Гост на диффузионную сварку

Обновлено: 09.01.2025

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Методы определения содержания диффузионного
водорода в наплавленном металле и металле шва

Welding of metals.
Methods for determination of diffusible hydrogen
in deposited weld metal and fused metal

Дата введения 1992-07-01

1. РАЗРАБОТАН И ВНЕСЕН Академией наук УССР

Л.М.Лобанов, чл.-кор. АН УССР; И.К.Походня (руководитель темы); И.Р.Явдошин, канд. техн. наук; А.П.Пальцевич, канд. техн. наук; Я.М.Юзькив, канд. техн. наук; В.И.Петрыкин; А.Т.Васильев; А.Н.Трощенков; Б.Б.Искоз; Р.И.Щерабаков; Г.Л.Петров; А.М.Левченко

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 04.06.91 N 783

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта, приложения

1.3.2.6; приложение 2

1.3.2.4; приложение 1

Настоящий стандарт устанавливает хроматографический и вакуумный методы определения содержания диффузионного водорода в наплавленном металле и металле шва и распространяется на покрытые электроды, порошковую проволоку, стальную сварочную проволоку, предназначенные для сварки низкоуглеродистых и низколегированных сталей.

Хроматографический метод предназначен для определения содержания диффузионного водорода в образцах швов, выполненных покрытыми электродами, порошковой и стальной сварочной проволоками.

Вакуумный метод предназначен для определения содержания водорода в образцах швов, выполненных покрытыми электродами диаметром от 3 до 6 мм.

При сварке электродами диаметром 4 мм диапазон измерения массовой доли водорода от 0,25 до 13,5 млн - в металле шва, от 0,4 до 22 млн - в наплавленном металле или от 0,3 до 15 см/100 г - в металле шва, от 0,5 до 25 cм /100 г - в наплавленном металле.

Измерения содержания диффузионного водорода в наплавленном металле и металле шва используют для классификации и контроля качества партий сварочных материалов и исследовательских целей.

Для классификации и контроля партий сварочных материалов условия наплавки шва указаны в стандарте.

1. АППАРАТУРА И МАТЕРИАЛЫ

1.1. Сущность хроматографического метода (метод 1)

1.1.1. Метод основан на сборе выделяющегося из образца сварного шва водорода в камере с последующим измерением его объема методом газовой хроматографии.

Для ускорения анализа образец дегазируется при температуре (150±5) °С.

Схема прибора приведена на черт. 1. Выделяющийся из образца 1 водород собирается в металлической камере 2, соединенной с хроматографом 7 через электромагнитный переключатель направления движения газа 5. Управление работой переключателя 5 выполняется с помощью блока управления 6.

Схема прибора для хроматографического метода анализа (метод 1)


2 - реакционная камера; 3 - крышка реакционной камеры; 4 - печь для нагрева камеры с образцом; 5 - электромагнитный переключатель направления движения газа; 6 - блок управления электромагнитным переключателем направления движения газа; 7 - хроматограф; 8 - блок подготовки газа хроматографа; 9 - блок подготовки детектора по теплопроводности; 10 - блок регулятора температуры; 11 - потенциометр КСП-4; 12 - интегратор И-02 (И-05); 13 - баллон с аргоном

Промежуток времени, на который камера 2 подключается к потоку газа-носителя аргона для вымывания выделившегося из образца водорода (или промывка камеры от воздуха после помещения в нее образца), - цикл отбора водорода или промывка камеры. Промежуток времени, на который камера 2 отключена от потока газа-носителя аргона для накопления водорода, - цикл накопления водорода.

Во время накопления водорода в камере 2 газ-носитель аргон проходит через хроматограф 7, минуя камеру 2. Для измерения объема выделившегося водорода газ-носитель с помощью переключателя 5 направляется через камеру 2 в хроматограф 7, где детектируется.

Выходной сигнал регистрируется потенциометром 11, его площадь измеряется интегратором 12. Работа хроматографа 7 и его детектора по теплопроводности управляется соответственно блоками 10 и 9. Расход газа-носителя в двух магистралях хроматографа задается с помощью блока подготовки газа хроматографа 8. Для ускорения анализа образец 1 вместе с камерой 2 нагревают печью сопротивлением 4.

Количество циклов накопления водорода и отбора водорода определяют интенсивностью выделения водорода из образца. Количество выделившегося водорода из образца равно сумме площадей пиков водорода, умноженной на функцию преобразования прибора.

1.2. Сущность вакуумного метода (метод 2)

1.2.1. Метод основан на сборе выделяющегося водорода из образца в вакуумированный контейнер, соединенный с манометром. Объем выделившегося водорода определяют с учетом объема контейнера и изменения в нем давления за счет выделившегося водорода. Дегазация образца выполняется при комнатной температуре.

Конструкция прибора для измерения объема диффузионного водорода приведена на черт. 2. Водород, выделяющийся из образца, помещенного в колбу 7, повышает давление, регистрируемое жидкостным манометром 6.

Прибор для вакуумного метода анализа (метод 2)


1, 2, 3, 4 - краны вакуумные; 5 - лампа вакуумметрическая; 6 - манометр; 7 - колба

1.3. Для измерения объема водорода используются приборы, приспособления и материалы:

1.3.1.1. Прибор ОБ 2456 или ОБ 2144, в состав которого входит хроматограф ЛХМ-8МД или ЛХМ-80 с детекторами по теплопроводности (или хроматографы других марок, укомплектованные детекторами по теплопроводности). Приведенные приборы изготавливают по нормативно-технической документации. Прибор ОБ 2456 предназначен для одновременного анализа трех образцов, прибор ОБ 2144 - для одного образца.

Допускается пользоваться другими приборами, основанными на принципах матографического анализа газов, обеспечивающих идентичные результаты, изготовленными по другой нормативно-технической документации.

1.3.2.1. Вакуумный прибор (черт. 2), устройство которого приведено в приложении 2.

1.3.2.2. Приспособление для наплавки (черт. 3, 4).

Приспособление для наплавки образцов по методам 1 и 2


1, 2 - медные водоохлаждаемые губки; 3 - тиски с ручным приводом

Приспособление для наплавки образцов по методу 2


1 - болт М12; 2, 4 - зажимы медные; 3 - заготовка образца; 5 - гайка М12; 6 - размерная планка

1.3.2.3. Универсальный фотоувеличитель "Беларусь-2М" по НТД.

1.3.2.5. Весы аналитические ВЛДП-200 г, 2 кл. по НТД.

1.3.2.6. Реактивы: ацетон по ГОСТ 2603; спирт этиловый технический по ГОСТ 18300; толуол по ГОСТ 5789; силикагель по ГОСТ 8984; аргон по ГОСТ 10157; эфир для наркоза - по НТД.

2. ПОДГОТОВКА К ИСПЫТАНИЮ

2.1. Образцы для испытания

2.1.1. Образец представляет собой пластину с наплавленным валиком. Валик следует наплавлять на заготовку, состоящую из пластины, собранной вместе с выводными планками в соответствии с черт.5.

Заготовки составных образцов для наплавки валика


1 - пластина; 2, 3 - выводные планки; неуказанные отклонения размеров Н12

2.1.2. Материал пластины и выводных планок: для классификации сварочных материалов - сталь марок БСт3сп, ВСтЗсп по ГОСТ 380; для других назначений допускается применение низкоуглеродистых и низколегированных сталей, для сварки которых предназначены испытуемые сварочные материалы.

Заготовки для изготовления пластин и выводных планок должны быть подвергнуты отжигу при температуре 650-670 °С в течение не менее 2 ч.

2.1.3. Пластина маркируется на нижней поверхности (по отношению к наплавленному валику).

2.1.4. Пластина и выводные планки после опиловки заусенцев и острых кромок должны быть промыты: для метода 1 - в ацетоне и спирте этиловом техническом; для метода 2 - в толуоле, затем в ацетоне и спирте этиловом техническом.

2.1.5. Пластина до наплавки валика должна быть взвешена с погрешностью не более ±0,01 г.

2.1.6. Пластины и выводные планки до наплавки валика должны храниться в эксикаторе с силикагелем. Силикагель следует регенерировать при температуре 150-300 °С в течение 3 ч не реже одного раза в три месяца.

2.1.7. Заготовка типа I предназначена для испытания электродов диаметром 3-4 мм по методу 1, заготовка типа II предназначена для испытания электродов диаметром более 4 мм, проволок порошковых и проволок стальных сварочных по методу 1, заготовка типа III предназначена для испытания электродов диаметром 3-6 мм по методу 2 (черт. 5).

2.2. Наплавка валика на заготовку

2.2.1. Для наплавки валика заготовку зажимают в приспособление для наплавки. Температура приспособления должна быть в пределах от температуры окружающей среды до температуры ее точки росы.

Гост на диффузионную сварку

ДИФФУЗИОННАЯ СВАРКА В ВАКУУМЕ РАБОЧИХ ЭЛЕМЕНТОВ
РАЗДЕЛИТЕЛЬНЫХ И ФОРМООБРАЗУЮЩИХ ШТАМПОВ

Типовой технологический процесс

Vacuum diffusion welding of working elements of seperating and shape forming dies.
Typical technological process

Постановлением Государственного комитета стандартов Совета Министров СССР от 27 февраля 1975 года N 526 срок введения установлен с 01.01.76

ПРОВЕРЕН в 1980 году. Срок действия продлен до 01.01.86**

** Ограничение срока действия снято постановлением Госстандарта СССР от 09.08.90 N 2374 (ИУС 1190). - Примечание изготовителя базы данных.

* ПЕРЕИЗДАНИЕ ноябрь 1981 года с Изменением N 1, утвержденным в январе 1981 года (ИУС 4-81)

ВНЕСЕНО Изменение N 2, утвержденное и введенное в действие Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 09.08.90 N 2374 с 01.01.91

Изменение N 2 внесено изготовителем базы данных по тексту ИУС N 11, 1990 год

Настоящий стандарт устанавливает типовой технологический процесс диффузионной сварки в вакууме вставок из твердых металлокерамических сплавов марок ВК 15, ВК 20 и ВК 25 по ГОСТ 3882-74 с основаниями рабочих элементов разделительных и формообразующих штампов из сталей марок 5ХНВ, 5ХНМ, 5ХНСВ по ГОСТ 5950-73 и марок 38ХН3МФА и 18Х2Н4ВА по ГОСТ 4543-71.

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. Сварку вставок и оснований следует производить через компенсационную прокладку из никелевой ленты марки Н2 толщиной от 0,06 до 0,10 мм по ГОСТ 15515-70. Когда площадь свариваемой поверхности меньше 100 мм, допускается применять компенсационную прокладку из железоникелевого сплава марки 50НП по ГОСТ 10160-75 толщиной от 0,05 до 0,06 мм.

(Измененная редакция, Изм. N 2).

1.2. Шероховатость свариваемых поверхностей вставок и оснований - не более Ra 1,25 мкм по ГОСТ 2789-73.

1.3. Непараллельность свариваемых и противоположных им плоскостей вставок и оснований не должна быть более 0,02 мм на длине 100 мм.

1.4. На свариваемых поверхностях вставок, оснований и компенсационных прокладок перед сваркой не должно быть следов коррозии, жировых пленок и грязи.

1.5. Сборка вставок и оснований под сварку и установка в камеру сварочной диффузионной вакуумной установки должна производиться по схеме, приведенной на чертеже.


1 - нижняя подставка; 2 - основание; 3 - компенсационная прокладка; 4 - вставка;
5 - индуктор; 6 - верхняя подставка; 7 - изоляционные прокладки

1.6. Подставки следует изготавливать из сталей и сплавов по ГОСТ 5632-72 или твердых металлокерамических сплавов по ГОСТ 3882-74.

1.7. Непараллельность опорных поверхностей подставок не должна быть более 0,02 мм на длине 100 мм.

1.9. Твердость стального основания после сварки должна соответствовать приведенной в табл.1.

ГОСТ 20549-75 Диффузионная сварка в вакууме рабочих элементов разделительных и формообразующих штампов. Типовой технологический процесс

Текст ГОСТ 20549-75 Диффузионная сварка в вакууме рабочих элементов разделительных и формообразующих штампов. Типовой технологический процесс


ДИФФУЗИОННАЯ СВАРКА В ВАКУУМЕ РАБОЧИХ ЭЛЕМЕНТОВ РАЗДЕЛИТЕЛЬНЫХ

И ФОРМООБРАЗУЮЩИХ ШТАМПОВ. ТИПОВОЙ ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС ГОСТ 20549—75

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ

УДК 621.791.4 : 539.378.3 : 658.512.6 : 006.354 Группа Т53

ДИФФУЗИОННАЯ СВАРКА В ВАКУУМЕ РАБОЧИХ ЭЛЕМЕНТОВ РАЗДЕЛИТЕЛЬНЫХ И ФОРМООБРАЗУЮЩИХ ШТАМПОВ

Типовой технологический процесс.

Vacuum diffusion welding of working elements of seperating ard shape forming dies.

Typical technological process

Постановлением Государственного комитета стандартов Совета Министров СССР от 27 февраля 1975 г. N9 526 срок введения установлен

Проверен в 1980 г. Срок действия продлен до 01.01 1986 г.

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает типовой технологический процесс диффузионной сварки в вакууме вставок из твердых металлокерамических сплавов марок ВК 15, ВК 20 и ВК 25 по ГОСТ 3882—74 с основаниями рабочих элементов разделительных и формообразующих штампов из сталей марок 5ХНВ, 5ХНМ, 5ХНСВ по ГОСТ 5950—73 и марок 38ХНЗМФА и 18Х2Н4ВА по ГОСТ 4543—71.

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. Сварку вставок и оснований следует производить через компенсационную прокладку из никелевой ленты марки Н2 толщиной от 0,04 до 0,12 мм по ГОСТ 15515—70. Когда площадь свариваемой поверхности меньше 100 мм 2 , допускается применять компенсационную прокладку из железоникелевого сплава марки 50НП по ГОСТ 10160—75 толщиной от 0,03 до 0,06 мм.

1.2. Шероховатость свариваемых поверхностей вставок и оснований — не более Ra 1,25 мкм по ГОСТ 2789—73.

Издание официальное Перепечатка воспрещена

* Переиздание ноябрь 1981 г. с Изменением М 1, утвержденным в январе 1981 г. (МУС 4—1981 г.).

© Издательство стандартов, 1982


4—вставка, 5-^индуктор, верхняя подставка, 7—изоляционные

1.6. Подставки следует изготавливать из сталей и сплавов по ГОСТ 5632—72 или твердых металлокерамических сплавов по ГОСТ 3882—74.

1.81 Изоляционные прокладки следует изготавливать из слюды марки СМОП или СМОЭ по ГОСТ 10698—80.

1.9. Твердость стального основания после сварки должна соответствовать приведенной в табл, 1.

Диффузионная сварка: что невозможно в обычных условиях, достигается в вакуумном пространстве




Явление диффузии — это процесс, при котором в результате тесного контакта между поверхностями молекулы и атомы разных веществ начинают смешиваться друг с другом.

Происходит взаимопроникновение мельчайших частиц вещества на молекулярном или атомарном уровне, при этом концентрация этих веществ в слое соединения автоматически выравнивается и становится равномерной. Благодаря этому процессу был разработан диффузионный вид сварки.

ГОСТ, определяющий техпроцесс и требования к нему

Технологию и процессы регламентирует разработанный в 1975 году ГОСТ 20549-75. Полное название: «Диффузионная сварка рабочих элементов разделительных и формообразующих штампов. Типовой технологический процесс». Позже срок действия ГОСТ продлевали в 1980, 1990 годах, действителен и сегодня. Там описаны:

Как это происходит?

Понятно, что для исполнения это не самый простой метод сварки. Но овчинка выделки стоит, с его помощью формируются соединения с уникальными свойствами, такие невозможно получить при использовании любого другого способа сварки.



ГОСТ 20549-75 – Диффузионная сварка.

Один только вакуум чего стоит: чтобы создать его, нужно обзавестись специальными стендами с камерой для деталей. На них же производят нагревание и давление. По длительности во времени это могут быть самые разные процессы: от нескольких минут до нескольких часов.

Чтобы шов получился качественным, существует ряд технических правил, обязательных для исполнения:

  • Вакуум создается только на специальных установках. Здесь имеет место прямая зависимость: чем больше разреженность воздуха внутри камеры, тем качественнее получается сварное соединение. Идеальный физический вакуум на такой установке невозможен в принципе. Поэтому приемлемым уровнем вакуума считается 10 в пятой степени со знаком минус мм рт. ст. Даже такое скромное по физическим меркам разрежение отказывает мощное воздействие на процесс диффузии.
  • Нагревание заготовок во время процесса можно производить несколькими способами. Самые применяемые из них – индукционный, радиационный или чемпион по популярности – электроконтактный. Уровень температуры тоже может быть разным, здесь также наблюдается прямая зависимость: чем выше температура, тем больше текучесть металла и выше скорость диффузии. Если вы решите оставить комнатную температуру, вы получите диффузионную сварку, но через продолжительное время – придется подождать.
  • Давление нужно создавать только после достижения нужного уровня температуры. Оно может быть разным по длительности и локальности: от узконаправленного до распределенного по всей поверхности деталей. Необходимое давление применятся также для ускорения процесса – так же, как и температура.
  • Применение фольги в качестве вспомогательной прокладки между поверхностями – еще одно приспособление для повышения качества сварки в виде высокой прочности соединения. Фольга нужна платиновая, золотая или медная: она должна быть очень тонкой – всего несколько микрон толщиной. Еще одним способом улучшения качества является обработка мест стыковки специальными составами.
  • Теперь об остывании. Оно должно быть в обязательном порядке постепенным. Более того, это остывание должно проходить в том же вакууме. Обычно в устройствах для диффузионной сварки имеются специальные системы охлаждения с регулировкой скорости остывания. Постепенность – вот главное слово на этом этапе, иначе возникнет риск появления трещин и снижения качества шва.

Следование техническим рекомендациям – одно из важнейших условий успешной работы и качественного результата. С другой стороны, следует всегда оценивать конкретные условия и природу металлов заготовок, чтобы внести технологические корректировки при необходимости.

К примеру, если вы имеете дело с деталями из цветных металлов, величина давления и температура нагревания понадобятся совсем другие.

Области применения

Этот вид сварки применяется там, где другие неэффективны, дороги и нет нужного качества соединения:

  1. Приборостроительная и электронная промышленность. В высокоточном оборудовании и приборах необходимы сочетания разнородных материалов, в том числе неметаллических – стекла, керамики, графита с металлами и сплавами.
  2. Крупногабаритные заготовки. Этим методом соединяют крупногабаритные заготовки сложной конфигурации, которые невозможно получить литьём или штамповкой, таких, например, как трубы. В самолётостроении применяют при изготовлении малоразмерных роторов турбоагрегатов, рабочих лопаток газотурбинных двигателей.

Недостатки

Возможности диффузного метода создания композитных деталей ограничены размерами сварочной установки, вернее, вакуумной камеры. Сложность элементов оборудования, большая масса снижают мобильность установки. Затраты на эксплуатацию, высокая базовая стоимость, расходы на обслуживание установки несопоставимы с накладными расходами традиционной сварки – низкая рентабельность препятствую массовому распространению прогрессивного метода.

Сложное оборудование, исключающее вакуумную камеру, насосы, гидравлический усилитель, многое другое нельзя сделать своими руками. Технические сложности производства установок вкупе с затратами ограничивают область применения метода диффузионной сварки высокотехнологичными отраслями промышленности. Метод диффузной сварки применяется только там, где ему нет аналогичной замены: в робототехнике, приборостроении, где требуются металлокерамические детали, композитные элементы, катодные узлы, сложные полупроводниковые переходы.

Преимущества и недостатки технологии

К преимуществам рассматриваемого метода относят:

  • качественное соединение разнородных материалов;
  • минимальная деформация свариваемых плоскостей, что освобождает от необходимости механической обработки шва;
  • многослойная сварка и автоматизация работ при организации крупносерийного производства;
  • возможность совмещения диффузионной сварки и формообразования при изготовлении многослойных тонкостенных конструкций сложной формы;
  • при соединении однородных материалов атомная структура шва идентична структуре детали;
  • отсутствие вредных паров, что исключает потребность в сложной системе вентиляции;
  • минимум вредных для человека выделений и излучений.

К недостаткам относят:

  • сложность оборудования и особенные требования к технологическому уровню производства;
  • высокая себестоимость работ;
  • невозможность применения для проверки качества шва методов неразрушающего контроля.

Плюсы и минусы

Ей присущи как позитивные преимущества, так и недостатки. Начнем с плюсов:

  • точность обработки;
  • прочность соединения;
  • отсутствие грубых швов;
  • высокая функциональность;
  • работа со сложными конструкциями;
  • экономия энергии;
  • экологическая безопасность;
  • возможность работать с пустотелыми конструкциями;
  • экономичность.

Данные возможности позволяют использовать диффузионный способ соединения в различных сферах. Процесс представляет собой высокотехнологический метод обработки. Он незаменим в тех случаях, когда любые другие виды соединения не могут быть использованы.

Но данному технологическому процессу присущи и серьезные недостатки. К ним можно отнести, в первую очередь, само инженерное оборудование. Аппарат для сварки методом диффузии — сложная конструкция, которая требует наличия специальных условий. Необходимо наличие определенного уровня давления, температуры и разреженной среды.


Агрегат представляет собой вакуумную камеру с вакуумным насосом. Так как сварка происходит при высокой температуре, некоторые элементы аппарата выполнены из жаропрочных сплавов. Прессы и механизмы, охладители и нагреватели сварочного аппарата будут сложными и дорогостоящими. Сама машина для диффузионной сварки имеет значительные габариты и массу. Она является сложной конструкцией. Соответственно, цена ее высока.

Говорить о рентабельности методики можно только с позиции ее необходимости. Если нет иных способов произвести соединение частей и механизмов, то метод невероятно актуален. С другой стороны, установка его оптимальна на крупных предприятиях для операций, требующих высокой точности и исключительного качества.

Вторым негативным фактором метода считается сама вакуумная камера. Ее пространство определяет возможные параметры свариваемых элементов.


Третьим недостатком диффузионного метода является необходимость идеальной очистки свариваемых поверхностей. Иначе, соединять придется не необходимые материалы, а пленки загрязнения.

Таким образом, для эффективного использования метода диффузии, необходимо учесть все плюсы и минусы сварочного аппарата такой модели.

Метод диффузионной сварки

Сваривание происходит за счёт пластической деформации кромок ниже температуры плавления, в твёрдом состоянии. Способы нагрева:

Процесс идёт в вакууме, нейтральных и восстановительных газах, жидких средах. Чистота и качество шва зависит от того, насколько хорошо очищены места соединения. Очищают растворителями или путём нагрева и выдержки в вакуумной камере.




Устройство диффузионной установки

Сам комплекс агрегатов, позволяющий выполнить весь процесс по соединению материалов, состоит из следующих узлов:


  1. Камера.
  2. Станина.
  3. Вакуумный уплотнитель.
  4. Насос.
  5. Генератор и индуктор.
  6. Механизм сжатия.

Камера служит местом, где непосредственно размещаются детали и создается вакуумная среда.

Станина, как и в любом другом станке, служит подставкой для размещения на ней узлов установки. В данном случае на ней монтируется камера. Она, в свою очередь, с помощью роликового механизма может перемещаться по станине.

Уплотнитель — это прокладка между камерой установки и подставкой.

Насос работает на откачку воздуха и устройства вакуума.

Генератор и индуктор обеспечивают нужный нагрев стыков соединяемых деталей.

Сжатие обеспечивается механизмом, состоящим из масляного насоса и гидравлических цилиндров. За счет них достигается нужное давление.

Конечно, это один из видов установки. Но, невзирая на различные типы нагревателей (электронно-лучевые, радиационные, установка тлеющего заряда, генератор высоких токов), сохраняется главный принцип — нагрев и сжатие.

Технология, время выдержки и температуры разгерметизации

Детали с механически обработанными и обезжиренными свариваемыми поверхностями устанавливают в центрирующем приспособлении вакуумной камеры. Откачивают воздух. Когда достигается вакуум, включают высокочастотный генератор. Детали в зоне сварки нагреваются с помощью индуктора. За время нагрева поверхности заготовок очищаются от окисных плёнок. При достижении температуры на изделия давит поршень гидросистемы. Нагрузку подают до конца процесса. После этого узел сварки постепенно, с заданной скоростью охлаждается до определённой температуры.

Герметизацию камеры прекращают, сваривая:

  • чёрные металлы – при 60 ̊C.
  • цветные металлы и сплавы – при 120 ̊C.

Время выдержки зависит от силы нагрева и давления, использованных в ходе работ.

Достоинства технологии

Диффузная сварка обладает как достоинствами, так и недостатками. Её преимуществами принято считать:

  • Отсутствие необходимости в расходных материалах, вроде сварочных электродов, флюсов или специальных газов. Это снижает себестоимость процесса и делает его «чистым», поскольку отсутствуют загрязняющие воздух продукты горения, окалина и другие вредные вещества.
  • Низкая энергоёмкость. Для достижения требуемых параметров, тратиться на порядок меньше энергии, чем в случае использования других технологий. А это значит, что снижается конечная себестоимость изделия.
  • За один приём можно одновременно сваривать сразу несколько различных материалов, получая слоистые конструкции с ранее недостижимыми характеристиками. Это особенно важно в случаях, когда используются композиты.
  • С помощью диффузионной сварки в вакууме можно соединять как большие, в несколько метров длиной и шириной, конструкции, так и маленькие детали, размеры которых измеряются в микронах. Не имеет значения и толщина. Подобными обстоятельствами не преминули воспользоваться производители микроэлектроники. Для решаемых ими задач такая технология подходит как нельзя лучше.
  • Не имеет значения размеры и форма сварного соединения. Отпадает необходимость в специальных технологических фланцах и припусках материалов, для соединения их внахлёст.
  • Высокое качество шва. Оно значительно выше, чем при использовании газовой или электрической сварки. Это позволяет использовать подобный способ соединения материалов даже на видовых поверхностях, то есть там, где другие сварочные швы приходится маскировать различными способами.
  • Поскольку при диффузионной сварке соединение материалов происходит в закрытой камере, то оператор не подвергается воздействиям, способным оказать влияние на его здоровье. Брызги, интенсивные излучения, вредные для вдыхания химические пары или мелкодисперсная пыль отсутствуют.

Процесс непрерывно совершенствуется. На сегодняшний день существуют установки, где детали помещают не в вакуум, а в среду инертного газа. Главной задачей, которую решают с помощью такой технологии, является сварка металлов. Но используя специальные методики, удаётся соединять и материалы, обладающие разными свойствами. Диффузия скрепляет между собой металлы и пластики, стекло и керамику, всё то, для чего ране требовались специальные клеящие составы.

Способы

Диффузионная сварка с применением промежуточных слоёв делается:

  • для большей прочности сцепления;
  • для предотвращения появления барьерных подслоев при соединении разнородных материалов;
  • для уменьшения остаточных деформаций, благодаря снижению температуры и давления.

Промежуточные подкладки подразделяются на плавящиеся и неплавящиеся. Коэффициент диффузии атомов барьерной подкладки в основной металл должен быть выше, чем для элементов металла в прокладку. Её материал выбирают исходя из поставленной задачи. Чаще это никель, медь, серебро, золото.

Расплавляющимися промежуточными слоями часто выступают высокотемпературные припои. Это уменьшает пластическую деформацию и повышает качество шва.

Описание технологии

Для того, чтобы соединить различные материалы и элементы, требуются разнообразные методики и технологии. Соответственно, сварка при помощи диффузионного аппарата может производиться внахлест, стык-в – стык или образуя шов.

У каждого из свариваемых материалов есть свои физические и химические свойства. Поэтому, и молекулы этих веществ будут взаимно проникать друг в друга по-разному. Часто возникает необходимость в «помощнике». В этом качестве выступают металлы, имеющие высокую диффузионную способность: золото, серебро, медь, никель.

Для некоторых технологических процессов требуется дополнительные прокладки специально подогревать, окислять или сульфидировать. Температурный режим и показатель давления также устанавливают в соответствии с индивидуальными характеристиками материалов.

Установка и оборудование

Сварочная диффузионная установка состоит:

  • из вакуумной камеры;
  • из механизма нагнетания рабочего давления;
  • из источника нагрева;
  • из аппаратуры управления и контроля.

В вакуумной камере прямоугольной или цилиндрической формы размещён механизм давления, нагревательные элементы и приспособление для крепления свариваемых деталей. В стенках – система водяного охлаждения.

Сварочная диффузионная установка

Обычно установка содержит одну камеру, но для повышения производительности выпускают и с несколькими для непрерывной загрузки и выгрузки изделий.

Что такое диффузия

Если вернуться к школьному курсу физики, то вспоминается один из таких процессов, как диффузия.


Это взаимное проникновение молекул одних веществ среди молекул (или даже атомов) других. Причем такое смешивание между ними приводит до выравнивания соотношений. Благодаря диффузии мы ощущаем запахи и даже привкусы растворенных веществ в воздухе, или же можем смешивать различные жидкости.

Но диффузия возможна и между твердыми субстанциями, например, металлами. На этом принципе и была построена диффузионная сварка, изобретенная еще в 50-х годах прошлого века.

Какие материалы можно сваривать

Диффузионная сварка металлов дала неплохой прорыв в технологическом плане. Были открыты большие возможности в производстве.
Что можно соединять путем такого сваривания в вакууме?


  • Разнородные по своей структуре металлы, их сплавы, а также очень тугоплавкие типа вольфрама. Примером может послужить соединение по схеме чугун-сталь-чугун в тормозных колодках.
  • Возможна сварка металлических деталей с неметаллами. Например, сварка медных частей со стеклом, металла с металлокерамикой, или же графита со сталью.
  • Диффузионная сварка соединяет алюминиевые детали с чугунными, никелевыми или медными.
  • Соединение жаропрочных марок стали с титаном.
  • Различные спайки с титаном (медь, стекло, молибден).

То есть такой вид сварки позволил объединять те материалы, что не позволяют использовать другие способы варки. В итоге данный метод быстро нашел применение в различных отраслях промышленности от автомобилестроения до космического производства.

Конструктивные элементы и размеры


Примечание . При способе сварки 3Н зазор b = 0 +0,5 .

Условное обозначение сварного соединения

Конструктивные элементы и размеры

Способ сварки

подготовленных кромок свариваемых деталей

сварного шва


* Допускается увеличение до 2 мм.



(при Dу до 150 включ.) 3,0 (при Dу более 150)

Примечание . При способе сварки 3Н зазор b = 2,5 +1,0 .

Конструкционные элементы и размеры

cварного шва












Примечание . Допускается применение штуцеров и ниппелей с фаской.

В, не более

30 (при Dн до 32 включ.)

40 (при Dн св. 32 до 108 включ.)

50 (при Dн свыше 108)

К


40 (при Dн менее 32)

50 (при Dн св. 32 до 108 включ.)

60 (при Dн более 108)

K, не менее

b, не более


Примечание . Значение «К» определяется при проектировании.

0,5 (при Dн до 45 включ.)

s (при s до 3 включ.)

1,0 (при Dн св. 45 до 194 включ.)

1,5 (при Dн св. 194)



3 (при s св. 3)

К, не менее



1,3 толщины более тонкой детали

Примечание . Соединение применяется при отношении наружного диаметра ответвления к наружному диаметру трубы не более 0,5.




1. При способе сварки 3Н зазор b = 2,0 +0,5 .

2. Длина протачиваемой части приварыша, входящей в трубу, устанавливается при проектировании соединения.

3. Величина s2 приведена после растопки.

Примечание . При способе сварки НЗ зазор b = 2 +0,5

5. При изготовлении тройников и крестовин из труб должны применяться типы сварных соединений, установленные для отростков с трубами, а при сварке тройников, крестовин и переходов с трубами или фланцами - соответственно типы сварных соединений труб с трубами или труб с фланцами.

6. Сварка стыковых соединений деталей неодинаковой толщины при разнице, не превышающей значений, указанных в табл. 34, должна производиться так же, как деталей одинаковой толщины; конструктивные элементы подготовленных кромок и размеры сварного шва следует выбирать по большей толщине.

Для осуществления плавного перехода от одной детали к другой допускается наклонное расположение поверхности шва (черт. 1).

Толщина тонкой детали

Разность толщин деталей

При разнице в толщине свариваемых деталей свыше значений, указанных в табл. 34, на детали, имеющей большую толщину s 1 , должен быть сделан скос до толщины тонкой детали s , как указано на черт. 2 и 3. При этом конструктивные элементы подготовленных кромок и размеры сварного шва следует выбирать по меньшей толщине.

7. Шероховатость обрабатываемых под сварку поверхностей - Rz не более 80 мкм по ГОСТ 2789-73.

8. Остающиеся подкладки и муфты должны изготовляться из стали той же марки, из которой изготовлены трубы.

Для труб из углеродистой стали допускается изготовлять остающиеся подкладки и муфты из сталей марок 10 и 20 по ГОСТ 1050-88.

9. Зазор между остающейся подкладкой и трубой для сварных соединений, контролируемых радиографическим метолом, должен быть не более 0,2 мм, а для соединений, не контролируемых радиографированием, - не более 0,5 мм.

Местные зазоры для указанных соединений допускаются до 0,5 мм и 1,0 мм соответственно.

10. Зазор между расплавляемой вставкой и торцевой или внутренней поверхностью трубы должен быть не более 0,5 мм.

11. В сварных соединениях отростков с трубами допускается присоединение отростков под углом до 45° к оси трубы.

12. В соединениях У18 и У19 размеры е и g в сечении А-А должны устанавливаться при проектировании, при этом размер е должен перекрывать утонение стенки трубы, образуемое при вырезке отверстия, на величину до 3 мм, а размер а должен быть не менее минимальной толщины стенки свариваемых деталей.

13. Швы с привалочной стороны фланцев допускается заменять развальцовкой конца трубы.

14. Предельные отклонения катета углового шва К, К1 от номинального в случаях, не оговоренных в таблицах, должны соответствовать:

+2 мм - при К £ 5 мм;

+5 мм - при К > 12 мм.

15. Допускается выпуклость углового шва до 2 мм при сварке в нижнем положении и до 3 мм при сварке в других пространственных положениях. Вогнутость углового шва до 30 % величины катета, но не более 3 мм.

(Измененная редакция, Изм. № 1).

16. Для сварных соединений труб с толщиной стенки более 4 мм допускается сварка корня шва способом, отличным от основного способа сварки.

Читайте также: