Гост на вольфрамовые электроды для аргонодуговой сварки
Электроды вольфрамовые сварочные неплавящиеся. Технические условия*
Настоящий стандарт распространяется на электроды из чистого вольфрама и вольфрама с активирующими присадками (двуокиси тория, окисей лантана и иттрия), предназначенные для дуговой сварки неплавящимся электродом в среде инертных газов (аргон, гелий), а также для плазменных процессов резки, наплавки и напыления.
1.1. В зависимости от химического состава электроды должны изготовляться из вольфрама марок, указанных в табл. 1.
Марка | Материал |
---|---|
ЭВЧ | Вольфрам чистый |
ЭВЛ | Вольфрам с присадкой окиси лантана |
ЭВИ-1 | Вольфрам с присадкой окиси иттрия |
ЭВИ-2 | Вольфрам с присадкой окиси иттрия |
ЭВИ-3 | Вольфрам с присадкой окиси иттрия |
ЭВТ-15 | Вольфрам с присадкой двуокиси тория |
2.1. Размеры электродов и предельные отклонения должны соответствовать указанным в табл. 2.
Марка | Номинальный диаметр | Предельное отклонение | Длина |
---|---|---|---|
ЭВЧ | 0,5 | ± 0,2 | Не менее 3000 в мотках |
1,0; 1,6; 2,0; 2,5 | ± 0,1 | 75±1; 150±1 | |
3,0; 4,0; 5,0; 6,0; 8,0; 10,0 | ± 0,2 | 200±2; 300±2 | |
ЭВЛ | 1,0; 1,6; 2,0; 2,5; 3,0; 4,0 | ± 0,1 | 75±1; 150±1; 200±2; 300±2 |
5,0; 6,0; 8,0; 10,0 | ± 0,2 | ||
ЭВИ-1 | 2,0; 3,0; 4,0; 5,0; 6,0 | ± 0,1 | 75±1; 150±1; 200±2; 300±2 |
8,0; 10,0 | ± 0,2 | ||
ЭВИ-2 ЭВИ-3 | 2,0; 3,0; 4,0; 5,0; 6,0; 8,0; 10,0 | ± 0,15 | 75±1; 150±1; 200±2; 300±2 |
ЭВТ-15 | 2,0; 3,0; 4,0; 5,0; 6,0; 8,0; 10,0 | ± 0,15 | 75±1; 150±1; 200±2; 300±2 |
Примеры условного обозначения:
Электрод марки ЭВЛ, диаметром 2,0 мм, длиной 150 мм:
Электрод вольфрамовый ЭВЛ-0 2-150 — ГОСТ 23949—80
3. Технические требования
3.1. Вольфрамовые электроды должны изготовляться в соответствии с требованиями настоящего стандарта из марок чистого вольфрама и вольфрама с активирующими присадками, химический состав которых соответствует указанному в табл. 3.
3.2. На поверхности электродов не должно быть раковин, расслоений, трещин, окислов, остатков технологических смазок, посторонних включений и загрязнений.
На поверхности электродов, обработанных бесцентровым шлифованием до размеров, указанных в табл. 2, не допускаются поперечные риски от шлифования глубиной более половины предельного отклонения на диаметр.
Марка электрода | Массовая доля, % | |||||
---|---|---|---|---|---|---|
Вольфрам, не менее | Присадки | Примеси, не более | ||||
Окись лантана | Окись иттрия | Двуокись тория | Тантал | Алюминий, железо, никель, кремний, кальций, молибден (сумма) | ||
ЭВЧ | 99,92 | - | - | - | - | 0,08 |
ЭВЛ | 99,95 | 1,1-1,4 | - | - | - | 0,05 |
ЭВИ-1 | 99,89 | - | 1,5-2,3 | - | - | 0,11 |
ЭВИ-2 | 99,95 | - | 2,0-3,0 | - | 0,01 | 0,05 |
ЭВИ-3 | 99,95 | - | 2,5-3,5 | - | 0,01 | 0,05 |
ЭВТ-15 | 99,91 | - | - | 1,5-2,0 | - | 0,09 |
- Указанные в таблице массовые доли окиси лантана, окиси иттрия, двуокиси тория и тантала входят в массовую долю вольфрама.
- Для марки ЭВЛ никель в сумму примесей не входит.
3.3. Поверхность электродов, изготовленных волочением, должна быть очищена от окислов, технологических смазок и прочих загрязнений химической обработкой (травлением).
На поверхности электродов не допускаются следы волочения глубиной более половины допуска на диаметр.
3.4. Неравномерность диаметра по длине электродов и овальность не должны быть более предельных отклонений на диаметр.
3.5. Электроды должны быть прямыми. Непрямолинейность электродов не должна быть более 0,25% длины.
3.6. Торцы электродов должны иметь прямой срез. Не допуска¬ются на торцевом срезе электродов сколы величиной более предельного отклонения на диаметр.
3.7. Внутренние расслоения и трещины не допускаются.
* На странице представлена выдержка из ГОСТ 23949-80 "Электроды вольфрамовые сварочные неплавящиеся. Технические условия"
телефоны:
8 (800) 200-52-75
(495) 366-00-24
(495) 504-95-54
(495) 642-41-95
1 . МАРКИ
1.1 . В зависимости от химического состава электроды должны изготовляться из вольфрама марок, указанных в табл. 1 .
Вольфрам с присадкой окиси лантана
Вольфрам с присадкой окиси иттрия
Вольфрам с присадкой двуокиси тория
2 . СОРТАМЕНТ
2.1 . Размеры электродов и предельные отклонения должны соответствовать указанным в табл. 2 .
Не менее 3000 в мотках
3,0; 4,0; 5,0; 6,0; 8,0; 10,0
1,0; 1,6; 2,0; 2,5; 3,0; 4,0;
2,0; 3,0; 4,0; 5,0; 6,0; 8,0; 10,0
75 ± 1; 150 ± 1; 200 ± 2; 300 ± 2
Пример условного обозначения электрода марки ЭВЛ, диаметром 2,0 мм, длиной 150 мм:
Электрод вольфрамовый ЭВЛ- Æ 2-150 - ГОСТ 23949-80
3 . ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ
3.1 . Вольфрамовые электроды должны изготовляться в соответствии с требованиями настоящего стандарта из марок чистого вольфрама и вольфрама с активирующими присадками, химический состав которых соответствует указанному в табл. 3 .
3.2 . На поверхности электродов не должно быть раковин, расслоений, трещин, окислов, остатков технологических смазок, посторонних включений и загрязнений.
На поверхности электродов, обработанных бесцентровым шлифованием до размеров, указанных в табл. 2 , не допускаются поперечные риски от шлифования глубиной более половины предельного отклонения на диаметр.
Вольфрам, не менее
Примеси, не более
Алюминий, железо, никель, кремний, кальций, молибден (сумма)
1 . Указанные в таблице массовые доли окиси лантана, окиси иттрия, двуокиси тория и тантала входят в массовую долю вольфрама.
2 . Для марки ЭВЛ никель в сумму примесей не входит.
3.3 . Поверхность электродов, изготовленных волочением, должна быть очищена от окислов, технологических смазок и прочих загрязнений химической обработкой (травлением).
На поверхности электродов не допускаются следы волочения глубиной более половины допуска на диаметр.
3.4 . Неравномерность диаметра по длине электродов и овальность не должны быть более предельных отклонений на диаметр.
3.5 . Электроды должны быть прямыми. Непрямолинейность электродов не должна быть более 0,25 % длины.
3.6 . Торцы электродов должны иметь прямой срез. Не допускаются на торцевом срезе электродов сколы величиной более предельного отклонения на диаметр.
3.7 . Внутренние расслоения и трещины не допускаются.
4 . ПРАВИЛА ПРИЕМКИ
4.1 . Электроды принимают партиями. Партия должна состоять из электродов, изготовленных из шихты одного приготовления, и оформлена одним документом о качестве.
Документ о качестве должен содержать:
наименование предприятия-изготовителя и товарный знак предприятия-изготовителя;
наименование и марку продукта;
результат химического анализа;
массу партии и количество мест в партии;
Документ о качестве вкладывают в ящик № 1.
Масса партии не должна быть более 1300 кг.
4.2 . Для определения активирующих присадок отбирают 3 - 5 сваренных или спеченных штабиков от каждой партии.
4.3 . Проверку соответствия электродов пп. 2.1 , 3.2 - 3.7 проводят на каждом электроде.
4.4 . При получении неудовлетворительных результатов по химическому составу по нему проводят повторные испытания на удвоенной выборке, взятой от той же партии. Результаты повторных испытаний распространяются на всю партию.
5 . МЕТОДЫ ИСПЫТАНИЙ
5.1 . Отбор и подготовка проб
5.1.1 . Для определения активирующих присадок от выборки отбирают 3 - 5 штабиков, отбивают кусочки массой 30 - 50 г и истирают их в механической ступке.
Полученный порошок подвергают магнитной сепарации.
Содержание активирующих присадок (двуокиси тория, лантана, иттрия) определяют по методикам, изложенным в обязательном приложении.
Содержание вольфрама определяют по разности 100 % и суммы содержания примесей.
5.3 . Геометрические размеры, равномерность диаметра по длине и овальность электродов проверяют микрометром по ГОСТ 6507 -78, или штангенциркулем по ГОСТ 166 -80, а также линейкой по ГОСТ 427-75 .
5.4 . Качество поверхности электродов проверяют визуально. При разногласии в оценке качества применяют оптические средства и мерительный инструмент.
5.6 . Проверку отсутствия внутренних расслоений и трещин проводят с помощью токовихревого дефектоскопа.
6 . МАРКИРОВКА, УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ
6.1 . Каждый электрод должен быть маркирован в соответствии с табл. 4 .
Электроды диаметром 3,0 мм и более допускается маркировать снятием фасок 1 мм ´ 45° или рисок.
Маркировка должна быть нанесена на одном из концов электрода.
Маркировка может быть нанесена на торец в виде полосы или точки на поверхности у торца на длине 5 - 10 мм.
Цветную маркировку рекомендуется выполнять нитролаком НЦ-62 по нормативно-технической документации.
6.2 . Электроды одной марки, одного диаметра должны укладываться в коробки из картона с ложементами из пенопласта, гофрированной или прессованной плотной бумаги.
6.3 . На каждую коробку с электродами наклеивают ярлык, содержащий:
наименование предприятия-изготовителя или его товарный знак;
условное обозначение продукта;
штамп технического контроля.
Масса ящика брутто - не более 40 кг.
наименования, марки, размеров электродов;
6.6 . Упакованные электроды транспортируют всеми видами транспорта в крытых транспортных средствах.
При транспортировке укладка ящиков должна предупреждать их перемещения, механические повреждения упаковки и электродов, попадание влаги.
Условия транспортирования в части воздействия климатических факторов - по группе Ж ГОСТ 15150-69.
6.7 . Хранить электроды следует в упаковке, предусмотренной п. 6.4 , по группе условий хранения Л ГОСТ 15150-69 .
ПРИЛОЖЕНИЕ
Обязательное
1 . МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ОКИСИ ЛАНТАНА
Метод устанавливает определение окиси лантана в лантанированных сварных вольфрамовых штабиках и электродах.
1.1 . Сущность метода
Метод основан на отделении лантана от вольфрама растворением предварительно окисленного и прокаленного испытуемого образца до вольфрамового ангидрида ( WO 3 ) в растворе углекислого натрия.
При этом лантан, находящийся в вольфраме в виде La 2 O 3 , выпадает в осадок, а растворимую форму лантана доосаждают аммиаком в виде La ( OH )3.
Осадок отфильтровывают, растворяют в соляной кислоте и вновь осаждают весь лантан аммиаком в виде La ( OH )3, который отфильтровывают, промывают и прокаливают до La 2 O 3 .
Погрешность метода при массовой доле окиси лантана от 1 % до 3 % составляет 0,1 %, при массовой доле окиси лантана менее 1 % - 0,05 %.
Вода дистиллированная по ГОСТ 6709-72.
1.3 . Подготовка проб
Вольфрамовый ангидрид предварительно прокаливают в муфельной печи при 700 - 750 °С в течение 1,5 - 2 ч.
Вольфрамовый порошок, пробу от штабика или электрода окисляют до ангидрида прокаливанием в муфельной печи при температуре 700 - 750 °С. При этом образец насыпают в фарфоровый тигель на 1/3 его высоты и ставят в муфель при 400 - 500 °С на 1,5 - 2 ч, а затем повышают температуру до 700 - 750 °С и выдерживают тигель до полного окисления порошка (~ 3 ч).
Для равномерного окисления вольфрама тигель 2 - 3 раза вынимают из печи и образец перемешивают.
1.4 . Проведение анализа
2 - 3 г вольфрамового ангидрида помещают в стакан на 150 - 200 мл, приливают 50 - 70 мл раствора углекислого натрия и растворяют при нагревании.
После растворения вольфрамового ангидрида раствор разбавляют дистиллированной водой до объема ~ 100 мл, прибавляют 20 - 30 мл раствора аммиака, стакан помещают на электрическую баню и дают осадку скоагулировать. Осадок фильтруют через фильтр - «белая лента» с адсорбентом, промывают теплым 5 %-ным раствором аммиака; фильтр с осадком помещают в стакан, в котором велось осаждение, добавляют 15 - 20 мл соляной кислоты и нагревают содержимое стакана до полного растворения осадка и моцерации фильтра.
Содержание стакана разбавляют дистиллированной водой до 80 - 100 мл, бумажную массу отфильтровывают, 2 - 3 раза промывают подкисленной горячей водой, соединяя промывные воды с основным фильтратом.
Фильтрат нейтрализуют раствором аммиака по лакмусу, после чего приливают еще 15 - 20 мл аммиака.
Осадок La ( OH )3 дают скоагулировать, затем его фильтруют через фильтр - «белая лента» с адсорбентом. Осадок промывают горячей водой, в которую добавлено несколько капель раствора аммиака до отрицательной реакции на Cl (проба с AgNO 3 и Н N О3).
Промытый осадок с фильтром помещают в предварительно прокаленный и взвешенный фарфоровый тигель, озоляют и прокаливают в муфельной печи при температуре 700 - 750 °С до постоянной массы.
1.5 . Обработка результатов
Массовую долю окиси лантана в процентах вычисляют по формуле
где т - масса осадка, г;
т1 - масса навески вольфрамового ангидрида ( WO 3 ), г;
0 ,7931 - коэффициент пересчета с вольфрамового ангидрида на вольфрам.
Примечание . Прокаленный осадок окиси лантана содержит окись железа, количество которой очень мало по сравнению с количеством окиси лантана, поэтому массой окиси железа можно пренебречь.
Если же требуется определение чистой окиси лантана, то прокаленный осадок растворяют в соляной кислоте, колориметрируют железо и по разности определяют массу окиси лантана.
2 . МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ОКИСИ ИТТРИЯ
Метод устанавливает определение окиси иттрия в итерированных сварных вольфрамовых штабиках и электродах.
2.1 . Сущность метода
Метод основан на отделении иттрия от вольфрама растворением испытуемого образца во фтористоводородной кислоте с добавлением азотной кислоты.
При массовой доле окиси иттрия от 1 до 3 % погрешность метода составляет 4 - 5 %.
2.2 . Аппаратура, реактивы и растворы
Шкаф сушильный, обеспечивающий нагрев до температуры (150 ± 50) °С. Печь муфельная с термопарой, обеспечивающая нагрев до температуры (1100 ± 50) °С.
Посуда лабораторная фарфоровая - ГОСТ 9147-80.
Бумага фильтровальная лабораторная - ГОСТ 12026-76.
2.3 . Подготовка проб
Образцы иттрированного вольфрама очищают от возможного загрязнения промыванием их несколько раз спиртом и последующей сушкой в сушильном шкафу при температуре 50 - 70 ° C в течение 10 мин.
Подготовленные образцы хранят в стеклянных бюксах или пробирках с притертыми пробками.
2.4 . Проведение анализа
Навеску массой 1 г помещают в платиновую чашку вместимостью 100 мл, прибавляют 25 - 30 мл плавиковой кислоты и осторожно по каплям добавляют азотную кислоту до растворения металла.
После полного растворения вольфрама и прекращения выделения окислов азота в чашку добавляют 30 мл воды, нагретой до температуры 80 - 90 °С.
Раствору с осадком дают отстояться в течение 1 ч, после чего фильтруют через полиэтиленовую воронку.
Перед фильтрованием на фильтр помещают небольшое количество адсорбента.
После перенесения осадка на фильтр дно чашки обтирают кусочком мокрого фильтра и все содержимое на нем сливают на фильтр горячей водой. Затем осадок промывают 5 - 6 раз горячим раствором аммиака (60 - 70 °С) и еще 2 - 3 раза горячей водой.
Промытый осадок переносят в предварительно взвешенный фарфоровый тигель, высушивают в сушильном шкафу при температуре 100 - 150 °С, а затем прокаливают в муфельной печи при температуре 650 - 700 °С до постоянной массы и взвешивают в виде окиси иттрия.
2.5 . Обработка результатов
Массовую долю окиси иттрия в процентах вычисляют по формуле
где m - масса прокаленного остатка, г;
m 1 - масса навески образца, г.
3 . МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ДВУОКИСИ ТОРИЯ
Метод устанавливает определения двуокиси тория в торированных сварных вольфрамовых штабиках и электродах.
3.1 . Сущность метода
Метод основан на образовании осадка Т hF 4 × 4 H 2 О при растворении образца в смеси фтористоводородной и азотной кислот.
Погрешность метода при массовой доле двуокиси тория от 1,5 % до 2 % составляет 0,1 %.
3.3 . Подготовка проб
Образцы кипятят в течение нескольких минут в растворе щелочи, до полного снятия окислов с поверхности, промывают в дистиллированной воде и сушат в сушильном шкафу.
3.4 . Проведение анализа
Навеску массой 1 - 2 г помещают в платиновую чашку вместимостью 100 мл, прибавляют 25 - 30 мл плавиковой кислоты и осторожно по каплям прибавляют азотную кислоту.
После полного растворения вольфрама и прекращения выделения окислов азота в чашку добавляют 30 мл горячей воды. Раствору с осадком окиси тория дают отстояться в течение 1 ч, после чего фильтруют через каучуковую, винипластовую или платиновую воронку.
После перенесения осадка на фильтр дно чашки обтирают кусочком мокрого фильтра и обмывают чашку горячей водой. Когда осадок окиси тория полностью перенесен на фильтр, его несколько раз промывают горячей водой, а затем 5 - 6 раз горячим раствором аммиака и еще 2 - 3 раза горячей водой.
Влажный фильтр переносят в предварительно взвешенный до постоянной массы фарфоровый или платиновый тигель, озоляют, прокаливают при температуре 750 - 800 °С и взвешивают.
Гост на вольфрамовые электроды для аргонодуговой сварки
ЭЛЕКТРОДЫ ВОЛЬФРАМОВЫЕ СВАРОЧНЫЕ НЕПЛАВЯЩИЕСЯ
Welding nonconsumable tungsten electrodes. Specifications
ОКП 18 5374 0000
Дата введения 1981-01-01
Постановлением Государственного комитета СССР по стандартам от 18 января 1980 г. N 217 дата введения установлена с 01.01.81
Ограничение срока действия снято по протоколу N 4-93 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 4-94)
ПЕРЕИЗДАНИЕ. Сентябрь 2004 г.
Настоящий стандарт распространяется на электроды из чистого вольфрама и вольфрама с активирующими присадками (двуокиси тория, окисей лантана и иттрия), предназначенные для дуговой сварки неплавящимся электродом в среде инертных газов (аргон, гелий), а также для плазменных процессов резки, наплавки и напыления.
1.1. В зависимости от химического состава электроды должны изготовляться из вольфрама марок, указанных в табл.1.
2. СОРТАМЕНТ
2.1. Размеры электродов и предельные отклонения должны соответствовать указанным в табл.2.
Не менее 3000 в мотках
3,0; 4,0; 5,0; 6,0; 8,0; 10,0
2,0; 3,0; 4,0;
5,0; 6,0; 8,0; 10,0
75±1; 150±1;
200±2; 300±2
2,0; 3,0; 4,0; 5,0; 6,0; 8,0; 10,0
Электрод вольфрамовый ЭВЛ- 2-150 - ГОСТ 23949-80
3.1. Вольфрамовые электроды должны изготовляться в соответствии с требованиями настоящего стандарта из марок чистого вольфрама и вольфрама с активирующими присадками, химический состав которых соответствует указанному в табл.3.
Примеси, не более
Алюминий, железо, никель, кремний, кальций, молибден (сумма)
1. Указанные в таблице массовые доли окиси лантана, окиси иттрия, двуокиси тория и тантала входят в массовую долю вольфрама.
2. Для марки ЭВЛ никель в сумму примесей не входит.
3.2. На поверхности электродов не должно быть раковин, расслоений, трещин, окислов, остатков технологических смазок, посторонних включений и загрязнений.
На поверхности электродов, обработанных бесцентровым шлифованием до размеров, указанных в табл.2, не допускаются поперечные риски от шлифования глубиной более половины предельного отклонения на диаметр.
3.3. Поверхность электродов, изготовленных волочением, должна быть очищена от окислов, технологических смазок и прочих загрязнений химической обработкой (травлением).
3.6. Торцы электродов должны иметь прямой срез. Не допускаются на торцевом срезе электродов сколы величиной более предельного отклонения на диаметр.
3.7. Внутренние расслоения и трещины не допускаются.
4. ПРАВИЛА ПРИЕМКИ
4.1. Электроды принимают партиями. Партия должна состоять из электродов, изготовленных из шихты одного приготовления, и оформлена одним документом о качестве.
Документ о качестве вкладывают в ящик N 1.
4.2. Для определения активирующих присадок отбирают три-пять сваренных или спеченных штабиков от каждой партии.
Определение примесей проводит предприятие-изготовитель на каждой партии вольфрамового порошка на выборке по ГОСТ 20559-75.
4.3. Проверку соответствия электродов пп.2.1, 3.2-3.7 проводят на каждом электроде.
4.4. При получении неудовлетворительных результатов по химическому составу по нему проводят повторные испытания на удвоенной выборке, взятой от той же партии. Результаты повторных испытаний распространяются на всю партию.
5. МЕТОДЫ ИСПЫТАНИЙ
5.1. Отбор и подготовка проб
5.1.1. Для определения активирующих присадок от выборки отбирают три-пять штабиков, отбивают кусочки массой 30-50 г и истирают их в механической ступке.
5.2. Содержание примесей алюминия, железа, кремния, молибдена, кальция, никеля определяют по ГОСТ 14339.5-91.
Содержание активирующих присадок (двуокиси тория, лантана, иттрия) определяют по методикам, изложенным в приложении.
Содержание вольфрама определяют по разности 100% и суммы содержания примесей.
5.3. Геометрические размеры, равномерность диаметра по длине и овальность электродов проверяют микрометром по ГОСТ 6507-90 или штангенциркулем по ГОСТ 166-89, а также линейкой по ГОСТ 427-75.
5.4. Качество поверхности электродов проверяют визуально. При разногласии в оценке качества применяют оптические средства и измерительный инструмент.
5.5. Прямолинейность электродов проверяют с помощью щупа по ТУ 2-034-225-87* на ровной металлической плите по ГОСТ 10905-86.
* Документ в информационных продуктах не содержится. За информацией о документе Вы можете обратиться в Службу поддержки пользователей. - Примечание изготовителя базы данных.
5.6. Проверку отсутствия внутренних расслоений и трещин проводят с помощью токовихревого дефектоскопа.
Как выбрать вольфрамовый электрод?
В этой статье мы расскажем, как правильно выбрать вольфрамовый электрод для аргонодуговой сварки, какие разновидности вольфрама бывают, их отличительные свойства, и как состав влияет на качество сварного шва.
Но в самом начале мы хотим обратить ваше внимание, что в ассортименте фирменной продукции ПТК появились вольфрамовые электроды марок WL-15, WL-20, WС-20, WY-20 и WZ-8.
Наши вольфрамовые электроды прошли рентгеноспектральный микроанализ элементного состава в Национальном Исследовательском Центре «Курчатовский институт». Это платное исследование мы провели по собственной инициативе, чтобы продемонстрировать дилерам и потребителям высшее качество нашей продукции.
Анализ проводился на растровом электронном микроскопе «Tescan Vega II», который позволяет получать СЭМ-изображения и проводить анализ элементного состава в реальном времени, что необходимо для контроля качества продукции и материалов.
Ознакомиться с протоколами исследований и результатами элементного состава вольфрамовых электродов производства ПТК вы можете в отчетных документах.
Что такое вольфрамовый электрод и где он применяется?
Вольфрамовый электрод — это пруток круглого сечения из чистого вольфрама или из вольфрама с добавлением присадок (легирующих добавок). Вольфрам используется при аргонодуговой сварке TIG неплавящимся электродом.
Если у вас возник вопрос, почему «неплавящимся», то ответ очень прост. Вольфрам имеет самую высокую температуру плавления среди чистых металлов (3422°C). Поэтому аргонодуговая сварка производится на прямой полярности, потому что температура катодного пятна (-) достигает 3000 °C, а температура анодного пятна (+) достигает 4000°C. Из-за этого электрод не расходуется во время сварки, а выгорает.
Электроды могут иметь чистую поверхность или шлифованную. Отличительная особенность чистых электродов заключается в том, что они химически очищены, т.е. происходит травление заготовок с целью удаления окислов и загрязнений с поверхности.
Это наиболее трудоемкая и затратная процедура, поэтому применяется значительно реже в промышленном производстве. Шлифованная поверхность электродов говорит о том, что электроды могли быть обработаны ковкой, протяжкой или бесцентровым шлифованием. Последний метод наиболее популярный, в результате такого изготовления улучшается теплопроводность электродов.
Вольфрамовые электроды используются исключительно в TIG сварке, из-за недопущения окислов на поверхности соединительного шва. Сварка происходит в среде защитного газа, который ограждает зону сварки от воздействия кислорода.
При этом типе сварке используется химически инертный газ (благородный газ). К таким газам относится гелий, аргон и специальные сварочные смеси. Отличительная особенность данных газов в том, что у них очень низкая химическая реактивность, иными словами — не взаимодействуют с металлом сварного шва. Ещё эти газы не обладают цветом и запахом.
Буквенно-цифровая маркировка вольфрамовых электродов
В России могут использоваться и применяться 2 типа маркировки вольфрамовых электродов – это классификация по ГОСТ, ТУ и международная классификация по ISO 6848. Кратко рассмотрим эти виды маркировок.
Маркировка отечественных электродов по ГОСТ и ТУ
Продукция, которая произведена в России и соответствует установленным ГОСТ и ТУ, в своем наименовании содержит буквы «Э» и «В», они идут первые в названии и обозначают «электрод вольфрамовый». Далее, в названии идет обозначение химического состава присадок и их массовая доля.
- ЭВЧ — «Ч» — чистый (вольфрам не менее 99,92%);
- ЭВЛ — «Л» — лантан (массовая доля окиси лантана от 1,1 до 1,4%);
- ЭВЛ-2 — «Л» — лантан (массовая доля окиси лантана от 1,4 до 1,6%)
- ЭВИ-1 — «И» — иттрий (массовая доля окиси иттрия от 1,5 до 2,3%)
- ЭВИ-2 — «И» — иттрий (массовая доля окиси иттрия от 2,0 до 3,0% и тантала 0,1%)
- ЭВИ-3 — «И» — иттрий (массовая доля окиси иттрия от 2,5 до 3,5% и тантала 0,1%);
- ЭВТ-15 — «Т» — торий (массовая доля двуокиси тория от 1,5 до 2,0%).
Международная маркировка по стандартам ISO 6848
Большая часть вольфрамовых сплавов была стандартизирована Международной организацией по стандартизации в стандарте ISO 6848. Ниже в таблице приведены буквенно-числовые обозначения и процентный состав легирующих добавок.
Что такое легирующие добавки и редкоземельные металлы?
Мы рассмотрели буквенно-цифровые обозначения вольфрамовых электродов, теперь самое время рассказать о редкоземельных металлах (элементах), которые входят в состав электродов, а точнее в легирующие добавки (присадки).
Редкоземельные металлы — это группа из 17 элементов, которая включает в себя скандий, иттрий, лантан и лантаноиды. Все эти металлы серебристо-белого цвета, схожи по химическим и физическим свойствам, образуют тугоплавкие, практически не растворимые в воде оксиды.
Название «редкоземельные» эти металлы получили из-за того, что редко встречаются в земной коре, также эти металлы сложны в добыче и промышленном производстве.
В сварочных вольфрамовых электродах чаще всего используются присадки с лантаном, церием, иттрием, цирконием и торием.
Свойства присадочных металлов и их влияние на качество сварного шва
Вольфрамовый электрод WP (зеленый)
Чистые вольфрамовые электроды классифицируется как WP и имеют зеленый цветовой код. Содержание вольфрама в них не менее 99,5%.
- Особенности: Электроды с маркировкой WP обеспечивают высокую стабильность горения дуги, но обладают плохой термостойкостью и электронной эмиссией. Из-за такой ограниченной тепловой нагрузки рабочий конец электрода необходимо затачивать в виде округлой формы (шарика).
- Тип тока: Предназначены для сварки на синусоидальном токе (AC) в среде аргона или гелия.
- Металл: Этот тип электродов предназначен для сварки алюминия магния, никеля и их сплавов.
В связи с тем, что электроды WP использовались на трансформаторной технике, а сейчас большинство сварочного оборудования инверторное, необходимость в таких электродах значительно снизилась, поэтому этих электродов нет в ассортименте ПТК.
Вольфрамовые электроды WL-10 (черный), WL-15 (золотой) и WL-20 (голубой)
WL-10 — это электрод с содержанием оксида лантана (La₂O₃), черный цветовой код. Массовая доля оксида лантана достигает до 1%.
WL-15 — это электрод с содержанием оксида лантана (La₂O₃), золотой цветовой код. Массовая доля оксида лантана варьируется от 1,4 до 1,6%.
WL-20 — это электрод с содержанием оксида лантана (La₂O₃), массовая доля которого достигает до 2,2%. Цветовой код электрода — голубой.
- Особенности: Это универсальные электроды, которые выдерживают высокие токовые нагрузки, улучшают стабильность горения дуги и легкость запуска при одновременном снижении выгорания. Лантановые электроды меньше загрязняют вольфрамом шов, что особенно важно при финишных работах. Ещё они длительное время сохраняют заточку рабочего конца.
- Тип тока: Электроды можно использовать при сварке на постоянном и переменном токе (AC/DC).
- Металл: Применяется для сварки углеродистых и легированных сталей, алюминия, титана, никеля, меди и магниевых сплавов.
В ассортименте фирменной продукции ПТК есть вольфрамовые электроды WL-15 диаметром от 1,6 до 4,0 мм и WL-20 диаметром от 1,0 до 4,0 мм.
Какие ГОСТы разработаны для аргонодуговой сварки
Под сваркой принято понимать такой тип соединения деталей, при котором образуются межатомные связи. Достичь такого эффекта можно частичным нагревом свариваемых поверхностей или их пластическим деформированием. Источником энергии может выступать электрическая дуга или газовое пламя. Известны технологии, при которых преобразовывается энергия трения, ультразвука, лазерного излучения.
Общие вопросы
Аргонодуговой сваркой называют сварку с образованием электрической дуги в среде аргона. Одним из электродов является поверхность детали. Второй электрод может быть плавящимся или неплавящимся. Неплавящийся электрода, как правило, изготавливается из вольфрама. В нормативных документах аргонодуговая сварка может обозначаться следующими аббревиатурами:
- РАД – ручная аргонодуговая сварка. В данном случае используется неплавящийся электрод.
- ААД – аргонодуговая сварка, ведущаяся неплавящимися электродами, но в автоматическом режиме.
- ААДП – автоматическая сварка плавящимися электродами.
В международной классификации данный вид сварки определен, как TIG — Tungsten Inert Gas или GTAW — Gas Tungsten Arc Welding, что в переводе означает «сварка в среде инертного газа». Зачастую этим газом оказывается аргон.
Инертный газ для создания защитной среды выбран по причине отсутствия химического взаимодействия с металлом и с другими газами. Так как аргон тяжелее воздуха, то он вытесняет атмосферный кислород и водород из зоны формирования шва, что исключает появление пор и трещин в металле, а также препятствует образованию слоя оксидной пленки.
Технология сварки сводится к тому, что между электродом из вольфрама и поверхностью образуется дуга. Через специальное сопло горелки в зону сварки попадает газ. В отличие от сварки плавящимся электродом здесь присадка исключена из электрической цепи, а подается в зону ванны отдельно в виде прутка. Ручная сварка отличается от автоматической тем, что в первом случае сварщик сам держит горелку и вносит присадку, а во втором – процесс автоматизирован. Технология отличается и по способу образования дуги.
По ряду причин дуга не может быть образована обычным касанием электрода, поэтому в установке предусмотрена параллельная работа осциллятора. Необходимо понимать, что сварка может вестись как постоянным, так и переменным током. По способу подключения электрода разделяют прямую и обратную полярность. Перед проведением подготовительных работ необходимо подобрать нужные параметры для каждого конкретного метала.
Выше были рассмотрены основные вопросы, так как многие параметры подлежат стандартизации. ГОСТ на аргонодуговую сварку не ограничивается одним только документом. Определены нормативы для горелок, обработки и размеров швов, работы с алюминием, для присадочной проволоки, для оборудования и электродов. Но, прежде чем представить перечень этих документов, разберемся в вопросе стандартизации.
Технические условия и стандарты
Некоторые виды работ, товаров и услуг в плане качества контролируются государством. Причиной такого контроля стало межотраслевое значение. Государственные стандарты (ГОСТ) содержат перечень требований к каждой продукции, к каждому результату деятельности, подлежащему стандартизации. Это документ, основывающийся на международных стандартах и учитывающий передовой опыт, а также все достижения науки и техники. Стандартизация была введена еще во времена существования СССР. Стандарты не могут быть статичными, поэтому с течением времени они изменяются.
ГОСТы в России обязательны лишь для оборонной продукции, однако в строительстве они имеют огромное практическое значение, ведь основными показателями конструкция являются безопасность и надежность. Некоторые путают государственный стандарт с техническими условиями. На самом деле ТУ регламентируют производство тех товаров, которые не подлежат стандартизации по ГОСТ. Можно сказать, что ТУ – есть результат разработки предпринимателей, которые являются производителями. Хоть ТУ не является гостом, но они не противоречат государственному документу, а наоборот, дополняют его.
В некоторых источниках по запросу можно встретить всего один документ. Однако он далеко не полностью отражает все стандарты, касающиеся аргонодуговой сварки, ее подготовки и проведения. Перечень всех нормативных документов содержит ГОСТы, принятые в разное время. На сегодняшний день насчитывается 9 документов.
- ГОСТ 5.917-71 определяет требования к ручным горелкам РГА-150 и РГА-400.
- ГОСТ 14806-80 содержит информацию о параметрах аргонодуговой сварки сплавов, содержащих алюминий.
- ГОСТ 14771-76 по своей структуре похож на предыдущий документ. Только здесь речь идет о дуговой сварке в защитном газе, как об обобщенном процессе.
- ГОСТ 7871-75 определяет параметры алюминиевой сварочной проволоки для сварки TIG.
- ГОСТ 2246-70 – документ, в котором прописаны требования к стальной проволоке.
- ГОСТ 23949-80 – стандарт, применяемый к вольфрамовым электродам для аргонодуговой сварки.
- ГОСТ 18130-79 и ГОСТ 13821-77 регламентируют работу оборудования, включая полуавтоматы и выпрямители.
- ГОСТ 10157-79 определяет стандарт для самого инертного газа (аргона).
5.917-71
Данный документ вышел в свет 13 мая 1971 года согласно постановлению Госкомитета стандартов СССР. Приведенные норы распространяются только на горелки типа РГА-150 и РГА-400. Они используются в аргонодуговой сварке вольфрамовым электродом алюминия, его сплавов и нержавеющей стали. Продукция, соответствующая ГОСТ, получала знак качества.
Сегодня производители сварочных инверторов, работающих в режиме TIG, не придерживаются указанных норм, однако, благодаря современным технологиям, качество устройств остается на высоком уроне.
- Параметры и размеры горелок для аргонодуговой сварки включают в себя такие показатели, как номинальное значение и максимальное значение тока. Горелка РГА-150 рассчитана на 150 А при допустимом значении 200 А. Горелка РГА-400 позволяет увеличить силу тока до 500 А. Используемые вольфрамовые электроды в диаметре варьируются от о,8 до 6 мм. Также в данном пункте определены габаритные размеры горелок.
- Технические требования указывают, в каком режиме допускается эксплуатация устройств. Здесь отражены допустимые критерии окружающей среды (температура, влажность), а также условия для испытаний.
- Правила приемки. Производитель обязан гарантировать качество и надежность оборудования. Перечень требований представлен в настоящем документе.
- В пункте «Методы испытаний» описано, каким образом определяется соответствие оборудования установленным требованиям.
- ГОСТом также определены все условия для хранения и транспортировки. Их необходимо выполнять на всех этапах, от производства до поставки покупателю.
14806-80 и 14771-76
Стандартизация непосредственной технологии сварки алюминия и алюминиевых изделий отражена соответствующим нормативным документом. Сюда включены соединения деталей с толщиной кромок от 0,8 до 60 мм. К сварке трубопроводов предъявляются несколько иные требования, поэтому данный стандарт на них не распространяется.
- Типы сварных соединений. Данный пункт реализован в виде таблицы. Из нее можно почерпнуть такие данные, как форма подготовленных кромок, форма шва и толщина деталей.
- Конструктивные элементы и размеры. Для каждого типа кромок и каждой формы сварного шва установлены параметры, включающие в себя толщину детали, диаметр отбортовки, зазор между кромками, ширину шва, глубину сварочной ванны.
ГОСТ 14771-76, как было указано ранее, имеет ту же структуру. Отличием является лишь то, что первый документ определен именно для алюминийсодержащих материалов, а второй – для сталей и сплавов на никелевой и железоникелевой основе.
7871-75 и 2246-70
Введенный ГОСТ касается проволоки из алюминия или сплавов. Им пользуются производители, так как в документе регламентируются возможные значения диаметра проволоки. Среди всех прочих требований определены нормы химического состава расходного материала.
Существует несколько видов проволоки, отличающихся друг от друга по количественному содержанию элементов (магний, марганец, алюминий, железо, кремний, титан, бериллий, цирконий). Наиболее популярные марки:
Допускается наличие примесей. Изготовленная проволока проходит испытания, в том числе и на прочность. В таблице приведены значения предельных нагрузок, при которых происходит разрыв. Приемка материалов осуществляется партиями. В одной партии должна присутствовать проволока с одними и теми же параметрами. В приложении к документу прописаны условия хранения и транспортировки проволоки. Так как она поставляется в катушках, то размеры катушек также подлежат нормировке.
Стальная проволока должна отвечать требованиям ГОСТ 2246-70. Популярные виды:
- Св-08;
- Св-08А;
- Св-10ГА;
- Св-08ГСМТ.
Это далеко не полный перечень марок проволоки. Их разделяют не только по характеристикам, но и по применимости. Существуют материалы для изготовления электродов, проволоки для сварки омедненных поверхностей, проволоки для наплавки.
18130-79 и 13821-77
В настоящее время остаются актуальными ГОСТы, принятые еще в 1977 году. Они прописывают функциональные особенности сварочного оборудования, в частности, полуавтоматов для аргонодуговой сварки. В перечень требований включены такие, как функциональные возможности, устойчивость к внешним факторам, значения сварного тока, наличие измерительных и контрольных приборов.
Такое разнообразие требований не позволяет сформулировать все нормы в одном документе, поэтому данный ГОСТ ссылается на ряд второстепенных нормативных документов. Таким образом, стандартизация процесса аргонодуговой сварки имеет комплексный подход. Общее количество основных и второстепенных нормативов составляет несколько десятков утвержденных и принятых документов, имеющих силу и в настоящее время, за исключением некоторых несущественных изменений.
Читайте также: