенно не понятно.

Русскому термину “сплав” соответствует английский термин “alloy” [1].

Классификация марок алюминия

Среди марок алюминия различают по способу выплавки и назначению:

  • марки первичного алюминия
  • марки деформируемого алюминия
  • марки литейного алюминия

Марки первичного алюминия

Первичный алюминий подразделяются на:

  • алюминий особо высокой чистоты (содержание алюминия выше 99,995%)
  • алюминий высокой чистоты (содержание алюминия от 99,95 до 99,995%)
  • алюминий технической чистоты (содержание алюминия от 99,00 до 99,85%)

Марки первичного алюминия применяют, главным образом, для переплавки при изготовлении алюминиевых сплавов, деформируемых и литейных. При этом для сплавов общего назначения применяются марки алюминия технической чистоты. Для изготовления специальных сплавов применяют марки алюминия высокой чистоты, например, для авиации и космонавтики. Кроме того, марки высокой чистоты и особо высокой чистоты применяют в различных высокотехничных технологиях, например, при производстве полупроводников.

Марки деформируемого алюминия

Основные марки деформируемого алюминия имеют чистоту от 99,00 до 99,85%. Они предназначены для изготовления продукции методом горячей и холодной обработки металлов давлением, то есть – прокаткой, экструзией, волочением, штамповкой и т. п.

Марки литейного алюминия

Марки литейного алюминия имеют очень ограниченное применение, в основном для изготовления литых роторов электрических двигателей. Они имеют чистоту от 99,00 до 99,70 %.

Первичный алюминий

Марки алюминия в ГОСТ 11069

Главным показателем чистоты первичного алюминия является содержание железа и кремния (таблица 1):

  • Первичный алюминий технической чистоты, который получают электролизом из криолитно-глиноземного расплава. Он содержит от 99,85% алюминия (до 0,08% железа и 0,06% кремния) до 99,0% алюминия (до 0,50% железа и 0,50% кремния).
  • Алюминий высокой чистоты, который получают путем электролитического рафинирования алюминия технической чистоты. Он содержит от 99,995% алюминия (до 0,0015% железа и 0,0015% кремния) до 99,95% алюминия (до 0,030% железа и 0,030% кремния).

Особо чистый алюминий получают путем применения сложных методов очистки, например, зонной очистки. Он имеет чистоту не менее 99,999% (общее содержание всех примесей не превышает 0,001%).

Таблица 1 – Химический состав марок первичного алюминия по ГОСТ 11069

Химический состав марок алюминия по ГОСТ 11069

Для первичного алюминия, который применяется для производства сплавов, кроме общего содержания примесей важную роль часто играет также соотношение содержания железа и кремния. Это соотношение примесей влияет, в частности, на склонность к горячему растрескиванию первичного алюминия, а также марок и сплавов, изготовленных на его основе. Отношение содержания железа и кремния зависит от исходного сырья и технологии производства первичного алюминия.

Два способа способа обозначения первичного алюминия

Известно, что все производство первичного алюминия основано на процессе Холла-Эру. Главными примесями выплавленного первичного алюминия являются железо и кремний. Кроме того, в первичном алюминии обычно присутствуют второстепенные примеси, такие как, цинк, галлий, титан и ванадий. Обычно в международной практике главным критерием, который характеризует химический состав и ценность первичного алюминия, является минимальное содержание в нем чистого алюминия. Однако в Соединенных Штатах более важным критерием, который отражает ценность первичного алюминия, считается содержание в нем железа и кремния. Этот подход установила американская Алюминиевая Ассоциация.

Поэтому марки нелегированного алюминия могут обозначаться двумя способами:

  • по минимальному содержанию чистого алюминия, например, Al 99,70 % или
  • по максимальному содержанию кремния и железа – в виде Pхххх.

За буквой Р следуют цифры, которые указывают на максимальное содержание кремния и железа, например:

  • Р1020 – это нелегированный первичный алюминий – марка первичного алюминия, содержащая не более 0,10% кремния и не более 0,20% железа.
  • Р0506 – это марка первичного алюминия, содержащая не более 0,05% кремния и не более 0,06% железа.

Марки алюминия в EN 576 и ISO 115

Эти два различных подхода к оценке свойств первичного алюминия отражены в европейском стандарте EN 576:2004. Этот стандарт устанавливает требования к химическому составу различных марок первичного алюминия как в соответствии с международным подходом, так и – с американским подходом. Положения стандарта EN 576 в целом совпадают с положениями аналогичного международного стандарта ISO 115:2003.

Таблица 2 отражает международный подход, таблица 3 – подход американской Алюминиевой Ассоциации.

Химический состав марок алюминия по ISO 115 - международный вариант

Таблица 2 – Нелегированный алюминий с установленным минимальным содержанием алюминия –
Химический состав: максимальное содержание в процентах по массе

Химический состав марок алюминия по ISO 115 - американский вариант

Таблица 3– Нелегированный алюминий без установленного минимального содержания алюминия –
Химический состав: максимальное содержание в процентах по массе

Обозначение марок алюминия в таблице 2 имеет “американский” вид: состоит из четырех цифр, перед которыми стоит буква Р, а после них – буква, обозначающая серию, например, Р1020А:

  • Первые две цифры, ХХ, указывают на две цифры после запятой в максимальном содержании кремния: 0,ХХ.
  • Последние две цифры, YY, указывают на две цифры после запятой в максимальном содержании железа: 0,YY.
  • Для базовых марок за четырьмя цифрами следует буква А.

Вариации базовых марок алюминия, то есть имеющие такие же пределы содержания для кремния и железа, но различные пределы содержания для других элементов, обозначаются путем замены буквы А на другую букву, начиная с В, но кроме I, О и Q.

Марки алюминия на LME

Стандартной маркой первичного алюминия, которая является предметом международной торговли, в том числе, на Лондонской бирже металлов (LME) является марка алюминия с чистотой 99,70% [3]. Это эквивалент американской марки первичного алюминия P1020. Эта марка алюминия обеспечивает максимальное содержание железа в металле 0,20% и максимальное содержание кремния 0,10% (то есть 10 сотых частей кремния , 20 сотых частей железа, отсюда – Р1020).

Металл с более низким содержанием алюминия, например, 99,50%, считается продукцией более низкого качества и обычно продается со скидкой. Этот металл может быть переплавлен и смешан на литейном производстве с более высокосортным металлом, чтобы получить слитки, которые соответствуют требованиям LME или готовую литейную продукцию. Основными примесями при получении более высокосортного металла являются железо и кремний. Повышение содержания алюминия выше 99,70% означает в основном пропорциональное снижение содержания железа и кремния, тогда как содержание других примесей остается практически неизменным [3].

Деформируемый алюминий

Марки алюминия в ГОСТ 4784

ГОСТ 4784-97 включает алюминий, которые применяется при изготовлении продукции методами обработки металлов давлением. Здесь цифры говорят мало полезного:

  • чем больше нулей, тем чище алюминий
  • алюминий без цифр (АД) – самый “грязный”.

Модификации с буквой Е (электротехнические) содержат пониженное содержание кремния для улучшения электрической проводимости. В отличие от ГОСТ 11069 стандарт ГОСТ 4784 не исключает и вторичный алюминий, то есть алюминий, полученный из лома.

Таблица 4 – Марки деформируемого алюминия по ГОСТ 4784-97

Марки деформируемого алюминия по ГОСТ 4784

Марки алюминия в EN 573-3

Таблица 5 – Марки деформируемого алюминия по EN 573-3

Марки деформируемого алюминия по EN 573-3

Литейный алюминий

Литейные марки алюминия относятся к серии 1хх литейных сплавов по международной классификации алюминия и его сплавов. Хотя часто их называют сплавами (alloys), нет оснований относить их полноправным сплавам: они содержат не менее 99,00 % алюминия и формально не имеют легирующих элементов, однако, в отличие от марок первичного алюминия в них контролируют отношение содержания железа и кремния.

Эти марки-сплавы литейной серии 1хх применяются для отливки роторов электрических двигателей (таблица 6). Роторы обычно отливаются на машинах литья под высоким давлением, которые специально разработаны для этой цели. Типичный алюминиевый ротор показан на рисунке 1. Эти марки литейного алюминия серии 1хх применяются также в некоторых других случаях, которые не требуют сложных форм отливок.

Таблица 6 – “Роторные” марки литейного алюминия [4]

Марки алюминия для изготовления роторов электрических двигателей

Типичный алюминиевый ротор электрического двигателя

Рисунок 1 – Типичный алюминиевый ротор электрического двигателя [4]

В этих роторные “сплавах” установлены не только пределы чистоты алюминия, но и также отношение содержания железа и кремния. Это обеспечивает образование интерметаллических частиц, которые в меньшей степени, чем другие отрицательно влияют на литейные свойства этих “сплавов”, а также на их электрическую проводимость.

Поскольку нелегированный алюминий стоит дешевле, чем роторные сплавы, были попытки заменить их на марки первичного алюминия при изготовлении роторов. Например, слитки первичного алюминия Р1020 имеют ту же чистоту, как и “сплав” 170.2, но без контроля соотношения содержания железа и кремния, а также неконтролируемое содержание титана и ванадия. Опыт показал, что игнорирование этих различий ведет к разбросу характеристик электрической проводимости и низким литейным свойствам алюминия при отливке роторов [5].

  • Самый чистый «роторный» алюминий (170.1) является самым трудным для литья: он в самой большой степени подвергается усадочному растрескиванию.
  • Наоборот, наименее чистый алюминий 100.1 льется намного легче при минимальном растрескивании .
  • Более чистые марки алюминия, например, 99,80% и 99,85 %, еще более склонны к растрескиванию при их литье, чем марка алюминия 170.1 [4].

Микроструктура нелегированного алюминия

Железо и кремний

Поскольку железо и кремний являются основными и обязательными примесными элементами, а также поскольку растворимость железа в твердом алюминии очень мала, то в микроструктуре всех марок алюминия – кроме рафинированного, особо чистого алюминия – видны фазы алюминий-железо и алюминий-железо-кремний. В литом равновесном состоянии в нелегированном алюминии могут присутствовать следующие фазы: FeAl 3, Fe 3 SiAl 12, Fe 2 Si 2 Al 9.

Второстепенные примеси

Второстепенные примеси, например, медь и марганец, находятся в слишком малом количестве, чтобы образовывать собственные фазы, но могут участвовать в образовании других фаз. Чтобы их обнаружить требуется высокое разрешение микроскопа и сложные методики идентификации фаз [2].

Применение нелегированого алюминия

Марки рафинированного алюминия

Рафинированным алюминием называют алюминий с чистотой от 99,99 % до 99,9999 %. За рубежом чистоту такого алюминия часто обозначают “4N to 6N” – по количеству девяток (Nine). Его получают специальными методами из первичного алюминия. Марки рафинированного алюминия находят применение в следующих областях:

  • Фольга для электролитических конденсаторов (марка 1199)
  • Производство полупроводников
  • Плит для производства плоских дисплеев
  • Распайка выводов в электронной промышленности
  • Производство тонких пленок
  • Производство высокочистого оксида алюминия и высокочистых порошков
  • Электронные накопители (диски памяти)
  • Для изделий с зеркальной поверхностью и ювелирных изделий
  • Производство сверхчистых алюминиевых сплавов для аэрокосмической промышленности

Марки алюминия технической чистоты

  • Электрические проводники: проволока, витые прводники, шины, полосы трансформаторов (марки 1350)
  • Литографические плиты (марка 1100)
  • Упаковка: фольга из алюминия марки (марки 1100, 1145, 1050, 1235)
  • Прессованные трубы для пищевой, химической и пивоваренной промышленности (марки 1050, 1060)
  • Теплообменники (марки 1050, 1070, 1145)
  • Системы пассивной сейсмической защиты. Низкий предел текучести и высокая пластичность применяются для эффективного рассеивания сейсмической энергии при землетрясениях (марка 1050А)
  • Алюминиевые бутылки (марки 1050А и 1070А)

Алюминий для раскисления стали

Марки алюминия в ГОСТ 295

Алюминий, который применяют для раскисления стали, а также производства ферросплавов и порошков для алюминотермии также подразделяется на марки. Требования к этим маркам алюминия устанавливает ГОСТ 295-98. Этот алюминий изготавливают как из первичного сырья, так и из лома и отходов алюминиевых сплавов. Производится в чушках и гранулах. Для этих марок алюминия характерно очень большое содержание примесей – в общем количестве до 13 %.

Таблица 7 – Марки алюминия для раскисления, производства ферросплавов и алюмотермии

Марки и сплавы алюминия которые часто используются в сварке

Алюминиевые сплавы часто применяются для создания конструкций разного назначения. Основными достоинствами данных металлов является малая плотность, высокая прочность и высокая устойчивость к коррозии. Чистый алюминий ввиду низкой прочности применяется в разных видах промышленности. Алюминий высокой чистоты широко используется в производстве полупроводников.

Сплавы из алюминия разделяются на литейные и деформируемые. В основном в сварочных конструкциях используются полуфабрикаты, например листы, трубы и профили из деформируемых сплавов. Концентрация легирующих элементов в деформируемых сплавах составляет меньше предела растворимости, а при нагреве данные сплавы могут переводиться в однофазовое состояние, которое обеспечивает высокую деформационную способность.

Большинство элементов, которые входят в состав алюминиевых сплавов, имеют ограниченную растворимость, которая изменяется с температурой. При температуре металла в 1000 градусов по Цельсию, реакция окисления начинает происходить. Окись, которая образовывается в результате окисления, покрывает поверхность деталей плотной и прочной пленки. При температуре 20 градусов окисление происходит по параболическому закону, а при повышенной температуре, процесс протекает немного иначе. Важнейшей характеристикой окисной пленки алюминия является ее способность к адсорбированию газов, например водяного пара. Водяной пар удерживается окисной пленкой до температуры плавления металла.

Коэффициент теплового расширения окисной пленки практически в 3 раза менее коэффициента расширения самого алюминия, поэтому при нагревании металла образовываются трещины. При наличии в алюминии добавок легирующих элементов и добавок, состав окисной пленки может измениться существенным образом. Сложная окисная пленка является рыхлой и гигроскопической, а также обладает худшими защитными свойствами.

К сплавам, которые наиболее часто используются для сварки, являются: АД, АД1, АМц, АМг, АМг3, АМг5В, АМг6, АВ, АД31, АДЗЗ, АД35, М40, Д20, ВАД1, В92Ц. Для проведения успешных сварочных работ применяют проволоку из алюминия и алюминиевых сплавов в соответствии с ГОСТ 7871—75.

АД1 применяются в промышленности для изготовления полуфабрикатов с помощью использования метода горячей или холодной деформации.

Сплав АД33 используется для изготовления деталей разной степени прочности, которые работают в интервале от -70 до 50 градусов во влажной атмосфере и в воде в море.

Для производства полуфабрикатов методом холодной или горячей деформации, а также слитков, слябов и биметаллических листов.

Д20 наиболее часто используется для производства сварных изделий, которые работают при комнатной температуре или кратковременно при повышенной температуре.

Сварка алюминия и сплавов является приоритетной для большинства сварщиков, поэтому необходимо знать, какие сплавы наиболее часто используются для работы.

Аргонная сварка алюминия

Аргонная сварка алюминия

Аргонная сварка алюминия – единственный способ получить прочное соединение, которое отвечает всем предъявляемым требованиям. Проблема сварки алюминия в том, что на его поверхности находится инертная оксидная пленка, достаточно прочная, чтобы сделать неэффективными другие способы сварки.

Однако недостаточно просто выбрать аргоновую сварку как метод. Необходимо также правильно подобрать расходные материалы и настроить само оборудование. О том, как получить крепкие швы, не требующие обработки, какие есть способы проверки соединений, читайте в нашей статье.

Почему подходит именно аргон для сварки алюминия

Для работы с таким металлом, как алюминий, подходит любой инертный газ. Примером может служить гелий, он использовался еще в 40-е годы XX века в Соединенных Штатах Америки в качестве газа для сварки алюминия и его сплавов. Но у аргона есть одно неоспоримое преимущество – его стоимость значительно ниже при сохранении того же результата. Впрочем, для работы требуется иное знание – почему качественные швы, соединяющие алюминиевые детали, создаются под защитным слоем инертного газа.

Почему подходит именно аргон для сварки алюминия

Поскоблите поверхность любого алюминиевого изделия и увидите блестящий металл. Впрочем, постепенно блеск металла будет мутнеть и становиться все более тусклым. Это говорит о происходящем процессе окисления алюминия. Что по-научному звучит как «образование окиси алюминия (Al2O3)» – вещества, появляющегося на поверхности для защиты металла от продолжения окисления.

Чистый алюминий имеет температуру плавления, равную +6600 °С, а пленка покрывающая его поверхность – +20 000 °С. Это сильно затрудняет обычную сварку. Приходится искать технологию, которая сначала уберет окисленный слой с поверхности и удалит ее из зоны сварки. И она есть. Основным источником энергии для нее служит электричество, которое создает дугу переменного тока. Направление последнего меняется так же, как и тока в обычной электросети с частотой 50 Гц.

При работе с алюминием переменный ток решает несколько задач:

  • Дает возможность применять легкое, компактное оборудование (инвертеры для сварки), заменив ими огромные преобразователи, которые, помимо своего размера, были неудобны необходимостью спецподготовки места сварки и повышенными требованиями к квалификации специалиста.
  • Легко убирает слой оксида алюминия с поверхности металла, поскольку рабочая температура электрода выше термической стойкости Al2O3.

Во время выполнения работы необходимо строго выдерживать полярность электрического тока. Обратная полярность, когда электрод становится анодом, – это процесс, при котором электронный поток идет следующим образом: электрод → заготовка. Внутри дуги температура находится в диапазоне от +5 000 °С до +6 000 °С, что выше температуры приконтактных зон, однако она все равно значительно больше температуры плавления алюминия. Электроны своей энергией рвут пленку оксида алюминия и счищают ее с поверхности металла, обеспечивая качественную плавку.

Рекомендуем статьи по металлообработке

Впрочем, одной обратной полярности для выполнения сварочных работ с алюминием мало. Окружающая среда должна быть нейтральна к высоким температурам и защищать поверхность от вновь образовывающейся окиси. Что и делает инертный газ.

Аргонная сварка алюминия имеет высокую производительность и делает процесс устойчивым, обеспечивая требуемое качество шва на изделии.

Подготовительные процедуры перед сваркой алюминия аргоном

Подготовительные процедуры перед сваркой алюминия аргоном

Работа с алюминием имеет множество особенностей, которые необходимо учитывать в процессе сварки:

  • Быстрое покрытие поверхности металла оксидной пленкой в результате взаимодействия с кислородом, находящимся в окружающем нас воздухе, по причине высокой химической активности. Температура плавления пленки > +2 000 °С, в то время как сам металл плавится при +660 °С. При попадании жестких частей пленки в сварной шов, качество и прочность последнего значительно снижаются.
  • Контроль процесса аргонной сварки алюминия затруднен, поскольку цвет металла при расплавлении не изменяется.
  • В результате гигроскопичности алюминий впитывает влагу из воздуха. Впоследствии, при нагреве, она начинает испаряться и мешает сварочному процессу из-за аргона, ухудшая качество шва.
  • Алюминий имеет высокий коэффициент линейного расширения. Поэтому во время остывания заготовка может достаточно сильно деформироваться или потрескаться. Чтобы этого избежать, при сварке аргоном увеличивают расход присадочной проволоки или видоизменяют шов.

Расход аргона при выполнении сварки необходимо аккуратно регулировать. При недостаточном его поступлении в зону работы алюминий может вспениться, избыток же не позволит сделать правильного шва.

Одним из видов оборудования должен быть аппарат аргонной сварки алюминия переменного тока. Установка постоянного тока для выполнения аргонной сварки не подходит. Наиболее пригодным может стать инвертор с TIG-режимом. Дополнительные опции в нем должны позволять:

  • розжиг дуги бесконтактным методом;
  • регулирование баланса переменного тока;
  • заваривание аргоном кратера шва;
  • регулирование времени подачи аргона после выключения дуги.

Для снижения расхода аргона во время сварки алюминия необходимо заменить обычную горелку на оснащенную газовой линзой, которую еще называют цангодержателем. Внутри такого приспособления стоит специальная сетка. Аргон проходит через ее ячейки, что снижает расход с одновременным увеличением защиты места сварки.

Электрод для аргонной сварки выбирают универсальный вольфрамовый AC/DC, цвет неважен. Может также использоваться зеленый специализированный электрод для переменного тока AC. Конец проволоки делается слегка острым, но его притупление остается. Делается это для того, чтобы после зажжения дуги он приобрел каплеобразную форму. Для предотвращения перегрева вольфрамового электрода его закрепляют в сопло с вылетом от 0,3 до 0,5 см. В процессе аргонной сварки конец затупляется налипшими брызгами алюминия и его приходится снова заострять.

Алюминий быстро плавится, поэтому диаметр присадочной проволоки должен быть больше или равен толщине заготовок для успешного ее продвижения. Подача может происходить как вручную, так и выполняться полуавтоматом. Выбор проволоки зависит от чистоты алюминия. Для алюминия, содержащего сплавы, берут проволоку с кремниевыми добавками № 4043, а для чистого – № 5356.

Технология аргонной сварки алюминия

Технология аргонной сварки алюминия

Одним из серьезных этапов сварки аргоном является очистка кромок деталей. Перед началом работы требуется механически почистить их, а затем обезжирить. Чтобы убрать все жиры с поверхности деталей, надо использовать растворитель, например, ацетон. Помимо этого, при толщине детали > 0,4 см необходимо бывает разделать кромки, то есть скосить их. Делается это для понижения сварочной ванны ниже уровня поверхности детали, чтобы сформировать корень шва.

Для исключения прожогов оставляют маленькое притупление. При обработке с помощью аргона тонких заготовок используют отбортовку – так называют процесс загиба кромок деталей под прямым углом. Делается это для более плотного прилегания деталей друг к другу при аргонной сварке. Если кромки достаточно хорошо подготовить, то уберется напряжение заготовки и не произойдет ее деформации, что увеличит качество сварного соединения.

С поверхности необходимо убрать пленку окиси. Для этого кромки деталей обрабатывают любым абразивом (например, наждачкой) на расстояние ≤ 3 см от края. Также можно поработать напильником.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Тепло хорошо отводится, если поместить обрабатываемую деталь на подкладку из стали или меди. Тонкие заготовки обязательно надо разместить таким образом, чтобы предотвратить образование прожогов от соединения аргоном.

После окончания подготовительных работ надо хорошенько настроить переменный ток, подобрать правильный электрод, выбрать его диаметр и присадочную проволоку для соединения аргоном. Нижеизложенная информация призвана облегчить процесс выбора. При использовании двухрежимного аппарата он должен быть переведен в режим работы переменного тока АС.

Способ формирования шва

Толщина заготовки, мм

Диаметр электрода, мм

Диаметр проволоки, мм

С отбортовкой кромок

Начинается работа с большой силой тока для быстрого прогрева металла. В процессе ток уменьшается, что предотвращает последующие пережоги, поскольку тепло быстро расползается по зоне аргонной сварки.

Настройка скорости подачи аргона в сварочную ванну очень важна. На интенсивность сильное влияние оказывают сила тока и скорость перемещения горелки. Рассмотрим несколько примеров: лист алюминия толщиной 0,1 см обрабатывается силой тока < 50 А – расход аргона будет от 4 до 5 л/мин. При толщине 0,4–0,5 см и силе тока >150 А – расход аргона вырастет до 8–10 л/мин. Излишнее количество аргона в сварочной ванне может привести к примеси воздуха, а это ухудшит показатели шва. При его недостатке шов не удастся качественно защитить от воздействия кислорода.

Процесс начинается с газовой продувки. Горелка включается примерно на 20 секунд. Затем она подносится к поверхности металла на расстояние в 2 мм для создания электрической дуги. Дугу для аргонной сварки металлов, в том числе и алюминия, нельзя разжигать касанием. Поступающий в рабочую зону аргон защищает ее от воздействия кислорода, в то время как электрическая дуга плавит кромки вместе с проволокой (если она применяется для аргонной сварки). Электрод следует держать под углом 70–80° к заготовке для создания качественного ровного шва.

Проверка качества сварки алюминия аргоном

Присадочная проволока, в случае ее использования, должна подаваться под углом 90° к электроду. Для защиты шва проволоку следует подавать перед электродом краткими движениями возвратно-поступательного характера. Выглядит это как прикосновение кончика проволоки к поверхности с последующим движением вверх и назад. Нельзя двигать электрод и присадку поперек шва. Все движения должны быть плавными, тогда шов получится ровным. При резких движениях металл начинает разбрызгиваться.

Расстояние между изделием и электродом в процессе всей работы с помощью аргона должно быть одинаковым и не превышать 1,5–2,5 мм. От него зависит длина дуги – чем она короче, тем ровнее металл будет плавиться, а значит, и шов получится прочнее и красивее.

Расплавленный алюминий достаточно быстро застывает, поскольку в процессе нагревания происходит его усадка. Из-за этого при охлаждении может потрескаться углубление на конце шва. Для предотвращения этого углубление заваривают, направляя электрод обратно. По окончании сварочных работ с аргоном горелка продувается в течение 10 секунд газом. Насколько будет качественным шов? Определить это несложно, достаточно взглянуть на его ширину, которая должна быть одинаковой, и структуру (наподобие чешуек). На шве, получаемом методом сварки с аргоном, не должно быть наплывов, пузырей и непроваров.

Проверка качества сварки алюминия аргоном

Изделия и конструкции из алюминия и сплавов с ним используются в машиностроении. Это трубопроводы, резервуары, емкости и пр. Их надежность и долговечность определяется качеством сварных швов.

Основными методами контроля сварных соединений алюминиевых изделий являются дефектоскопия ультразвуком, рентгено- и гамма-графирование, визуальный осмотр и измерение, гидравлические испытания гелиевым искателем течей.

Обязательно проверяются механические свойства сварных швов, созданных с аргоном, проводят металлографию – проверку состава и структуры соединения (в случае выполнения работ, технологически предусматривающих термический контроль сварки аргоном).

Обязательно проверяются механические свойства сварных швов, созданных с аргоном

Проведение контроля доверяют работникам ОТК производителя алюминиевых конструкций, иногда проверку проводят при участии представителей заказчика, поскольку аргонная сварка алюминия, цена которой не считается высокой, является в то же время очень ответственной.

Методы, параметры и объемы работ по контролю устанавливаются на каждую группу изделий, тип конструкции, а иногда и на конкретную продукцию, в соответствии с «Правилами контроля» или техническими условиями.

Существуют определенные особенности в проведении контроля изделий из алюминия и его сплавов, поскольку материал склонен к образованию пор внутри соединения, выполненного с аргоном. Помимо пор, в шве могут образовываться и несплавления, возникающие между кромками и швом, а также между валиками. Поиски несплавлений затруднены, поскольку их невозможно обнаружить рентгено- и гамма-графированием. Специалисты используют для этой цели ультразвук, делая дефектоскопию.

Несплавление в корне шва – достаточно частый дефект, возникающий во время работы неплавящимся электродом при сквозной проплавке, когда корень шва создается на неостающейся подкладке. Корень шва, при невозможности получить доступ к подварке, следует делать под защитой нейтрального газа. А непосредственно перед сваркой аргоном необходимо проводить шабрение кромок, чтобы убрать окисную пленку.

При проведении многослойной обработки металла поры в нижних слоях могут переплавляться в процессе наложения верхних валиков! Именно поэтому пористость не учитывается в процессе промежуточного просвечивания изделия.

Контрольную процедуру внешнего осмотра проходят все сварные соединения, кроме швов, имеющих внешние дефекты – наплывы, свищи начала шва, трещины, кратеры, не прошедшие заваривание и их выводы на основной металл, цепи пор и сплошные сетки, непровары и подрезы.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Сварщику об алюминиевых сплавах: обозначения сплавов

Первым шагом при изучении сварки алюминия должно быть знакомство с самими алюминиевыми сплавами (литейными и деформируемыми): их обозначениями, свойствами и соображениями о сочетании сварочного алюминиевого сплава со свариваемым алюминиевым сплавом.

Сварка стали и сварка алюминия

Выбор подходящего сварочного сплава для сварки алюминия отличается от выбора сварочного сплава для сварки сталей. В случае сталей выбор состоит в основном в том, чтобы согласовать прочностные свойства сварочного и основного металла. В случае алюминия нужно учесть много факторов, таких как удобство сварки, сопротивление растрескиванию, пластичность, прочность шва, коррозионная стойкость, температура эксплуатации и влияние термической обработки после сварки. Некоторые из этих факторов могут быть такими же важными, как и прочность при растяжении.

Поэтому для хорошей сварки алюминия необходимо хотя бы краткое знакомство со многими алюминиевыми сплавами, их характеристиками и системой обозначений алюминиевых сплавов. Понимание этой системы поможет применять нужный сплав в различных условиях эксплуатации готового изделия.

Обозначения алюминиевых сплавов

Иногда обозначения алюминиевых сплавов неправильно называют «маркировкой». Маркировка – это совсем другое. Это – физическое нанесение на изделие или полуфабрикат какой-либо идентифицирующей надписи – краской, отпечатком штампа, наклейкой ярлыка или прикреплением бирки. Путаница идет от того, что в наших стандартах каждый сплав это не просто «сплав», а зачем-то «марка сплава».

Зарубежные обозначения деформируемых сплавов

К деформируемым сплавам относят те сплавы, которые предназначены для холодной или горячей обработки давлением – прокатки, прессования, ковки, штамповки, волочения. В международной практике принята система обозначения деформируемых алюминиевых сплавов, состоящая из четырех цифр. Первая цифра указывает на главный легирующий элемент, иногда – два элемента. Вторая цифра, если она не является нулем, указывает на модификацию базового сплава, а третья и четвертая являются произвольными цифрами, по которым различают сплавы. Например, в сплаве 5183 цифра 5 указывает, что главным легирующим элементов в нем является магний, цифра 1 указывает на первую модификацию базового сплава 5083, цифры 83 указывают на конкретный сплав в серии сплавов 5ххх.

Исключением в системе цифровых обозначений является серия 1ххх, к которой относится алюминий различной чистоты, но с содержанием алюминия не менее 99 %. В наших стандартах эти различные «алюминии» называют марками алюминия. В этой серии последние две цифры указывают минимально допустимое в сплаве количество алюминия выше 99 %. Например, сплав 1350 содержит не менее 99,50 % алюминия.

Необходимо отметить, что в американских стандартах к четырем цифрам спереди добавляются буквы АА, например, АА5053. Буквы АА обозначают американскую Алюминиевую Ассоциацию – отраслевую алюминиевую организацию, которая, собственно, разработала и внедрила эту систему обозначений из четырех цифр. В стандарте ISO 209-1 к этим цифрам ничего не добавляют. В европейском стандарте EN 573 спереди добавляют буквы EN А W c дефисом, и полное обозначение сплава 5183 выглядит так: EN AW-5183. Буквы EN – это, понятно, «европейская норма», А – aluminium и W – кованый (деформируемый). Впрочем, как правило, в технической литературе обычно применяют «голые» цифры (плюс иногда буквы сзади) без всяких букв спереди.

Обозначения алюминиевых сплавов по ГОСТ 4784-97

В отечественных стандартах (ГОСТ) – своя, еще «советская», система буквенно-цифровых обозначений деформируемых сплавов, хотя основные группы-серии сплавов совпадают с международными. В ГОСТ 4784 в обозначениях сплавов дополнительно указываются, там, где это возможно, и международные обозначения из четырех цифр. Подробнее об обозначениях по ГОСТ 4784 см. здесь.

Зарубежные обозначения литейных сплавов

Литейные сплавы предназначены для отливки из них готовых деталей и изделий. Международная система обозначений литейных сплавов основана на трех цифрах слева от десятичной точки и одной цифре – справа от нее. Первая цифра указывает на главные легирующие элементы сплава. Вторая и третья цифры дают при регистрации сплава для его однозначной идентификации сплава внутри данной серии.

Цифра, которая следует за десятичной точкой, указывает, что сплав определен для отливок (.0) или для слитков (.1 или .2). Заглавная буква перед первой цифрой указывает на модификацию базового сплава. Например, в популярном литейном сплаве А356.0 буква А указывает на модификацию базового сплава 356.0. Цифра 3 указывает главными легирующими элементами этого сплава являются кремний+медь и/или магний. Цифры «56» идентифицируют конкретный сплав внутри серии 3ххх.х, а «0» указывает, что это сплав для отливки, не для слитка.

Обозначение литейных сплавов по ГОСТ 1583-93

Отечественную классификацию литейных алюминиевых сплавов и их буквенно-цифровую систему обозначений определяет ГОСТ 1583-93. Подробнее см. здесь.

Марки алюминия

Марки алюминия

Современную промышленность трудно представить без алюминия и его сплавов. И потому так важно знать, какие марки этого металла используются для тех или иных целей. К примеру, виды, применяемые для строительства фюзеляжа космического корабля, не подойдут для производства пищевой посуды и т. д.

Маркировка алюминия используется для обозначения процентного содержания различных примесей, а также технологии получения или обогащения. Давайте же разберемся, какими физико-химическими свойствами обладают те или иные марки этого металла и где они применяются.

Какие различают марки алюминия

Какие различают марки алюминия

Придание металлу определенных свойств, усиление его характеристик возможно за счет легирования его различными химическими элементами, такими как магний, медь, цинк, кремний, марганец.

Существуют разные марки алюминия, отвечающие определенным стандартам, к примеру, «АД0» по ГОСТу 4784-97. Во избежание путаницы классификация включает высокочастотные металлы.

Алюминий может быть следующих марок:

  1. Первичный («А5», «А95», «А7Е»).
  2. Технический («АД1», «АД000», «АДС»).
  3. Деформируемый («АМг2», «Д1»).
  4. Литейный («ВАЛ10М», «АК12пч»).
  5. Для раскисления стали («АВ86», «АВ97Ф»).

Помимо перечисленных марок алюминия, отдельно выделяют его соединения, с помощью которых создают сплавы с золотом, серебром, платиной, прочими драгоценными металлами. Такие соединения называют лигатурами.

Марки первичного алюминия

Примером этой группы можно назвать первичный алюминий марки «А5». Для его получения используется обогащенный глинозем. Встретить металл в чистом виде в природе невозможно, поскольку он обладает высокой химической активностью.

При взаимодействии с другими элементами металл образует бокситы, нефелины и алуниты. Впоследствии эти руды используются для получения глинозема, а затем путем определенных химико-физических реакций – чистого алюминия.

Требования, которым должны соответствовать марки первичного алюминия, установлены в ГОСТе 11069. Отметки об отнесении металла к определенному классу представляют собой вертикальные и горизонтальные полосы, наносимые на заготовки несмываемой краской определенных цветов. Первичный алюминий используется в ведущих промышленных областях, по большей части в тех, где необходимы повышенные технические характеристики сырья.

Марки технического алюминия

В марках технического (нелегированного) алюминия содержание посторонних примесей составляет не более 1 %.

По ГОСТу 4784-97 марки технического алюминия должны обладать повышенной антикоррозионной стойкостью. При этом их прочность не очень высока. Отсутствие в составе металла легирующих элементов приводит к образованию на его поверхности устойчивой защитной оксидной пленки.

Отличительными чертами марок технического алюминия являются высокая тепло- и электропроводность. Молекулярная решетка отличается почти полным отсутствием примесей, рассеивающих поток электронов. Подобные свойства позволяют применять металл в таких сферах, как приборостроение, изготовление оборудования для нагревания и теплообмена, освещения.

Марки деформируемого алюминия

Марки деформируемого алюминия

Различные марки алюминия обрабатываются в горячем и холодном виде путем прокатки, прессования, волочения и т. п. Пластические деформации позволяют получать заготовки с разным продольным профилем: алюминиевые прутки, листы, ленты, плиты, профили и пр.

Требования, предъявляемые к деформируемым маркам алюминия, закреплены в ГОСТе 4784, OCT1 92014-90, OCT1 90048 и OCT1 90026. Отличительная черта металла заключается в твердой структуре раствора, в котором содержится большой процент эвтектики – жидкой фазы, находящейся в равновесии с двумя и более твердыми состояниями вещества.

Марки деформируемого металла широко применяются в таких отраслях, как самолето- и кораблестроение, строительство (для сварочных работ), т. е. в сферах, в которых требуются повышенные технические характеристики материалов.

Марки литейного алюминия

Фасонные изделия производятся из марок алюминия для литья, характерными свойствами которых является высокая удельная прочность, сочетающаяся с низкой плотностью. Благодаря этим особенностям возможно изготовление (отлив) деталей различной конфигурации без появления трещин.

Существует деление литейных марок металла на группы в соответствии с предназначением. Они бывают:

  • высокогерметичными («АЛ2», «АЛ9», «АЛ4М»);
  • высокопрочными и жароустойчивыми («АЛ19», «АЛ5», «АЛ33»);
  • коррозионно-устойчивыми.

Для повышения свойств деталей из этих видов алюминия используют различные способы термической обработки.

Марки алюминия для раскисления

Физические свойства материала изготовления влияют на итоговые характеристики товара. Алюминий низкого качества не подходит для производства продукции, однако одним из вариантов его использования является раскисление стали. В процессе раскисления из расплавленного железа удаляется растворенный в нем кислород. За счет этого улучшаются механические свойства металла. Процесс выполняется с алюминием марок «АВ86» и «АВ97Ф».

Марки алюминия и его сплавов

Существует деление алюминиевых сплавов на:

  • деформируемые (используются для поковки и проката);
  • литейные (для отлива деталей).

Требования к их химическому составу определены в ГОСТах 1131 и 4784-97.

В зависимости от типа упрочнения сплавы могут быть:

  • термоупрочняемыми;
  • упрочняемыми давлением.

Более распространенной является другая классификация, в основе которой лежат характеристики сплавов. Согласно ей термоупрочненные сплавы делятся на:

  • жаропрочные («АК4», «АК4-1», «Д20», «1201»);
  • высокопрочные («В93» и «В95»);
  • высокопластичные средней прочности, или авиали, легируемые алюминием, магнием и кремнием («АД33», «АД31» и «АД35»);
  • свариваемые с обычной прочностью («1925» и «1915»);
  • дюрали с нормальной прочностью, легируемые алюминием, медью и магнием («Д16», «Д1» и «Д18»);
  • ковочные («АК8» и «АК6»).

Термически неупрочняемые стали с повышенной коррозионной устойчивостью и свариваемостью делятся на:

  • высокопластичные средней прочности, называемые магналиями («АМг1», «АМг6», «АМг2» и др.);
  • высокопластичные низкой прочности, легируемые магнием («Д12» и «АМц»), и нелегируемые, или технический алюминий («АД1» и «АД0»).

При изготовлении листов должны соблюдаться требования ГОСТа 21631–76. Классифицируется продукция в зависимости от области применения и свойств:

При изготовлении листов должны соблюдаться требования ГОСТа 21631–76

  1. Из кислотостойких марок листового алюминия производят баки для топлива, сварные емкости, элементы самолетов, заклепки, рамы и автомобильные радиаторы. Для металла характерна хорошая свариваемость и коррозионная устойчивость, повышенная пластичность и деформируемость. Для изготовления плоских кислотостойких листов используются сплавы алюминия марок «АМг» (2, 3, 5 и 6), легируемые марганцем и магнием.
  2. Технический алюминий используется для отделочных и изоляционных работ. Его преимущества заключаются в финансовой экономии, обусловленной повышенной гибкостью и небольшой массой листов.
  3. В строительстве широко применяется гладкий перфорированный алюминий, он используется для изготовления решеток воздуховодов, декоративных интерьерных деталей, усиления гипсокартонных углов. Отверстия в перфорированных деталях могут быть прямоугольными, круглыми, ромбовидными. Делаются они на специальных прессах координатно-пробивного типа.
  4. Марки пищевого алюминия производятся из отожженных, полунагартованных и нагартованных (холоднодеформированных для упрочнения материала) сплавов («А5М», «А5Н2», «А5Н»), а также из не подвергавшегося термической обработке первичного алюминия («А7» или «АД0»). Для листов характерна высокая гигиеничность, отсутствие примесей и легирующих элементов.

Готовый прокат может быть как листами, толщиной от 0,3–2 мм, так и плитами, толщиной до 10,5 мм. Ширина проката составляет 0,5-2 м, длина – 2–7,2 м.

Отдельно отметим гофрированные алюминиевые листы (профилированные), используемые для кровельных работ. Их отличительными чертами являются долговечность и высокие эксплуатационные характеристики.

Профилированные изделия изготавливаются из марок алюминия, подходящих для гибки

Профилированные изделия изготавливаются из марок алюминия, подходящих для гибки, и обладают следующими достоинствами:

Кроме того, выпускаются также алюминиевые анодированные листы с матовой, зеркальной или полуматовой поверхностью. Бытовые приборы, оконные жалюзи, осветительные приборы, декоративные элементы, солнечные батареи производятся из аланода – листа алюминия, имеющего зеркальную поверхность. Сфера его использования напрямую связана со светоотражающими способностями.

Таблица основных марок алюминия и его сплавов

Ниже приведены марки стали алюминия в соответствии с классами, к которым они относятся:

Алюминий для раскисления

Алюминиевый деформируемый сплав

Алюминиевый антифрикционный сплав

Согласно ГОСТу 4784-97 алюминий маркируется буквами и цифрами. Расшифровка марок алюминия приведена ниже, в ней используются следующие обозначения:

  • «А» – технический алюминий;
  • «Д» – дюралюминий;
  • «АК» – алюминиевый сплав, ковкий;
  • «АВ» – авиаль;
  • «В» – высокопрочный алюминиевый сплав;
  • «АЛ» – литейный алюминиевый сплав;
  • «АМг» – алюминиево-магниевый сплав;
  • «АМц» – алюминиево-марганцевый сплав;
  • «САП» – спеченные алюминиевые порошки;
  • «САС» – спеченные алюминиевые сплавы.

Следом за этими буквами указывается номер марки алюминия и буква, обозначающая состояние сплава:

  • «М» – мягкий (после отжига);
  • «Т» – естественно состаренный и закаленный;
  • «А» – плакированный (покрытый слоем чистого алюминия);
  • «Н» – нагартованный;
  • «П» – полунагартованный.

Марки листов алюминия

Для производства этих заготовок используется алюминий или его сплавы, деформируемые в горячем виде, а затем прокатываемые в холодном.

Листы изготавливаются из:

  • технического алюминия марок «А0», «АД0», «А5», «А6»;
  • дюралевых сплавов марок «Д1», «Д12», «Д16»;
  • деформируемых сплавов «АД31»;
  • алюминиево-марганцовых сплавов «АМц»;
  • алюминиево-магниевых – «АМг».

Чтобы повысить коррозионную устойчивость, листы плакируют, то есть покрывают пленкой из чистого алюминия, которая может иметь толщину, достигающую 5 % от общей толщины листа.

Поверхность стандартных алюминиевых листов (общего и специального назначения) обычно гладкая, имеющая повышенную, высокую или обычную отделку. Из листов производят нержавеющие изделия, используемые в таких отраслях промышленности, как топливная, пищевая, химическая, строительство и машиностроение.

Марки листов алюминия

Для производства листов используется алюминий и его сплавы марок «А5», «1105», «АД», «АМг1», «АМг3», «А6М», «АМг2», «АМг5», «АМц», «АМг6», «АД1», «ВД1», «Д16» и пр.

Поверхность листа марки «А5» – матовая, толщина варьируется от 0,5 до 10 мм, отделка обычного качества. По своему химическому составу он соответствует требованиям ГОСТа 11069-74. Реализуется как в листах, так и в рулонах.

Характеризуется высокой теплопроводностью, коррозионной стойкостью. Благодаря высоким пластическим свойствам металлопрокат марки «А5» легко формуется разными способами и обрабатывается. Эта марка алюминия подходит для сварки аргоном.

В зависимости от состояния металла листы могут быть:

  • нагартованными (А5Н);
  • мягкими или отожженными («А5М»).

«А5Н» относится к прочным маркам алюминия. Такое свойство обусловлено его холодной обработкой давлением. В то же время ударная вязкость и пластичность материала снижена.

Из листов марки «А5» изготавливают промышленные конструкции и оборудование, в том числе емкости для пищевых продуктов, декоративные элементы, покрытия для обшивки.

При изготовлении отожженных листов из марок мягкого алюминия «А6М» соблюдаются требования ГОСТа 21631-76. Материал используется в пищевой промышленности. Алюминий «А6» по составу соответствует требованиям ГОСТа 11069-74.

Для изготовления проката «1105» используется дюралюминий, легированный магнием и медью. Для обозначения дюрали используются две первые цифры (11), для порядкового номера сплава – последние.

Листы алюминия марки «1105» используются для изготовления сварных конструкций и деталей, эксплуатируемых в условиях низких температур:

  • Алюминиевый лист «1105Н» представляет собой нагартованный прокат, для придания большей прочности пластически деформированный. Изменение свойств и структуры обусловлены давлением, воздействующим на его поверхность. При снижении ударной вязкости и пластичности увеличиваются такие свойства, как прочность и твердость.
  • Алюминиевый лист «1105М» представляет собой отожженный при высоких температурах металлопрокат, отличающийся пластичностью, ковкостью и мягкостью.
  • Алюминиевые листы, имеющие утолщение и плакировочный слой, обозначаются «1105УМ», без плакировочного слоя – «1105АМ». Отличительной чертой является высокая устойчивость к воздействию агрессивной эксплуатационной среды.
  • Закаленные, естественно состаренные алюминиевые листы, применяемые в различных промышленных областях, маркируются «1105Т». Сортамент с нормальной плакировкой обозначают «1105АТ».
  • Листовой алюминий марки «АД».

Высокая пластичность и коррозионная устойчивость – отличительные черты листов «АД», изготавливаемых из технического алюминия с малым количеством примесей. Листы могут быть мягкими («АДМ») и нагартованными («АДН»). Используются в качестве заготовок в различных промышленных сферах.

Листовой алюминий марки «АД1»

Материал можно приобрести как в листах, так и в рулонах. Для производства листового используется алюминий марки «АД1», соответствующий требованиям ГОСТа 21631-76 и ГОСТа 4784-74. Отличительные черты – простота формовки и механической обработки, коррозионная устойчивость. Чистота сплава в процентном отношении обозначена цифрами, деформируемый металл – буквами.

Это деформируемый сплав, для легирования которого используется магний. Цифрой обозначается содержание главного легирующего элемента (1 % магния). Отличительные черты материала – хорошая свариваемость, пластичность, коррозионная стойкость. Марки алюминия находят применение в производстве строительных конструкций и деталей в промышленной сфере.

Имеет характеристики аналогичные «АМг1», однако с двухпроцентным содержанием магния. Легко режется. Высокая электропроводность обусловлена небольшим включением примесей.

Содержит 3 % легирующего вещества – магния. Выпускается в форме рулонов и листов. Основные характеристики: отличная пластичность, коррозионная устойчивость, свариваемость. Из марок алюминия «АМг3» изготавливают средние по прочности конструкции, сварные баки, промышленные трубопроводы, гидравлическое оборудование, каркасы и обшивку железнодорожных вагонов.

Листы с 5%-ным с содержанием магния. Из марок авиационного алюминия изготавливают химические емкости, используемые под давлением, трубопроводы, сварные внешние конструкции, обшивку речных и морских судов, самолетов и грузовых автомобилей.

Деформируемый сплав, используемый так же, как и «АМг5», но с содержанием 6 % магния.

Алюминиевые листы, в которых содержится 1–1,6 % марганца. Материал характеризуется легким свариванием, пластичностью, коррозионной устойчивостью. Его используют в производстве судовой обшивки, строительных конструкций, радиаторов, емкостей для напитков, декоративных элементов, химических емкостей, эксплуатируемых под высоким давлением.

Для производства «ВД1» используется дюралюминиевый деформируемый сплав высокой прочности, легированный магнием и медью. Отличается пластичностью, простотой обработки, коррозионной устойчивостью. Чтобы усилить стойкость к коррозии, применяют дополнительное плакирование, т. е. наносят слой чистого алюминия.

Различные марки алюминия широко применяются во всех сферах промышленности. Металл входит в пятерку наиболее распространенных в мире. В естественных условиях он является составной частью различных руд. Добавляя другие компоненты, создают различные марки алюминия, обладающие улучшенными характеристиками, например, более высокой коррозионной устойчивостью, прочностью, жаростойкостью.

Читайте также: