Химические процессы при сварке
При ручной дуговой сварке электродами с толстым слоем покрытия химические реакции между металлом, шлаком и газами дуги протекают в момент перехода капель расплавленного металла электрода и покрытия через дуговой промежуток при температуре 2100—2300° С. Дальнейшие химические и физические процессы протекают в сварочной ванне. При сварке под флюсом основные химические реакции происходят только в сварочной ванне под слоем расплавленного флюса.
Рассмотрим основные реакции в зоне сварки для стали, как наиболее распространенного металла, подвергаемого сварке.
Окисление. Кислород является наиболее вредной примесью в зоне сварки, так как окисляет элементы, входящие в состав металла шва, и ухудшает его качество, образуя химические соединения — окислы. Окисление элементов в основном происходит за счет кислорода, содержащегося в газах и шлаках сварочной зоны. В меньшей степени окисление может быть вызвано кислородом поверхностных окислов свариваемого металла (окалины, ржавчины). При случайном увеличении длины дуги капли электродного металла могут окисляться кислородом окружающего воздуха.
С железом кислород образует три окисла:
При окислении сперва образуется закись железа, которая в дальнейшем при соответствующих условиях (температуре, соотношение кислорода и железа в сварочной ванне) может переходить в окись и закись-окись железа. При окислении железа в процессе сварки основное значение имеет закись железа, так как только она способна растворяться в жидком металле.
Когда содержание кислорода в стали достигнет 0,035%, избыточный кислород будет выделяться из раствора в виде закиси-окиси железа и располагаться между зернами металла.
В общем виде реакцию между элементом металла и кислородом можно выразить следующей формулой
где Me — масса элемента металла;
О2 — масса кислорода; m и n — численные коэффициенты формулы химической реакции.
Стрелки указывают направление реакции: направо — окисление, налево — восстановление металла из его окисла (раскисление) .
Химические реакции в зоне сварки протекают не до конца, а до некоторого равновесного состояния между исходными веществами и продуктами реакции. Равновесное состояние характеризуется одновременным присутствием в зоне реакции как свободного металла, так и его окисла в определенных соотношениях. Состояние равновесия зависит в первую очередь от количеств (концентрации) реагирующих веществ, температуры и давления в зоне реакции.
Равновесное состояние определяется величиной константы равновесия, вычисляемой по формуле
где Me и О — содержание в % массы элемента (Me) и кислорода (О) в зоне реакции; m ип — численные коэффициенты формулы реакции.
Величина константы равновесия позволяет определить направление реакции. Чем больше произведение концентраций вступающих в реакцию веществ (т. е. числитель в формуле константы равновесия) по сравнению с равновесной и чем меньше концентрация продуктов реакции (т. е. знаменатель в формуле константы) по сравнению с равновесной, тем энергичнее будет протекать реакция вправо в сторону окисления. При обратном соотношении, когда подсчитанная константа будет меньше равновесной, реакция пойдет влево и будет происходить восстановление металла из его окислов. Кроме соотношения концентраций реагирующих веществ на направление реакции сильно влияет ее температура, поэтому сравнение производят для одинаковых температур в зоне реакции.
Концентрации реагирующих веществ определяют только направление реакции. Возможность же данной реакции обусловлена химическим сродством участвующих в ней веществ, в данном случае сродством к кислороду.
При наличии в свариваемом металле нескольких элементов они начинают окисляться все одновременно, но те элементы, у которых сродство к кислороду при данной температуре больше, будут окисляться интенсивнее и полнее.
При сварке стали в первую очередь окисляется железо, являющееся основным элементом. Другие элементы окисляются тем быстрее, чем больше химическое сродство данного элемента с кислородом. По степени уменьшения химического сродства с кислородом элементы могут быть поставлены в следующий ряд: алюминий, титан, кремний, марганец, хром, молибден, железо, никель, медь. Углерод при повышении температуры увеличивает активность к кислороду и при 1700° С превышает своей активностью титан, а при 2100° С — алюминий.
По мере уменьшения в зоне реакции концентрации элементов, обладающих большим сродством к кислороду, скорость их окисления падает. Соответственно возрастает скорость окисления других элементов, обладающих меньшим сродством с кислородом, которые начинают выгорать более интенсивно до тех пор, пока их концентрация не уменьшится до равновесной и не прекратится реакция окисления. Такой процесс последовательного увеличения скорости окисления отдельных элементов продолжается до тех пор, пока концентрации всех элементов не будут соответствовать равновесным, после чего процессы окисления металла в сварочной ванне прекратятся.
При сварке стали окисление железа может происходить также под действием кислорода газов: СО, С02 и паров воды Н20 по реакциям:
Марганец и кремний, обладающие высоким сродством к кислороду, могут интенсивно выгорать при сварке стали. Выгорание углерода при сварке стали протекает по реакциям:
При нагреве ржавого металла присутствующая в ржавчине влага испаряется, а содержащийся в ней кислород окисляет свариваемый металл. Если кромки покрыты окалиной, то последняя при плавлении переходит в закись железа (FeO) с выделением кислорода. Кислород закиси железа и выделившийся из окалины свободный кислород также окисляют металл шва.
Присутствие кислорода в металле шва в виде твердого раствора или включений окислов, в первую очередь, сказывается на ухудшении механических свойств наплавленного металла: понижаются временное сопротивление, предел текучести, относительное удлинение, ударная вязкость. Кроме того, кислород снижает стойкость металла против коррозии, повышает склонность к старению, делает металл хладноломким и красноломким.
Таким образом, главным условием получения наплавленного металла высокого качества является защита его от окисления кислородом окружающей среды. Это достигается созданием вокруг расплавленного металла защитной среды из газов и шлаков, а также раскислением металла шва.
Раскисление. Процесс удаления кислорода из наплавленного металла с целью повышения его качества называется раскислением. Реакции раскисления выражаются тем же уравнением, что и окисления, но протекают в обратном порядке, т. е. справа налево.
Раскисление осуществляется или взаимодействием между наплавленным металлом и шлаком, или путем введения в сварочную ванну элементов — раскислителей, обладающих большим сродством с кислородом, чем железо. Благодаря защите расплавленного металла газами, шлаками и раскислению содержание кислорода в наплавленном металле при сварке толстопокрытыми электродами и под флюсом очень невелико и практически составляет 0,005—0,060%. При сварке же электродами с тонким (меловым) покрытием содержание кислорода в металле шва много выше и может достигать 0,25%. Для сравнения укажем, что содержание кислорода в электродной проволоке не превышает 0,018%. Раскислители вводят в состав сварочной проволоки или электродных покрытий и флюсов, откуда они поступают в сварочную ванну.
Рассмотрим некоторые наиболее типичные реакции раскисления.
Раскисление кремнием и марганцем происходит по реакциям:
Образующиеся при этом двуокись кремния (Si02) и закись марганца (МпО) плохо растворимы в жидком металле и переходят в шлак. Закись марганца способна растворять в себе до 60% закиси железа, выводя таким образом основное количество FeO в шлак.
Закись железа, закись марганца и двуокись кремния по химическим свойствам являются основаниями и могут вступать в реакцию с кислотными окислами, образуя соединения типа 2Fe0-Si02, 2Mn0•Si02 (силикаты) и 2FeO • Ti02 (титанаты). Эти соединения почти не растворимы в жидком металле и полностью остаются в шлаке, что способствует очистке металла от указанных окислов.
Окислы по химическим свойствам могут быть кислые и основные. К кислым относятся: двуокись кремния (Si02) и двуокись титана (Ti02). К основным — окись кальция (СаО), закись железа (FeO), закись марганца (МпО), окись натрия (Na20), окись калия (К20) и окись магния (MgO).
Если в шлаках, образующихся при сварке, преобладают кислые окислы, то такие шлаки, а также образующие их покрытия и флюсы, называются кислыми. Преобладание в шлаке основных окислов, наоборот, придает ему химические свойства основания. Соответственно, электродные покрытия и флюсы, дающие основные шлаки, называются основными.
При использовании кислых покрытий и флюсов для сварки сталей с повышенным содержанием кремния, хрома и марганца окислы этих элементов могут оставаться в металле шва, увеличивая содержание в нем кислорода, что приводит к снижению ударной вязкости. Поэтому для сварки таких сталей лучше использовать основные покрытия и флюсы. Основные покрытия и флюсы дают основные шлаки, содержащие преимущественно окись кальция (СаО), которая не может отнимать кислород от окислов металла. Поэтому для раскисления наплавленного металла в основные покрытия и флюсы вводят ферросплавы: ферросилиций и ферротитан. В этом случае главными реакциями раскисления при основных покрытиях и флюсах будут — раскисление кремнием:
2Fe0 + Si=2Fe + Si02
и раскисление титаном:
2FeO + Ti = 2Fe + TiO2
Эти реакции протекают без газообразования, и сварочная ванна остается спокойной. Поэтому покрытия основного характера называют также спокойными. Основные электродные покрытия дают наплавленный металл с высокими механическими свойствами.
Раскисление углеродом. С кислородом окислов углерод взаимодействует главным образом в момент расплавления электрода и только в зоне наиболее высоких температур сварочной ванны.
Раскисление углеродом происходит по реакции FeOMeT +Смет = FeMеT + СОатм
Образовавшаяся газообразная окись углерода (СО) выделяется в атмосферу, вызывая сильное кипение сварочной ванны. Поэтому кислые покрытия иногда называют кипящими.
Если кремния в металле шва недостаточно, то раскисление будет происходить преимущественно за счет углерода с образованием СО, избыточное количество которой не успевает выделиться из твердеющего металла и остается в нем, образуя газовые поры. Для получения плотного беспористого шва необходимо подавлять реакцию окисления углерода повышением содержания кремния до 0,2—0,3% в металле сварочной ванны. При понижении содержания кремния в металле шва до 0,12% и ниже неизбежно образование большого количества пор.
Раскисление алюминием. Выше указывалось, что алюминий обладает большим сродством к кислороду. Однако окись алюминия (А1203) не растворима в жидком металле и медленно переходит в шлак. Кроме того, алюминий способствует окислению углерода, что вызывает пористость шва. Поэтому алюминий как раскислитель при сварке стали применяется редко и вводится в металл шва только тогда, когда нужно уменьшить (подавить) реакции окисления других легкоокисляемых элементов, например титана, но имеющих меньшее сродство с кислородом, чем алюминий.
Влияние азота. Азот поглощается расплавленным металлом из окружающего воздуха. Под действием высоких температур сварочной дуги азот частично переходит в атомарное состояние и растворяется в жидком металле. В процессе охлаждения сварочной ванны азот выделяется из раствора и, взаимодействуя с металлом и его окислами, образует химические соединения, называемые нитридами: Fe2N, Fe4N, MnN, SiN. Нитриды в стали повышают ее прочность и твердость, но сильно уменьшают пластичность. Поэтому азот является вредной примесью в наплавленном металле.
Наибольшее насыщение металла азотом дает дуговая сварка длинной дугой и голыми электродами (до 0,2% N2), наименьшее — сварка под флюсом (0,002% N2). При сварке покрытыми электродами содержание азота в металле шва может достигать 0,02— 0,05%. С увеличением тока содержание азота в наплавленном Металле уменьшается. Увеличение содержания углерода и особенно марганца в присадочной проволоке или покрытии электрода значительно снижает содержание азота в наплавленном металле. При газовой сварке содержание азота в металле незначительно и составляет 0,015—0,02%.
Влияние серы. Сера является вредной примесью в стали. Она образует сернистое железо (сульфид железа FeS), которое имеет температуру плавления 1193° С, т. е. более низкую, чем сталь. Поэтому при кристаллизации стали сернистое железо остается еще в жидком виде в прослойках между кристаллами сплава и является одной из причин образования горячих трещин при сварке. Серу удаляют введением марганца, который образует с ней химическое соединение — сернистый марганец (MnS) по реакциям:
FeS + Mn = MnS + Fe FeS + МпО = MnS + FeO
Сернистый марганец не растворяется в жидком металле и полностью переходит в шлак.
Удалению серы способствует также окись кальция; при этом происходит реакция
FeS + СаО = FeO + CaS
Влияние фосфора. Присутствие фосфора вызывает неоднородность металла шва, рост зерен и снижение пластичности, особенно при низких температурах (хладноломкость). Он присутствует в металле шва в виде фосфидов железа Fe3P и Fе2Р. Удаление фосфора происходит при реакциях:
Получаемые соединения фосфора переходят в шлак. Основные шлаки лучше удаляют фосфор из металла, чем кислые.
Влияние водорода. Водород является вредной примесью в стали. При температуре дуги молекулы водорода распадаются (диссоциируют) на атомы, а атомы водорода способны хорошо растворяться в наплавленном металле.
При остывании и затвердевании металла атомы водорода вновь соединяются в молекулы, которые собираются в отдельных местах шва, образуя газовые пузырьки. Водород не всегда успевает полностью выделиться из металла и вызывает появление в нем пористости, мелких трещин и флокенов. Сталь с флокенами является хрупкой, в изломе флокены имеют вид светлых пятен и не выявляются обычными методами контроля сварных швов без разрушения.
Источником насыщения металла водородом является влага, содержащаяся в электродном покрытии, флюсах и окружающем воздухе или находящаяся на поверхности свариваемого металла в виде воды, снега, инея. Кроме того, водород содержится в ржавчине, которая может быть на сварочной проволоке или кромках металла.
Атомы водорода несут в себе отрицательный заряд и поэтому при сварке на постоянном токе прямой полярности стремятся к аноду, которым в данном случае является свариваемый металл. При такой сварке металл насыщается водородом больше, чем при сварке постоянным током обратной полярности, когда свариваемый металл является катодом, и отталкивает атомы водорода. При сварке на переменном токе металл в большей степени насыщается водородом, чем при сварке постоянным током обратной полярности, Это обусловлено тем, что при сварке на переменном токе в момент перехода тока через нулевое значение жидкий металл не защищен действием электрического поля дуги и доступен для растворения в нем атомов водорода.
Автор: Администрация
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Физико-химические процессы, возникающие при сварке
Существует три состояния вещества, отличающиеся между собой силами взаимодействия атомов и молекул: твердое, жидкое и газообразное. Переход вещества из одного состояния в другое сопровождается большими затратами энергии, прикладываемой извне. Для твердого и жидкого состояния характерны небольшие расстояния между молекулами, между которыми действуют силы взаимного притяжения. По мере перехода вещества в жидкое, а затем в газообразное состояние эти расстояния увеличиваются, а силы их взаимодействия снижаются. Этот процесс наглядно представлен во время сварки, когда металл плавится, частично переходит в газообразное состояние, а затем возникают обратные процессы, именуемые кристаллизацией.
Процесс плавления металла в зоне сварочного шва приводит к возникновению сложных физико-химических процессов и к образованию характерного соединения, отличающегося по своей структуре от основного металла.
Под физическими понимают процессы, которые не меняют строения элементарных частиц и не приводят к изменению химических свойств основного металла. К таким процессам относятся:
- прохождение электрического тока и тепловые колебания кристаллической решетки;
- переход основного и электродного вещества из твердого состояния в жидкое (плавление), перемешивание их между собой, кристаллизация металла в зоне сварочной ванны;
- напряжения и деформации, возникающие в кристаллической решетке сварочного шва и прилегающей к нему зоны основного металла.
Химические процессы меняют свойства основного металла, в результате чего получаются новые соединения, имеющие отличные свойства. К основным химическим процессам относятся:
- химические реакции, возникающие в газовой и жидкой фазах и на их границах;
- образование оксидов, шлаков и других соединений, отличающихся своими химическими свойствами от основного металла.
Влияние физико-химических процессов, происходящих в сварочном шве на прочность соединения настолько велико, что следует рассмотреть этот вопрос более подробно.
Плавление металла
Плавление основного и присадочного материалов в процессе сварки происходит под действием концентрированной энергии, вызванной сварочной дугой, пламенем горелки или одним из других способов, о которых мы расскажем ниже. Если в зону сварки не подается дополнительный металл, то сварочная ванна образуется только за счет основного соединения. Но чаще сварочная ванна получается смешиванием основного и присадочного металла, вносимого непосредственно в зону сварки электродом, сварочной проволокой и т.д. Сливаясь и перемешиваясь между собой, основной и присадочный металл образуют общую сварочную ванну, границами которой служат оплавленные участки основного металла. Расплавленный в зоне подачи концентрированной энергии металл кристаллизуется, образуя сварочный шов.
Сварочный электрод плавится за счет тепла, сконцентрированного на его конце в приэлектродной области дуги. Количество тепла, выделяемого в этой области, напрямую зависит от силы тока и электрического сопротивления промежутка, образовавшегося между электродом и основным металлом. И чем больше вылет электрода, тем больше его сопротивление, и тем больше выделяется тепла. Нагреваясь до температуры 2300 — 2500°С, конец электрода плавится, а образовавшиеся при этом капли металла переносятся через дуговое пространство и попадают в сварочную ванну. Этому процессу способствуют электростатические и электродинамические силы, поверхностное натяжение, тяжесть металлической капли, давление газового потока, реактивное давление паров металла и т.д. Все эти силы, взаимодействуя между собой, формируют характер капельного переноса, который может быть крупнокапельным, мелкокапельным и струйным (рис.1).
Рис. 1. Расплав и перенос электродного материала: А — метод короткого замыкания; Б — капельный метод; В — cтруйный метод
Крупнокапельный перенос металла характерен для ручной дуговой сварки, мелкокапельный — для сварки под флюсом или в среде углекислого газа, а струйный - для сварки в среде аргона.
Силы поверхностного натяжения формируют каплю на конце электрода и направлены внутрь нее. В отрыве и переносе капли участвуют электродинамические силы и давление газовых потоков. И чем больше сила тока, тем больше эти силы и тем меньшими по размеру будут капли расплавленного металла. При этом происходит электрический взрыв перемычки, образованной между отделяющимся каплей и торцом электрода. Этот взрыв сопровождается выбросом части металла за пределы сварочной ванны (так называемым разбрызгиванием, когда сварочный процесс сопровождается фонтаном искр).
Основной металл плавится под воздействием сконцентрированного в активном пятне тепла, возникающего под воздействием дуги или газопламенной обработки. Электромагнитные силы, вызывающие осевое давление плазменного потока на сварочную ванну, будут пропорциональны квадрату тока, создающего электрическую дугу. Поэтому, меняя силу тока электрической дуги, меняют размеры сварочной ванны в зависимости от толщины свариваемых деталей. Зависимость размеров сварочной ванны от величины напряжения можно выразить уравнениями:
где В — ширина сварочной ванны, L — длина сварочной ванны, Н — глубина сварочной ванны, vсв — скорость сварки, S — толщина свариваемого металла, К — коэффициент, зависящий от рода тока, полярности, диаметра электрода, степени сжатия дуги и т.д.
Процесс формирования сварочной ванны, происходящий под действием силы тяжести расплавленного металла «Рм», давления сварочной дуги «Р » и сил поверхностного натяжения «Рн», представлен на рис.2.
Рис.2 Силы действующие в сварочной ванне и формирование шва: А — нижнее положение; Б — вертикальное; В — горизонтальное; Г — потолочное; Vcb — направление сварки; 1 — порез; 2 — наплыв
Формирование вертикального шва может происходить по двум направлениям - снизу вверх и сверху вниз. Когда шов формируют снизу вверх, то есть сварка выполняется на подъем, жидкий металл удерживается в ванне только силами поверхностного натяжения, а при сварке сверху вниз к этим силам добавляется давление дуги. Горизонтальный шов на вертикальной плоскости имеет свои особенности. В данном случае при неправильно выбранных режимах сварки жидкий металл может концентрироваться на нижней плоскости шва, нарушая симметрию, что в конечном итоге снижает прочность сварки.
При потолочной сварке силы, действующие на жидкую фазу металла, должны не только удерживать ее от стекания вниз, но и перемещать электродный металл в направлении, противоположном силам тяжести. Во всех указанных случаях следует ограничить размеры сварочной ванны и тепловую мощность дуги.
Кристаллизация металла
Затвердевание расплавленного металла, происходящее в хвостовой части ванны, называется кристаллизацией. Под действием сварочной дуги основной и дополнительный металлы, расплавленные в головной части ванны, перемещаются в ее хвостовую часть, где при снижении температуры подвергаются кристаллизации. Динамика этого процесса такова: сварочная дуга, направленная в головную часть ванны, повышает в этой области температуру, в результате чего происходит плавление основного и электродного металлов.
Механическое давление, оказываемое дугой на жидкую фазу основного и дополнительного металлов, вызывает их перемешивание и перемещение в хвостовую часть ванны. Таким образом, давление, вызванное дугой, приводит к вытеснению металла из основания ванны и открывает доступ к следующим слоям, где поддерживается необходимая для плавления температура. По мере удаления металла от зоны плавления отвод тепла начинает преобладать над его притоком, и температура жидкой фазы снижается.
Расплавленные фазы основного и электродного металла перемешиваются между собой и, затвердевая, образуют общие кристаллы, что обеспечивает монолитность сварочного соединения.
Снижение температуры в хвостовой части ванны происходит за счет усиленного теплоотвода в прилегающий холодный металл, так как его масса по сравнению с ванной значительно преобладает. Кристаллы металла начинают формироваться от готовых центров основного металла в направлении ведения сварки и принимают форму кристаллических столбов, вытянутых в сторону, противоположную теплоотводу.
Химический состав сварочного шва
Химический состав сварочного шва значительно отличается от основного металла, так как в этой области происходит перемешивание основного и электродного металлов, различных присадок, используемых при сварке, а также реакций взаимодействия жидкой фазы с атмосферными газами и защитными средствами. Соотношения отдельных компонентов, из которых состоит сварочный шов, зависит от способа наложения шва, режимов сварки. К примеру, если сварочный шов ведется с разделкой, то доля основного металла в труктуре шва значительно снижается. Соотношение основного и электродного металлов в сварочном шве определяют по формуле:
где gо — доля основного металла в сварочном шве, Sпр и Sн площади, занятые основным и электродным металлом соответственно.
Если не учитывать реакции, происходящие в зоне сварки, то долю любого элемента «Сш», содержащегося в сварочном шве, можно определить по формуле:
где Со и Сэ — исходное содержание элемента в основном и электродном материале. Однако на практике такое явление встретить не удается. Поэтому определение доли элемента, содержащегося в металле шва , учитывают с помощью поправочного коэффициента «п», показывающего, какая доля металла, содержащегося в электроде или сварочной проволоке, переходит в металл шва. Величина этого поправочного коэффициента зависит от его химической активности, вида сварки и может колебаться в пределах от 0,3 до 0,95
В процессе сварки расплавленный металл активно вступает в реакцию с атмосферными газами, поглощая их и, тем самым снижая механические качества сварочного шва. К примеру, при дуговой сварке дуга, контактирующая с металлом состоит из смеси N2,О2, Н2, СО2, СО, паров Н2О, паров металла и шлака. В зоне плавления металла происходит распад молекул на атомы (так называемый процесс диссоциации). Под воздействием высоких температур молекулярный азот, водород и кислород распадаются и переходят в атомарное состояние, при котором активность газов значительно повышается.
К примеру, атомы кислорода начинают активно растворяться в жидкой фазе металла, а при достижении предела растворимости начинается химическое взаимодействие сопровождающееся образованием оксидов. В результате этого примеси и легирующие элементы, содержащиеся в металле, окисляются. С повышением содержания кислорода в металле шва снижается предел прочности, предел текучести, ударная вязкость. Кроме того, ухудшается коррозионная стойкость и жаропрочность сталей. Кислород попадает в зону сварки из окружающего воздуха, из влаги, находящейся на свариваемых кромках и флюсах, с обмазки электродов. Удаление кислорода из расплавленного металла достигается за счет введения в сварочную ванну кремния и марганца, которые взаимодействуют с оксидом железа, образуя шлак. Шлак в процессе кристаллизации образует на поверхности шва твердую корку, которая удаляется механическим путем.
Растворение азота в жидкой фазе большинства конструктивных металлов сопровождается образованием соединений, называемых нитридами. Это приводит к старению металла и повышению его хрупкости. Азот попадает в зону сварки из окружающего воздуха, и для недопущения образования нитридов сварочную ванну изолируют средой защитных газов. Защиту сварочного шва осуществляют при сварке легированных, жаропрочных сталей и большинства цветных металлов.
Весьма нежелательным процессом является растворение водорода, что приводит образованию соединений, называемых гидридам. Образование этих соединений в зоне термическо: влияния приводит к появлению пор, микро-макротрещин. Водород попадает в зону сварки атмосферного воздуха и при разложении влаг» которая имеется на свариваемых кромках, обмазке электродов, защитных флюсах и т.д. Снижению водорода способствует предварительное прокаливание электродов, свариваемых поверхностей и тщательная их зачистка.
Окись углерода в жидкой фазе металл практически не растворяется, но влияние этого соединения на качество сварочного шва огромно. В результате процесса кристаллизации металла окись углерода начинает выделять пузырьки, образуя поры в массиве сварочного шва.
Негативное влияние на состав сварочного шва оказывает сера, которая находится в основном присадочном металлах, в покрытиях, флюсах и т.д Под действием высоких температур в сварочно ванне образуется сульфид железа (FeS), который в процессе кристаллизации образует эвтектику,температура плавления которой ниже, чем у основного металла. Эвтектика, размещаясь между зернами кристаллической решетки, ухудшает структуру шва и способствует появлению горячих трещин. Нейтрализуют действие серы такие элементы, как кальций и марганец, содержащиеся в сварочной проволоке и обмазке электродов.
Пары воды, находящиеся в жидкой фазе металла, взаимодействуют с ней, образуя оксиды железа и водород. Бороться с этими вредными явлениями чрезвычайно трудно, и полностью изолировать сварочную ванну от влияния атмосферных газов чаще всего не удается. Для того чтобы снизить влияние на сварочную ванну атмосферных газов, применяют различные виды защиты (электродное покрытие, защитные газы, флюсы, вакуум и т.д.). Но так как абсолютно чистых веществ в природе не бывает (даже вакуум не бывает абсолютно полным и содержит некоторое количество примесей), то защитные средства также вступают во взаимодействия с жидкой фазой металла, вызывая так называемые металлургические реакции. Но, несмотря на это, применение защитных средств значительно снижает интенсивность металлургических реакций и позволяет добиться хорошего качества сварочного шва. Кроме того, большая скорость охлаждения сварочной ванны не позволяет металлургическим реакциям завершиться полностью.
Особенности протекания химических реакций при сварке.
Процессы сварки оставляют в системе, за которую можно принять зону сварки, на изделии не исчезающий результат – сварной шов. Причём в системе возникают новые вещества, продукты химических реакций между металлом и средой. При различных скоростях сварки преобладают те или иные химические реакции, но они протекают во всех случаях.
при диффузионной сварке в вакууме идут реакции диссоциации окислов, образование соединений металлов друг с другом, а также с растворимыми в них газами;
при ЭЛС идут химические реакции в результате встречи частиц, имеющих высокий уровень энергии, как между собой, так и с элементами и составом металла шва;
при дуговой и газовой сварке идут реакции диссоциации газа в зоне дуги или пламени, реакции взаимодействия этих газов с компонентами свариваемого металла и шлаков.
Химические реакции при сварке являются основным видом необратимых термодинамических процессов. Этими реакциями определяется ход металлургических процессов, процессов плавления и кристаллизации.
Некоторые реакции окисления и образования интерметаллидов являются нежелательными и их ход необходимо подавлять. Другие реакции улучшают свойства сварочных швов: восстановление металла из окислов, образование соединений, связывающих вредные примеси. Эти реакции надо поддерживать.
Вывод: управление в процессе сварки ходом химической реакции регулирует состав и свойства сварного соединения.
Условия протекания химических реакций при сварке.
По сравнению с другими металлургическими и химическими процессами химические реакции при сварке протекают в особенно жёстких условиях:
-большой градиент температур в сварной зоне, т.к. металл разогрет от температуры кипения до температуры окружающей среды;
-относительно малый объём материала, участвующего в реакции, при большой удельной поверхности веществ (удельная площадь сварочной ванны 0,25-1,0 см 2 /г, удельная площадь капли присадочного металла ≈ 10 см 2 /г). При сварке сильно развита поверхность взаимодействия;
-интенсивность протекания реакции обусловлена высокой температурой, особенно с большими скоростями проходят реакции на разделе фаз жидкий металл - газ, жидкий шлак - газ, шлак - металл;
-малая продолжительность реакций из-за скоротечности процессов нагрева и охлаждения (τср=0,001 – 1,5 с при ЭШС). При таком времени реакций химический процесс не успевает дойти до равновесного состояния. В зоне сварки присутствуют исходные продукты и продукты реакции;
-окончательное формирование химического состава материала шва происходит только после его затвердевания.
Закон действующих масс и константа равновесия химических реакций и их применение при анализе сварочных процессов.
Общая формула
ai — активности веществ, выраженные через концентрации, парциальные давления либо мольные доли;
νi — стехиометрический коэффициент (для исходных веществ принимается отрицательным, для продуктов — положительным);
Kc — константа химического равновесия
На практике в расчётах, не требующих особой точности, значения активности обычно заменяются на соответствующие значения концентраций (для реакций в растворах) либо парциальных давлений (для реакций между газами).
Пример: для стандартной реакции
константа химического равновесия определяется по формуле
При постоянной температуре отношение равновесных концентраций (парциальных давлений) конечных продуктов к равновесным концентрациям (парциальным давлениям) исходных реагентов, возведенных соответственно в степени, равные их стехиометрическим коэффициентам, величина постоянная
Закон действующих масс
С законом действующих масс вы познакомились, изучая равновесие обратимых химических реакций (гл. 9 § 5). Вспомним, что при постоянной температуре для обратимой реакции
aA + bB dD + fF
закон действующих масс выражается уравнением
Вы знаете, что, применяя закон действующих масс важно знать, в каком агрегатном состоянии находятся участвующие в реакции вещества. Но не только это: важно число и соотношение фаз, в данной химической системе. По числу фаз реакции делятся на гомофазные, и гетерофазные. Среди гетерофазных выделяют твердофазные реакции.
Гомофазная реакция – химическая реакция, все участники которой находятся в одной фазе. |
Такой фазой может быть смесь газов (газовая фаза), или жидкий раствор (жидкая фаза). В этом случае все частицы, участвующие в реакции, (A, B, D и F) имеют возможность совершать хаотическое движение независимо друг от друга, и обратимая реакция протекает во всем объеме реакционной системы. Очевидно, что такими частицами могут быть либо молекулы газообразных веществ, либо молекулы или ионы, образующие жидкость. Примерами обратимых гомофазных реакций являются реакции синтеза аммиака, горения хлора в водороде, реакция между аммиаком и сероводородом в водном растворе и т.п.
Если хотя бы одно вещество, участвующее в реакции, находится в иной фазе, чем остальные вещества, то обратимая реакция протекает только на границе раздела и называется гетерофазной реакцией.
Гетерофазная реакция – химическая реакция, участники которой находятся в разных фазах. |
К обратимым гетерофазным реакциям относятся реакции с участием газообразных и твердых веществ (например, разложение карбоната кальция), жидких и твердых веществ (например, осаждение из раствора сульфата бария или реакция цинка с соляной кислотой), а также газообразных и жидких веществ .
Особым случаем гетерофазных реакций являются твердофазные реакции, то есть реакции, все участники которых представляют собой твердые вещества.
Вообще-то уравнение (1) справедливо для любой обратимой реакции независимо от того, к какой из перечисленных групп она относится. Но в гетерофазной реакции равновесные концентрации веществ, находящихся в более упорядоченной фазе являются постоянными величинами и могут быть объединены в константе равновесия (см. гл. 9 § 5).
Так, для гетерофазной реакции
закон действующих масс будет выражаться соотношением
Вид этого соотношения зависит от того, какие вещества, участвующие в реакции находятся в твердом или жидком состоянии (жидком, если остальные вещества – газы).
В выражениях закона действующих масс (1) и (2) формулы молекул или ионов в квадратных скобках означают равновесную концентрацию этих частиц в газе или растворе. При этом концентрации не должны быть велики (не более 0,1 моль/л), так как эти соотношения справедливы только для идеальных газов и идеальных растворов. (При больших концентрациях закон действующих масс остается справедливым, но вместо концентрации приходится использовать другую физическую величину (так называемую активность), учитывающую взаимодействия между частицами газа или раствораю Активность не пропорциональна концентрации).
Закон действующих масс применим не только для обратимых химических реакций, ему подчиняются и многие обратимые физические процессы, например межфазные равновесия индивидуальных веществ при переходе их из одного агрегатного состояния в другое. Так, обратимый процесс испарения – конденсации воды может быть выражен уравнением
Для этого процесса можно записать уравнение константы равновесия:
Полученное соотношение подтверждает, в частности, известное вам из физики утверждение о том, что влажность воздуха зависит от температуры и давления.
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!
Читайте также: