Флюс для аргонодуговой сварки
Формула изобретения
Описание изобретения к патенту
Изобретение относится к области сварочного производства и может быть использовано при сварке неплавящимся электродом в среде аргона стыков труб из медно-никелевого сплава типа МНЖ5-1 для уменьшения пористости в сварных швах и увеличения глубины проплавления основного металла.
При сварке изделий из медно-никелевых сплавов ввиду особенности их физико-химических свойств (высокой теплопроводности, повышенной склонности к окислению при высоких температурах и к водородной болезни) в сварных соединениях часто образуются дефекты в виде пористости, которые приходится исправлять путем удаления дефектного металла с порами и последующей заварки. Из-за высокой теплопроводности медно-никелевого сплава и невозможности существенно увеличить величину сварочного тока стыковые швы трубопроводов приходится выполнять с повышенным количеством проходов, что уменьшает производительность сварки.
Повысить качество металла сварного соединения, увеличить проплавление основного металла и производительность труда при аргонодуговой сварке изделий из медно-никелевых сплавов можно за счет использования активирующих флюсов. Для аргонодуговой сварки медно-никелевых сплавов такой флюс отсутствует.
Известен флюс для аргонодуговой сварки изделий из алюминиевых бронз при их изготовлении и ремонте (патент № 2243073), содержащий следующие компоненты (в мас.%):
Использование этого флюса при аргонодуговой сварке изделий из алюминиевой бронзы обеспечивает удаление пленки оксида алюминия (Al 2 O 3 ) с поверхности сварочной ванны и тем самым улучшает качество сварного шва. Однако применение этого флюса при аргонодуговой сварке изделий из медно-никелевого сплава не обеспечивает хорошее формирование металла шва и увеличение глубины проплавления основного металла.
Известен также флюс для сварки цветных металлов (патент Франции № 2237723), содержащий следующие компоненты (в мас.%):
Фторид бария | 3-7 |
Фторид кальция | 83-92 |
Фторид алюминия | 5-10 |
Недостатком этого флюса при сварке неплавящимся электродом изделий из медно-никелевого сплава является недостаточно высокая плотность наплавленного металла и недостаточно хорошее формирование шва.
Наиболее близким к предлагаемому флюсу по составу, принятому за прототип, является флюс по а.с. 348314, предназначенный для сварки и плавки цветных металлов, преимущественно меди и титана, и содержащий следующие компоненты (в мас.%):
Этот флюс предназначен для сварки и электрошлакового переплава цветных металлов, в частности меди и сплавов на ее основе, с целью повышения качества литого металла, устранения пористости швов и повышения производительности сварки. Однако при аргонодуговой сварке изделий из медно-никелевого сплава с применением этого флюса, хотя пористость по сравнению со сваркой без флюса уменьшается, но все же не обеспечивает необходимого качества, кроме того, проплавление металла при аргонодуговой сварке изделий из медно-никелевых сплавов с применением этого флюса недостаточное.
Техническим результатом изобретения является создание флюса для сварки неплавящимся электродом в среде аргона стыков труб из медно-никелевых сплавов типа МНЖ5-1, обеспечивающего уменьшение пористости в сварных швах и увеличение глубины проплавления основного металла.
Технический результат достигается введением во флюс хлористого калия и борного ангидрида при следующем соотношении компонентов (в мас.%):
Наличие во флюсе фторида алюминия и фторида кальция приводит к контрагированию столба дуги и повышению анодного падения напряжения, что, в свою очередь, вызывает увеличение глубины проплавления основного металла. Кроме того, фторид кальция интенсивно взаимодействует с окислами и водяным паром, активно удаляет влагу из зоны сварки, благодаря чему защищает металл шва от насыщения кислородом и водородом. Введение во флюс хлорида калия повышает технологические свойства флюса, его жидкотекучесть, растекаемость и смачивающую способность. Введение во флюс борного ангидрида, обладающего повышенной химической активностью и взаимодействующего при повышенных температурах с поверхностью свариваемых кромок, способствует нейтрализации вредного влияния находящихся на них окислов и предупреждает образование пор.
Количественное соотношение компонентов, входящих в состав флюса, установлено экспериментально.
Исследования по влиянию флюсов на глубину проплавления проводили путем наплавки (проплавления) на установке КАТ при аргонодуговой сварке неплавящимся электродом пластин из сплава марки МНЖ5-1 толщиной 5 мм. Линейная скорость сварки составляла 6 м/ч, ток сварки - 150 А.
Исследования по влиянию флюсов на порообразование проводили путем сварки стыков труб 55×2,5 мм из сплава марки МНЖ5-1. Сварка стыков труб выполнялась на токе 110 А. Оценку пористости в швах выполняли при радиографическом контроле по бальной системе (балл 3 - количество пор на 100 мм сварного шва: не более 5 шт. при суммарной предельной длине всех допустимых дефектов не более 4,5 мм; балл 2 - не более 8 шт. при суммарной предельной длине всех допустимых дефектов не более 6,0 мм; балл 1 - более 8 шт. или суммарная предельная длина всех допустимых дефектов более 6,0 мм. Качество швов считается удовлетворительным при их оценке баллами 3 и 2).
Было исследовано 5 составов флюса, из них: 4 состава с различным содержанием компонентов предлагаемого флюса, в том числе 2 состава, соответствующие предлагаемому изобретению ( № № 2 и 3), 2 состава с более высоким и более низким содержанием компонентов, чем в предлагаемом флюсе ( № № 1 и 4), 1 состав флюса по прототипу ( № 5).
Для оценки влияния состава флюса на глубину проплавления основного металла на каждый его состав производилась наплавка пяти валиков. Для оценки влияния состава флюса на качество швов на каждый состав флюса выполняли сварку десяти стыков. Результаты оценки влияния флюсов на пористость и глубину проплавления приведены в таблице.
Из приведенной таблицы видно, что при сварке 10 стыков труб из медно-никелевого сплава с флюсом по прототипу процент стыков с недопустимыми дефектами составляет 20%. При сварке по предложенному варианту стыки с недопустимыми дефектами отсутствуют, а количество стыков с наименьшим количеством дефектов, оцененных баллом 3, составляет по 9 из 10, а при сварке по прототипу - 4 из 10.
Глубина проплавления при сварке с флюсом по предлагаемому варианту составляет 4,0 мм, а при сварке с флюсом по прототипу - 3,0 мм.
Приведенные в таблице результаты подтверждают правильность технического решения и выбранных интервалов содержания компонентов во флюсе.
Экономический эффект от предложенного изобретения обеспечивается за счет повышения качества швов (отсутствие необходимости вырубки дефектного металла и повторной заварки) и увеличения глубины проплавления основного металла при сварке (увеличения производительности труда при сварке).
Сварочные флюсы классификация и особенности
При электродуговой или газовой сварке в условиях высоких температур значительно увеличивается химическая активность обрабатываемой зоны. Металл усиленно окисляется под воздействием атмосферного воздуха, в результате шлаки и окислы попадают в него, снижая интенсивность металлургических процессов и в итоге ухудшая качество сварного шва. Для предотвращения этих процессов необходима защитная газовая или жидкая среда, которая изолирует зону сварки. Ее и создают флюсы — неметаллические композитные порошковые компоненты.
Таким образом, назначение флюсов при сварке — изоляция сварочной ванны от атмосферного воздуха, защита наплавляемого металла от интенсивных окислительных процессов, стабильное горение сварочной дуги и получение сварного шва необходимого качества.
Для чего нужен флюс при сварке
Использование флюсов обеспечивает следующие преимущества при сварке.
- Как при электродуговой, так и при газовой сварке флюс сварочный обеспечивает более интенсивное расплавление металла — (соответственно при больших токах или высокой концентрации кислорода). Благодаря этому нет необходимости заблаговременно разделывать кромки будущего сварного шва.
- В зоне шва и на прилегающих к нему поверхностях удается избежать угара металла — его потерь на окисление и испарение.
- Горение дуги имеет более высокую стабильность, что особенно важно при сложных конфигурациях шва
- Снижаются потери энергии источника тока на нагрев металла, соответственно увеличивается его КПД.
- Оптимизируется расход присадочного материала.
- Более удобное выполнение работ для сварщика, потому что флюс экранирует некоторую часть пламени дуги.
Условия использования сварочных флюсов
Задача флюса — стабилизация металлургических процессов при сохранении необходимой производительности электродов. Для этого в процессе сварки следует соблюдать определенные условия.
- Флюс не должен вступать в химическую реакцию с металлом стержня и основным металлом.
- Зона сварной ванны должна оставаться изолированной на протяжении всего сварочного процесса.
Остатки флюса, связанные со шлаковой коркой в результате сварки, по завершении работ должны легко удаляться. При этом до 80% материла после очистки можно использовать заново.
Недостатки
Условных минусов в использовании сварочных флюсов немного.
- Высокая стоимость, которая примерно сопоставима с ценой на сварочную проволоку.
- Yевозможность сразу осмотреть сварной шов. В силу этого, особенно в конструкциях сложной формы, место сварки предварительно тщательно подготавливается.
Как работают флюсы
- Перед сваркой на места соединений наносится толстый (40-60 мм) слой флюса.
- Электрод вводится в зону сварки, происходит поджиг дуги.
- Под воздействием высоких температур (до 6000 °C) флюс с его низкой плотностью быстро плавится в газовом пузыре, изолируя сверху сварную ванну, перекрывая к ней доступ газовых, водяных паров и других химических веществ.
- Имея высокое поверхностное натяжение, таким же образом расплав флюса предотвращает интенсивное разбрызгивание металла.
- Это позволяет значительно увеличить ток дуги (до 1000-2000 Ампер) без серьезных потер материала электрода и с сохранением хорошего качества шва.
- Под воздействием флюса в зоне дуги происходит концентрация тепловой мощности — в результате плавление металла происходит быстрее.
- При этом металлом заполняются все стыки, независимо от состояния кромок.
- Изменяется материальный баланс сварного шва — 60-65% процентов в нем составляет металл свариваемых деталей, и только остальное — это металл сварочного электрода.
Сварочные флюсы - классификация
Классификация флюсов чрезвычайно широка. Их различают по внешнему виду и физическому состоянию, химическому составу, способу получения, назначению. Так, например, для наплавки или дуговой сварки, как правило, используются гранулированные или порошковые флюсы с определенными показателями электропроводности, а для газовой — газы, порошки, пасты.
По способу получения композитов
Различают флюсы плавленые и неплавленые.
Флюс сварочный плавленый широко используют не только при сварке, но при наплавке. Он демонстрирует высокую эффективность в случаях, когда поверхность металла сварного шва путем добавления дополнительных химических элементов должна получить более высокие технические характеристики — например, повышенную стойкость к коррозии или очень ровный и гладкий шов.
Наплавка под флюсом
Получают плавленые флюсы следующим способом: компоненты размалывают, смешивают, затем расплавляют в пламенных или электропечах при полном отсутствии кислорода. Далее нагретые частицы пропускаются через непрерывный поток воды, затвердевая и превращаясь таким образом в гранулят. Размер частиц различен — чем тоньше сварочный пруток, тем меньше должны быть и гранулы.
Неплавленые флюсы (керамические) для сварки изготавливаются путем перемешивания измельченных частиц шихты из ферросплавов, минералов, шлакообразующих без последующего плавления. Частицы смешиваются со стеклом и далее спекаются.
В ряду их преимуществ:
- низкий расход,
- возможность многократного использования,
- высокое качество получаемого шва.
Пример - керамический сварочный флюс марки UF (UF-01, UF-02, UF-03) который используется в энергетике и гражданском строительстве для сварки металлоконструкций из низколегированных сталей повышенной прочности.
Химический состав флюсов для сварки
Химический состав — важная составляющая в характеристике флюсов. Материал должен быть химически инертен в условиях очень высоких температур. Помимо этого, он должен обеспечивать эффективную диффузию отдельных элементов (например, легирующих) в металл шва.
Наибольшую массовую долю (от 35…80% от общего объема) в сварочном флюсе обычно (но не во всех) составляет диоксид кремния (кремнезём) — кислотный оксид, бесцветный прозрачный кристаллический минерал. Кремний препятствует процессу образования углерода, тем самым снижая риски появления трещин и пор в металле шва.
Значительную часть составляет марганец. Как активный раскислитель, этот компонент флюсов для сварки снижает образование окислов в зоне сварочной ванны, вступая в реакцию вначале с кислородом в окислах железа, затем и с оксидом кремния. Результат сложной реакции — оксид марганца, нерастворяемый в стали и впоследствии легко удаляемый. Кроме того, марганец реагирует с вредной для металла шва серой — он связывается с ней в сульфид, который затем также удаляется с поверхности шва.
Также в ряду химических элементов флюсов — легирующие добавки — помимо кремния и марганца это молибден, хром, титан, вольфрам, ванадий и другие. Из задача — восстановить первичный химический состав металла, а в ряде случаев — путем легирования восполнить собой выгоревшие основные примеси стали и обеспечить металлу шва дополнительные специальные свойства. Обычно во флюсе они представлены соединениями с железом — ферросплавами (феррохром и т. д.).
Виды флюсов для сварки по назначению
От назначения сварочных флюсов напрямую зависит их выбор по химическому составу.
- Для сварки низкоуглеродистых сталей применяются флюсы с большим содержанием кремния и марганца в сочетании с проволокой из низкоуглеродистой стали без легирующих добавок. Второй вариант — малая доля марганца (или вообще его отсутствие) во флюсе, но легирующие добавки присутствуют в стали сварочного прутка.
- Для сварки низколегированных сталей используются флюсы с высокой химической инертностью, — выше, чем для низкоуглеродистых сталей. Благодаря этому получают более пластичный сварной шов. Пример — флюс для сварки стали АН-46.
- Для сварки высоколегированных металлов применяются флюсы с минимальной химической активностью. Кремний, как и марганец, практически не используется — его заменяет флюорит (плавиковый шпат), благодаря которому образуются легко отделяемые легкоплавкие шлаки. Также в таких флюсах обычно содержатся оксид алюминия, негашеная известь.
- Для сварки активных металлов (таких, как титан) используют солевые флюсы — как правило, это хлоридные и фторидные соли щелочных металлов. Примесь кислорода в них полностью отсутствует, поскольку она снижает пластичность шва.
Назначение сварочного флюса - примеры
Флюсы для газовой сварки
Для сварки алюминия и других цветных металлов, чугуна, инструментальных сталей, отдельных марок тонколистовой стали используется защитная газовая атмосфера. Ее обеспечивают газообразные, пастообразные, а также порошковые флюсы. Они могут наносится:
- на кромки соединяемых деталей;
- напрямую в сварную ванну;
- на присадочный пруток.
В зависимости от физического состояния материала флюсы для сварки подают в рабочую зону по-разному. Некоторую сложность вызывают порошкообразные композиты — их необходимо равномерно и точно вносить в расплав, не позволяя потоку газа раздувать порошок. Составы в виде паст подают на участок соединения. Для подачи газообразных флюсов используют расходомеры — с их помощью газ дозированно подается в рабочую зону.
Электромагнитный расходомер
Важный момент: для газовой сварки флюс по составу подбирают в зависимости от образующихся в ходе сварки оксидов. Если они кислые, флюсы должны быть щелочными (основными), напротив, если щелочные оксиды — выбирают кислые флюсы.
Флюсы, применяемые при газовой сварке наиболее широко:
- медь, латунь, бронза — для их сварки используют кислые флюсы с включением борсодержащих соединений (борная кислота и т. д.) — например, такие марки, как МБ-2 или БМ-1;
- чугун — для его сварки обычно используются флюсы с включением различных соединений щелочных металлов — натрия и калия;
- алюминий — здесь используются составы с содержанием фторидов калия, лития и натрия, а также хлориды. В этом случае наиболее широко применяется сварочный флюс марки АФ-4А.
Флюсы для газовой сварки не используются для соединения деталей из низкоуглеродистых сталей, поскольку на поверхности расплавленного металла интенсивно скапливаются легкоплавкие оксиды железа.
Флюсы для автоматической сварки
Автоматическая и полуавтоматическая сварка наиболее широко применяется при работе с большими конструкциями. Благодаря высоким токам и флюсу возможно сваривание деталей значительной толщины, при этом — без предварительной разделки кромки. Области использования — сваривание труб, изготовление резервуаров, судостроение.
Для такого способа сварки характерно автоматическое поддержание стабильно горящей электродуги, необходимого количества флюса (с отсосом нерасплавившегося), а также непрерывное обновление расплавленного электрода. Чтобы поддерживать в сварочной зоне защитное газовое облако нужного состава, толщина слоя флюса должна быть 40-80 мм, ширина 50-100 мм. Марка флюса для автоматической сварки, как и для классической дуговой, также зависит от характеристик свариваемого металла. Сварка осуществляется в нижнем пространственном положении.
Выгодно купить флюс для сварки различных типов и марок вы можете в компании «Центр Метиз».
Флюс и сварочная проволока
Флюс - это особое вещество, в задачу которого входит защита сварочной ванны во время осуществления соединения изделий методом сварки. Флюс представляет собой гранулированное вещество, предотвращающее контактирование с окружающим воздухом.
В роли электрода при этом выступает сварочная проволока. Во время процесса соединения деталей она подается в горелку. Использование флюсов повышает интенсивность расплавления металла, обеспечивает стабильность горения дуги, уменьшает энергопотери. Расход присадочного материала становится меньше. После завершения работы остатки флюса, соединенные со шлаком, легко удаляются.
Присадочная проволока для сварки аргоном служит расходным материалом при проведении соединения деталей этим методом. Прутки для аргонодуговой сварки играют роль проводников между током и дугой.
Порошковая сварочная проволока применяется в тех случаях, когда предстоит монтаж сложных конструкций непростой конфигурации. Самозащитная сварочная проволока может использоваться без газового баллона, что служит большим преимуществом.
Сварочная проволока нержавеющая позволяет сохранять высокое значение антикоррозийных качеств при эксплуатации изделия. Нержавеющая проволока для сварки бывает нескольких разновидностей, которые различаются по точности, пластичности, типу обработки, способу изготовления.
Сварочная проволока для газовой сварки представляет собой холоднотянутый металлический стержень. Сварочная проволока для газовой сварки ацетиленом выполняет роль присадочного прутка.
Сварочный карандаш является одним из самых простых средств для соединения металлических изделий. Карандаш для сварки металла представляет собой тонкий цилиндр, внутри которого находится зажигательная смесь.
Флюс в металлургии играет большую роль, позволяющую получать хороший результат. В производстве чугуна с помощью домны отсутствует процесс сварки или пайки, поэтому флюсы в доменном производстве выполняют несколько иную роль.
Флюс для пайки медных труб применяется для защиты соединяемых изделий от окисления их поверхностей, изоляции места сварки и шва от кислорода. Свои преимущества имеет паста флюс для пайки меди.
Флюс ПВ 209 находит широкое применение при необходимости осуществлять пайку и сварку изделий из стали и меди. Флюс ПВ 209Х, хотя и имеет похожий химический состав, но и обладает некоторыми отличиями.
Сварочные флюсы создают защитную среду, которая изолирует от негативного влияния воздуха зону сварки. Флюс в сварке - это компоненты неметаллического характера, участвующие в процессе соединения изделий, и оказывающие на этот процесс положительное влияние.
Существует возможность изготовить флюс для пайки своими руками. Имеются рекомендации, как сделать флюс для пайки в домашних условиях. Также можно изготовить своими руками флюс пасту.
Флюс-паста для защиты корня шва StainFlux 0.5kg ESAB
Флюс StainFlux наносится на корень шва перед сваркой и обеспечивает защиту от окисления, которое происходит в течение сварки. StainFlux предназначен для использования при аргонодуговой сварке низколегированных и нержавеющих сталей с максимальным содержанием никеля 25 %. StainFlux не предназначен для замены защитного газа. StainFlux поставляется в порошковой форме и смешивается с денатурированным этанолом перед сваркой.
Stain Flux наносится на обратную сторону заготовки перед свариванием и защищает свариваемый металл от окисления в ходе сварки. Stain Flux разработан специально для TIG сварки низколегированных и высоколегированных сталей с содержанием никеля до 25%, но также может быть применен и при сварке другими методами. Stain Flux не может полностью заменить защитный газ. Stain Flux предпочтительнее применять там, где не может быть обеспечен поддув защитного газа. С помощью Stain Flux достигается гораздо более качественный результат, чем без защиты обратного валика, но не такой высокий как при использовании аргона, в качестве защитного газа, подаваемого с обратной стороны.
Результаты тестирования StainFlux (ASTM G48):
- Потеря массы металла при полной защите в среде аргона — 100% (за 100% принимаем потери массы при полной аргоновой защите)
- Потеря массы при использовании Stain Flux — 180% (значительно лучше, чем без защиты обратного валика)
- Потеря массы при отсутствии защиты обратного валика — 318%
Характеристики StainFlux:
Stain Flux поставляется в форме порошка, который следует смешать с денатурированным этанолом перед использованием. Отличительной особенностью продукта является способность устранять включения оксидов и предотвращать окисление вследствие термического нагрева во время сварки. Stain Flux может заменять защитный газ (особенно в случаях, когда конструктивные особенности изделия не позволяют обеспечить поддув аргона с обратной стороны, использовать специальные заглушки и керамические подкладки. Stain Flux также поддерживает сварочную ванну снизу и способствует равномерному отводу тепла. К тому же он химически очищает поверхность, тем самым позволяя избежать включений в сварочный шов.
Способ применения Stain Flux
- Смешайте Флюс в следующей пропорции: 500 г флюса с 210-250 г денатурированного этанола.
- Перемешивая, добавляйте 210-250г денатурированного этанола до тех пор, пока не получится плотная густая паста, кремообразной консистенции.
- Дайте пасте настояться несколько минут.
- Обезжирьте поверхность стали органическим растворителем.
- Нанесите пасту с помощью кисти на обратную сторону шва. Паста должна быть нанесена ровным слоем на поверхности, которые должны быть сварены, с учетом предполагаемого направления сварки.
- Сваривайте.
Области применения флюса для защиты корня шва:
При контактная сварке:
Stain Flux наносится на свариваемые поверхности перед сборкой. Stain Flux выполняет функции очистки, предотвращая образование оксидов вследствие нагрева металла вблизи зоны сварки. Этот процесс исключает опасность загрязнения сварочного шва и облегчает расплавление металла в точке контакта, что в итоге облегчает весь процесс контактной сварки.
Служит защитной прокладкой во время сварки:
Stain Flux выполняет несколько важных функций во время сварки, а именно:
- Защита сварочной ванны от окисления
- Сварочный валик может быть сформирован с высоким усилением
- Стабильная скорость сварки
- Поддерживающий эффект
- Высокие показатели смачивания позволяют отводить избыточное тепло от зоны сварки и таким образом предотвращает неконтролируемое проплавление и прожигание металла.
- Отверстия малых диаметров защищены равномерным нагревом и отсутствием включений.
Сварное соединение внахлест:
Применение Stain Flux при сварке внахлест предотвращает неконтролируемое проплавление. Равномерный нагрев и низкая скорость охлаждения предотвращают риск охрупчивания и делают сварное соединение более крепким, а процесс сварки более управляемым.
Сварка пластин различной толщины с V-образной разделкой:
Stain Flux предотвращает прожигание, когда свариваются вместе толстые и тонкие листы металла. Так как нагрев распределяется равномерно, то исключается образование зон с критической температурой в локальной области. Проплавление также становится более равномерным и единообразным.
Сварка пластин с V-образной разделкой с одной стороны:
Stain Flux увеличивает равномерность проплавления на достаточную глубину. Соединения, которые нуждались в сваривании с двух сторон, при использовании Stain Flux могут быть сварены с одной стороны.
Сварка пластин с V-образной разделкой с двух сторон:
Когда свариваются пластины большой толщины, или когда необходимо обеспечить высокое качество при сварке с двух сторон, Stain Flux применяют перед укладкой первого сварного шва.Таким образом защищенная околошовная зона не нуждается в зачистке и шлифовке при укладке следующих сварных швов. Рекомендуется произвести очистку металлической щеткой после второго прохода для удаления шлака.
Сварка низколегированных и высоколегированных сталей (композитных сталей):
Когда Stain Flux используется при сварке низколегированных и высоколегированных сталей, желательно предварительно снять фаску как со стороны низколегированной, так и со стороны высоколегированной стали. Это исключает необходимость удаления шлака и шлифовки. Когда Stain Flux используется с таким сочетанием сталей, то рекомендуется в первую очередь наносить его на высоколегированную сталь, а сварку начинать с низколегированной.
Читайте также: