Электроды для сварки стали 40хн
К сварке деталей из различных сплавов нужно подходить индивидуально. Сталь 45 относится к группе ограниченно свариваемых (ГОСТ 29273-92), это значит, что в процессе работы с ней требуется соблюдать особые правила. Нарушение технологии может привести к образованию трещин в зоне сварки и последующему разрушению конструкции.
Описание стали 45
Конструкционная сталь 45 применяется в промышленности: станкостроении, на производстве автомобилей и прочей техники, инструментов. Отличается хорошими характеристиками: высокой ударной прочностью, пластичностью, устойчивостью к различным нагрузкам – статическим и динамическим. Стандарт проката: ГОСТ 1050-88. Группа свариваемости: третья. Применяемые сплавы-заменители: 40Х, 50, 50Г2. Отличается также следующими характеристиками:
- плотность – 4850 кг/куб. м;
- ударная вязкость – 66 кДж/ кв. м;
- твердость до термической обработки – 20-22 ед. по Роквеллу.
Число 45 указывает на повышенное содержание углерода в сплаве – 0,45%. Это осложняет процесс сварки деталей: может приводить к появлению горячих (во время нагрева) и холодных (после остывания) трещин.
Допустимое содержание элементов:
- США – 1045;
- Япония – S45C, SWRCH45K;
- Европа – 1.1191, 2C45, C45, C45E, C45EC, C46.
Чаще всего поставляется в виде листов или полос разной толщины. Рекомендуется разрезать при помощи плазменной резки, что позволит избежать перегрева кромок, или механическими способами.
Технология сварки
До проведения работ необходимо прогреть детали до 150-200 градусов по Цельсию. После этого выполняются сварочные работы. Затем готовое изделие должно медленно остывать. Такой способ уменьшает вероятность образования трещин.
Сварочные работы производятся с применением покрытых электродов Есаб ОК 68.81, УОНИ 13/55, Lb-52U, при помощи полуавтоматической сварки в углекислом газе проволокой ESAB OK Autrod 312 и ESAB OK Autrod 16.95 или в среде аргона.
По окончании работы рекомендуется поместить деталь в печь и прогревать при температуре 400-450 градусов по Цельсию (процесс нормализации) около 1 часа.
После полного остывания изделия необходимо выполнить испытания в зависимости от назначения конструкции: на разрыв, кручение, ударные нагрузки или изгиб. Если создаются ответственные металлоконструкции, то для проверки рекомендуется обращаться в специализированные организации, которые проводят тесты готовых соединений.
Ручная дуговая сварка осуществляется в соответствии с ГОСТ 5264-80, где указаны типы применяемых соединений и конструктивные элементы с информацией об их размерах.
Сварка стали 45. Практика
Если работы проводятся вне оборудованных цехов, то обеспечить неукоснительное соблюдение технологии сложно. В этом случае можно использовать следующий метод:
- Подготовка деталей к сварке: зачистка, формирование кромок под сварочные швы.
- Прогрев деталей при помощи газового (пропанового, ацетиленового) резака или горелки. Для определения температуры следует использовать инфракрасный пирометр, также применяют термокарандаши, которые начинают плавиться при достижении определенных значений.
- Сварка производится максимально быстро, если необходимо, то в процессе можно дополнительно подогревать детали.
- По окончании работ изделие требуется поместить в емкость с песком, чтобы процесс остывания происходил как можно медленнее.
- Если деталь слишком крупная и ее невозможно убрать в песок, то можно подогревать зону сварки резаком или горелкой, постепенно уменьшая температуру.
В ряде случаев допускается использовать «холодный» метод сварки. Для этого рекомендуется использовать полуавтомат или аргон, так как зона нагрева в этом случае будет меньше, чем при применении покрытых электродов.
Сварка производится так:
- элементы изделия собираются на небольшие прихватки – 5-7 мм с шагом около 150 мм;
- обваривать конструкцию следует небольшими швами, важно не давать металлу сильно нагреваться;
- по возможности следует класть швы вразнобой с разных сторон изделия.
Важно: такой метод нельзя использовать при сварке ответственных конструкций.
При использовании холодного способа требуется провести тщательный визуальный осмотр швов и проверку прочности соединений, поскольку вероятность появления трещин высока.
Проверка сварных соединений
На производстве используют эффективные методы контроля: просвечивание швов рентгеном или ультразвуком. Это позволяет обнаружить большинство дефектов: непровары, трещины, свищи.
Если есть возможность, то варят тестовые образцы из стали 45, разрезают швы болгаркой и осматривают их визуально. Внутри не должно быть:
- пор – мелких пузырьков, которые значительно ухудшают свойства шва. Допускается наличие незначительного количества пор;
- трещин – в процессе эксплуатации конструкции они могут увеличится и вызвать разрушение соединения;
- свищей – также влияют на прочность шва.
В случае когда изделие предназначено для работы под нагрузками, рекомендуется проверять соединения механическими способами. Для этого деталь подвергают нагрузкам. Например, если шов должен выдерживать нагрузку 10 тонн, следует проводить проверку с весом на 30% больше – 13 тонн.
Исправление дефектов
После сварки требуется удалить шлаковую корку (если использовались покрытые электроды), обработать деталь металлической щеткой, чтобы соединение было хорошо видно. Ряд проблем можно выявить при осмотре сварных швов, появление внутренних «холодных» трещин часто определяется на слух: громкие щелчки говорят о том, что внутри появились дефекты.
При выявлении трещин и других изъянов требуется полностью вырезать проблемные участки и положить новые швы. Заваривать их без разделки не допускается. Рекомендуется предварительно прогревать зону сварки, после работы деталь должна медленно остыть.
Справка: наплывы металла в зоне сварки также считаются дефектами, удаляются при помощи болгарки с зачистным кругом.
Как получить надежное соединение. Сварка с другими металлами
Поскольку сталь 45 при сварке подвержена появлению трещин, рекомендуется либо проводить тщательную проверку швов, либо дублировать соединения при помощи болтов, шпилек или заклепок.
Если изделие предполагается сваривать с иными сплавами, то рекомендуется создать образец. После анализа результата можно разработать оптимальную технологию.
Какой сваркой варить сталь 40Х: к какой сварной группе она относиться и почему требует особого подхода?
Сталь 40Х – это конструкционная углеродистая легированная сталь. Свои качества сталь 40Х приобретает после закалки и последующего отпуска.
Особенности и требования, предъявляемые к стали 40Х
Вся выпускаемая металлопродукция, и сталь 40Х в том числе, должна соответствовать требованиям государственных стандартов.
ГОСТ 4543 от 2016 года определяет состав и требуемые эксплуатационные качества материала.
Для каждого вида изделий из этой стали существуют свои ГОСТы, которые регламентируют особенности всего выпускаемого ассортимента.
Сталепрокатная промышленность выпускает из марки стали 40Х три вида заготовок: круг, шестигранник и лист.
Свойства и состав
Требуемые свойства этот сорт стали имеет, благодаря своему химическому составу:
Наряду с плюсами у этой марки есть и недостатки, которые нужно знать и учитывать при работе с изделиями из нее:
- хрупкость, восприимчивость к ударной нагрузке;
- плохая свариваемость.
По степени свариваемости структуры сталь 40Х относится к 4 группе.
Применяется для изготовления:
- валов – шестерен редукторов;
- зубчатых колес редукторов;
- листовой металл применяется для штамповок;
- листами обшиваются каркасные конструкции; : отопительные системы и транспортировка жидкостей;
Также используется в сфере машиностроения, транспорта, при строительстве железнодорожных мостов и т. д.
Способы сварки стали 40Х. Чему отдать предпочтение?
Основной проблемой при сварке такой стали являются появление трещин и внутренних дефектов.
Сваривать данный металл можно тремя видами сварки:
Для снижения возможных появлений трещин обязательно выполняются следующее шаги:
- Предварительная термообработка.
- Подогрев в процессе сварки.
- При контактно-точечной сварке также выполняется термообработка в заключение.
Электродуговая сварка
Сварочные швы выполняются за счет горения электрической дуги.
ЭДС и ее сущность:
- зажигание дуги – касанием электрода о металл детали;
- поддержание длины дуги во время работы;
- перемещение электрода вдоль сварного шва.
Сварочное соединение деталей из стали 40Х ведется постоянным током обратной полярности, когда соединение электрода с «плюсом», а изделия – с «минусом». Такое подключение клемм обеспечивает быстрый и значительный нагрев самой зоны соединения, а деталь практически не нагревается.
Выделяется три варианта электродуговой сварки:
- . Это самый простой и доступный метод для домашнего мастера или в небольшой мастерской, где не требуется большой ответственности по качеству. Он не требует специальной подготовки. Минимальный набор оборудования: специальный электрод для легированных сталей Э85 УОНИ – 13/85, имеющий покрытие с пониженным содержанием водорода; сварочные трансформаторы и выпрямители либо сварочные инверторы.
- Электродуговая с аргоном, являющаяся самым применяемым и качественным способом сваривания стали 40Х. Для защиты места сварки от газов, содержащихся в воздухе, применяется защита аргоном. Аргоновая дуговая сварка – это промышленный вариант соединения легированной стали. Может быть полуавтоматической и автоматической. Присадочный материал применяется той же марки, что и свариваемый металл.
- Газовая сварка с помощью ацетилена. Это более дешевый и простой способ, чем аргоновая сварка, но менее надежный. Он не подходит для толстых листов, и это усложняет работу.
Электрошлаковая сварка
Это бездуговой метод. Источником тепла служит флюс, находящийся между свариваемыми изделиями и нагреваемый проходящим через него электротоком.
Шлак-флюс защищает зону кристаллизации от окисления и насыщения водородом. Этот метод защищает соединяемые детали от образования трещин.
ЭШС выполняется снизу вверх, чаще при вертикальном расположении свариваемых деталей и с зазором между ними.
Контактно-точечная сварка
При такой сварке детали зажимаются в электродах сварочной машины или специальных сварочных клещах. Проходя между электродами, электрический ток разогревает металл деталей в месте их соединения до температуры плавления.
Далее ток отключается и происходит сильное сжатие электродов с деталями – проковка. В таком положении детали остывают и получается сварное соединение.
Электроды для КТС изготавливаются из высокоэлектропроводных сплавов, чтобы сопротивление контакта электрод-деталь было минимальным.
В месте соединения деталей сопротивление наибольшее и нагрев протекающими токами происходит именно там.
Разогрев и расплавление стали под воздействием тока приводит к образованию литого ядра сварной точки. Это и есть принцип работы КТС.
Технология сварного соединения изделий
Шаг 1. Подготовка металлических деталей:
- подгонка по размеру, по форме;
- зачистка металла от окисления и ржавчины.
Шаг 2. Подготовка кромок металла под сварку. Этот пункт особенно актуален при работе с толстыми заготовками (более 3 мм):
- ширина зазора 1-2 мм;
- угол разделки 45-60 0 ;
- погон стыков у деталей разной толщины.
Шаг 3. Подготовка инструментов и оборудования:
- требование к материалу сварочной проволоки и электрода: состав их должен как можно ближе соответствовать свариваемой марке стали;
- для соединения сварочным методом стали 40Х удобно пользоваться техническими таблицами по выставлению величины тока в зависимости от толщины свариваемых поверхностей и размера электрода.
Шаг 4. Прогрев деталей до начала сваривания.
Сталь 40Х является чувствительной к перепадам температур и образованию трещин из-за этого. Прогревать деталь нужно газовой горелкой перед любым видом сварки.
Шаг 5. Точечно прихватить соединяемые части.
Чтобы избежать деформации или сдвига свариваемых деталей, практично сделать точечный прихват по всей длине планируемого сварного шва.
Шаг 6. Сварочный процесс выбранным методом.
Шаг 7. Прогрев сваренных деталей.
После сваривания прогрев нужен для снятия напряжения в деталях и выпаривания остатков водорода. Эта процедура особенно важна при контактно-точечной сварке.
Высокопрочные стали и особенности их сварки
Стали с пределом прочности свыше 1500 МПа называются высокопрочными. Такой предел достигается подбором химического состава и наиболее подходящей термической обработкой. Данный уровень прочности может образовываться в среднеуглеродистых легированных сталях (40ХН2МА, 30ХГСН2А) путем использования закалки с низким отпуском (при 200…250оС). Легирование таких сталей W, Mo, V затрудняет разупрочняющие процессы, что снижает порог хладоломкости и повышает сопротивление хрупкому разрушению. Как варить металл, если перед вами высокопрочная сталь? Сварка высокопрочных сталей отличается использованием некоторых дополнительных технологических приемов (сварка каскадом, горкой, секциями, предварительный подогрев, применение мягкой прослойки и других).
Закаленные стали (структура)
Изотермическая закалка среднеуглеродистых легированных сталей придает им немного меньшую прочность, но большую вязкость и пластичность. Поэтому они более надежны в эксплуатации, чем низкоотпущенные и закаленные. Низкоотпущенные и закаленные среднеуглеродистые стали с высоким уровнем прочности обладают повышенной восприимчивостью к концентраторам напряжения, склонностью к хрупкому разрушению. Из-за этого их рекомендуют использовать для работы, связанной с плавным нагружением.
К высокопрочным сталям можно отнести так называемые рессорные (пружинные) стали. Они содержат 0,5…0,75% С и дополнительно легируются другими элементами. Термообработка легированных рессорных сталей (закалка 850…880оС, отпуск 380…550оС) обеспечивает получение высокой прочности и текучести. Может применяться изотермическая закалка. Сварка рессорной стали выполняется с обязательной предварительной термообработкой, с подогревом в процессе сварочных работ и дальнейшей термической обработкой.
Мартенситно-стареющие стали (04Х11Н9М2Д2ТЮ, 03Н18К9М5Т) также относятся к высокопрочным сталям. Они превосходят среднеуглеродистые легированные стали по конструкционной прочности и технологичности. Для таких сталей характерны высокое сопротивление хрупкому разрушению, низкий порог хладоломкости и малая чувствительность к надрезам при прочности около 2000 МПа. Мартенситно-стареющие стали являются безуглеродистыми сплавами железа с никелем и дополнительно легированы молибденом, кобальтом, алюминием, хромом, титаном и другими элементами. Эти стали имеют высокую конструкционную прочность в диапазоне температур от криогенных до 500оС и применяются в изготовлении стволов артиллерийского и стрелкового оружия, корпусов ракетных двигателей, зубчатых колес, шпинделей и так далее.
Свариваемость высокопрочных сплавов
Для изготовления тяжело нагруженных машиностроительных изделий,сосудов высокого давления и других ответственных конструкций используют среднеуглеродистые высокопрочные стали, которые после соответствующей термообработки обладают прочностью 1000…2000 МПа при достаточно высоком уровне пластичности. Необходимый уровень прочности при сохранении высокой пластичности достигается комплексным легированием стали различными элементами, главные из которых никель, хром, молибден и другие. Эти элементы упрочняют феррит и повышают прокаливаемость стали. Подогрев изделия при сварочных работах не снижает скорости охлаждения металла до значений, меньших критических, и способствует росту зерна, что приводит к возникновению холодных трещин и вызывает уменьшение деформационной способности.
Поэтому такие металлы сваривают без предварительного подогрева, но с применением специальных приемов сварочных работ (блоками, каскадом, короткими или средней длины участками). Также применяют специальные устройства, которые подогревают выполненный шов и тем самым увеличивающие время пребывания его в определенном температурном интервале. Для увеличения времени нахождения металла околошовной зоны при температуре выше точки образования мартенситной структуры накладывают так называемый отжигающий валик, границы которого находятся в пределах металла шва.
Во избежание трещин при охлаждении сварного соединения, необходимо использовать такие сварочные материалы, которые обеспечили бы получение металла шва, обладающего большой деформационной способностью. Это достигается, когда наплавленный металл и металл шва будут менее легированы, чем свариваемая сталь. При этом шов будет представлять как бы мягкую прослойку с временным сопротивлением, но с повышенной деформационной способностью. Чтобы обеспечивалась технологическая прочность сварных швов, выполненных низколегированными сварочными материалами, углерод в шве должен содержаться в количестве не более 0,15%.
Когда производится сварка закаленной стали, то после прохождения сварочной дуги на зону сварного соединения рекомендуется подавать охладитель. Это делается для уменьшения степени разупрочнения околошовной зоны. В качестве охладителя может служить душевая вода, сжатый воздух или паровоздушная смесь — в зависимости от состава свариваемого материала. Такое охлаждение снижает время нахождения металла в зоне высоких температур.
Художественная ковка — это настоящее искусство. Более подробную информацию об этом занимательном занятии читайте в нашей статье.
Технология сварочных работ по соединению высокопрочных сталей
При сварке среднелегированных глубокопрокаливающихся высокопрочных сталей нужно подбирать такие сварочные материалы, которые обеспечат получение швов с высокой деформационной способностью при минимальном количестве водорода в сварочной ванне. Это достигается применением низколегированных сварочных электродов, которые не содержат в покрытии органические вещества и подвергнутых высокотемпературной прокалке (низководородистые электроды). При этом нужно исключить другие источники насыщения сварочной ванны водородом в ходе сварки (ржавчина, влага и другие). Высокая технологическая прочность получается при следующем содержании легирующих элементов в металле шва: С — не более 0,15%; Si — не более 0,5%; Ni — не более 2,5%; Mn — не более 1,5%; Cr — не более 1,5%; V — не более 0,5%; Mo — не более 1,0%.
Повышение свойств шва до нужного уровня возможно путем легирования металла шва за счет основного металла. Необходимые прочностные характеристики металла шва достигаются легированием его элементами, которые повышают прочность, но не снижают его ударную вязкость и деформационную способность. Для сварки среднеуглеродистых высокопрочных сталей нужно выбирать сварочные материалы, содержащие легирующих элементов меньше, чем основной металл.
Ручная дуговая сварка покрытыми электродами
Для сварки среднелегированных высокопрочных сталей используют электроды типов Э-13Х25Н18, Э-08Х21Н10Г6 и других по ГОСТ 10052-75 и ГОСТ 9467-75. Если сталь перед сваркой подвергалась термической обработке на высокую прочность (закалка с отпуском или нормализация), а после сварки — отпуску для снятия напряжений и выравнивания механических свойств сварного соединения, то критерием определения температуры предварительного подогрева будет такая скорость охлаждения, при которой происходила бы частичная закалка околошовной зоны. При этом гарантируется отсутствие трещин в процессе сварки и до проведения дальнейшей термообработки.
Для улучшения свариваемости закаленных металлов необходимы специальные электроды
В том случае когда термообработка сварного изделия не может быть сделана, например, из-за крупных габаритов, на кромки детали, подлежащие сварке, наплавляют незакаливающийся слой металла аустенитными или низкоуглеродистыми электродами. Толщина этого слоя должна быть такой, чтобы температура стали под слоем в процессе сварки не превышала бы температуру отпуска при термообработке деталей с наплавленными кромками. Такие детали сваривают аустенитными или низкоуглеродистыми и низководородистыми электродами без подогрева и дальнейшей термообработки. Режим сварки принимают согласно рекомендациям для аустенитных электродов.
Сварочные работы в защитных газах
Высокое качество сварных соединений из среднеуглеродистых высокопрочных сталей толщиной 3…5 мм достигается при аргонодуговой сварке неплавящимся электродом. Присадочный материал для дуговой сварки в защитных газах следует выбирать в зависимости от газа, в среде которого происходит сварка. Первый слой выполняют без присадки с полным проваром кромок стыка, второй — с поперечными низкочастотными колебаниями электрода и механической подачи присадочной проволоки. Возможно и выполнение третьего слоя с поперечными колебаниями электрода без присадочной проволоки на небольшом режиме для обеспечения постепенного перехода от шва к основному металлу.
Для повышения проплавляющей способности дуги при аргонодуговой сварке применяют активирующие флюсы, которые позволяют исключить разделку кромок при толщинах 8…10 мм. Также используется флюс, представляющий собой смесь компонентов (TiO2, SiO2, NaF, Cr2O3). Такой метод с активирующим флюсом эффективен при механизированных способах для получения равномерной глубины проплавления. Неплавящийся электрод при таком способе сварки выбирают из наиболее стойких в эксплуатации марок вольфрама.
Современная аргоновая горелка
При выполнении сварки среднелегированных высокопрочных сталей в защитных газах (в основном инертных или их смесях с активными) применяют низкоуглеродистые легированные и аустенитные высоколегированные проволоки, например, Св-08Х20Н9Г7ТТ, Св-03ХГН3МД, Св-10ХГСН2МТ, Св-10Х16Н25-АМ6, Св-08Х21Н10Г6. Однако равнопрочности металла шва и свариваемой стали получить не удается. В данном случае можно обеспечить равнопрочность за счет эффекта контактного упрочнения мягкого металла шва. Этот эффект может быть реализован при использовании так называемой щелевой разделки, которая представляет собой стыковые соединения с узким зазором.
Сварка под флюсом
Конструктивные элементы подготовки кромок для автоматической и полуавтоматической сварки под флюсом выполняют в соответствии с ГОСТ 8713-79. Однако в диапазоне толщин, для которого возможна сварка без разделки и со скосом кромок, последней следует отдать предпочтение. При механизированной сварке под флюсом необходимы подготовка кромок, техника и режимы сварки, при которых доля основного металла в шве была бы минимальной. Но такая методика повышает вероятность образования в сварочных швах горячих трещин.
Выбор флюса осуществляется в зависимости от марки электродной проволоки. При использовании низкоуглеродистой проволоки сварку выполняют под кислыми высоко- и среднемарганцовистыми флюсами. При использовании низколегированных проволок лучшие результаты обеспечивает применение низкокремнистых и низкомарганцовистых флюсов. Сварку среднелегированных высокопрочных сталей аустенитной проволокой марок Св-08Х21Н10Г6 или Св-08Х20Н9Г7Т производят только под безокислительными или слабо окислительными основными флюсами.
Схема процесса сварочных работ
Данный вид сварочных работ рационально применять для соединения толстолистовых конструкций из среднелегированных высокопрочных сталей. Основные типы и конструктивные элементы сварных соединений и швов при этом должны соответствовать требованиям ГОСТ 15164-78. Электродные проволоки при сварке плавящимся мундштуком и проволочными электродами выбирают из числа групп легированных или высоколегированных проволок по ГОСТ 2246-70. Для предупреждения трещин в околошовной зоне при сварке жестко закрепленных элементов необходимо применять предварительный подогрев до 150…200оС.
Низкая скорость охлаждения околошовной зоны при электрошлаковой сварке приводит к длительному пребыванию ее в зоне высоких температур, вызывающих рост зерна и охрупчивание металла. В связи с этим после электрошлаковой сварки среднелегированных высокопрочных сталей необходимо выполнить высокотемпературную термообработку сварных изделий для восстановления механических свойств до нужного уровня. Время с момента окончания сварки до проведения термообработки должно регламентироваться.
Сварка стали 40Х
Сталь 40х является конструкционным легированным металлом, который широко используется в промышленности. Технические характеристики и состав материала определяется по ГОСТ 453-71. Содержание углерода в ней должно быть, примерно, 0,4%, а хрома – 1%. Сварка стали 40Х является достаточно сложным процессом, так как материал относится к трудно свариваемым металлам. Для решения данной проблемы используют специальные технологии и методы.
Основная проблема заключается в том, что при сваривании получается большая вероятность появления трещин, раковин и прочих дефектов. Но характеристики самого металла являются весьма полезными при создании металлоконструкций, так что приходится подыскивать подходящие способы как варить сталь 40х.
Способы сварки стали 40ХСамым качественным и распространенным способом сваривания этого сорта металла, является сварка стали 40х аргоном. Электродуговой аппарат обеспечивает достаточно высокое напряжение для плавления, а газ защищает от воздействия посторонних вещей, которые приводят к браку. В данном случае подбирается присадочный материал той же марки, что и заготовка. Также возможно варить газом с помощью ацетилена. Это более простой, но менее надежный метод. Он может не подойти для слишком толстых слоев листов, так что может потребоваться дополнительная подготовка металла под сварку. Наиболее простым способом, уступающим в надежности предыдущим, является обыкновенная ручная сварка специальными электродами.
Выбор способаДля домашнего применения, когда на изделие не будет возлагаться большая ответственность, применяют самый простой способ – дуговую сварку. Ведь это самый дешевый метод, который не требует особой подготовки. Для сварки стали 40х электроды требуются специально предназначенные для этого дела. В промышленности для ответственных объектов применяют электродуговую сварку с аргоном. Несмотря на высокую себестоимость, это один из самых надежных методов, который обеспечивает длительный срок службы конструкции. Чтобы сделать процесс более дешевым, можно использовать газовую сварку с помощью ацетилена. Результат будет очень схожим, а в плане создания потолочных и вертикальных швов еще и более удобным. Другие виды и способы сварки металла применяются достаточно редко.
Сварка стали 40Х аргоном
Вне зависимости от выбранного способа следует тщательно подготовить поверхность перед свариванием.»
Свариваемость стали 40Х и ее свойстваМеталл плохо сваривается. Если сам процесс плавления и образования сварочной ванны происходит еще относительно нормально, так как здесь проявляется лишь повышенная вязкость, но весь ряд проблем, которые возникают на шве после окончания, зачастую приводят к его негодности для эксплуатации. Сварка стали 40хн отлично проявляет ее свойства к отпускной хрупкости. Во время самой сварки, а также после нее могут появляться трещины и прочие дефекты, в том числе и деформации. Это возникает из-за резких перепадов температуры, которые вызваны электрической дугой, что особенно заметно, когда происходит сварка тонкого металла электродом. Также это получается при образовании напряжений, которые получаются из-за недостаточного обеспечения защиты. Таким образом, дополнительные действия нужны как перед сваркой, так и после нее.
Сварка стали 40Х
Выбор инструментаКритерий при выборе материала сварочной проволоки или электрода – ровно один. Их металл должен максимально соответствовать составу того, который идет в заготовках. Следует только обращать внимание на толщину, чтобы она соответствовала толщине деталей, так как глубина приваривания должен быть максимальной из-за сложностей в податливости данной марки стали. Более важным параметром является защита. Сварка стали 40х полуавтоматом должна поддерживаться средой защитного газа, а при ручной – на электродах должно быть покрытие, рассчитанное на работу с этой маркой стали. Тут подойдут электроды марки Э85, у которых имеется пониженное содержание водорода в покрытии, а также которые стойки к образованию трещин при работе со сложными металлами.
Режимы
Чтобы повысить качество соединения, следует использовать уже проверенные параметры, которые рассчитаны для каждой толщины заготовки и соответствующего положения шва. Это существенно облегчит процесс работы.
Сталь 40ХН: характеристики, ГОСТ и аналоги
Хромоникелевая легированная сталь 40ХН относится к классу конструкционных материалов, предназначенных для изготовления ответственных износостойких деталей, элементов и конструкций в машиностроении и строительстве. Наличие хрома и никеля в химическом составе сплава придает материалу антикоррозионные свойства и красивый серебристый цвет.
Кроме этого легирование металла обеспечивает повышенное сопротивление истиранию, но при этом сталь способна к пайке, штамповке и механической металлообработке. Прочность и стойкость к механическим воздействиям при относительно невысокой стоимости делают этот материал очень востребованным для нужд промышленности.
Химический состав стали
Маркировка 40ХН означает среднее количество углерода (C) менее одного процента, более 0,4% хрома (Cr) и 1,0% никеля (Ni). Точный химический состав регламентируется ГОСТ 4543-71 и должен содержать:
- никеля (Ni) 1,0-1,4%;
- марганца (Mn) 0,5-0,8%;
- хрома (Cr) 0,45-0,75%;
- углерода (C) 0,36-0,44%;
- кремния (Si) 0,17-0,37%;
- серы (S) и фосфора (P) не более 0,035%.
К отечественным аналогам этого сплава по химическому составу и механическим свойствам следует отнести марки сталей 45ХН, 50ХН, 30ХГВТ, 40ХНМ и 38ХГН.
Из зарубежных сортов марке 40ХН соответствует следующим маркировкам:
- 40CrNi – Китай;
- 3135 и 3140H – США;
- 36NiCr6 и 40NiCr6 – Германия;
- 35NC6 – Франция;
- SNC236 – Япония;
- 40CrNi12 – Румыния;
- 2530 – Швеция.
Свойства и состав зарубежных сталей не являются точным соответствием по составу, но в большинстве случаев аналогичны по физико-техническим характеристикам.
Сталь 40ХН конструкционная легированная
Заменитель
- Сталь 45ХН,
- Сталь 50ХН,
- Сталь 38ХГН,
- Сталь 40Х,
- Сталь 35ХГФ,
- Сталь 40ХНР,
- Сталь 40ХНМ,
- Сталь 30ХГВТ.
Аналоги
Расшифровка
Согласно ГОСТ 4543-2016 наименование марок стали состоит из цифр и буквенного обозначения химических элементов:
- Цифра 40 перед буквенным обозначением указывает среднюю массовую долю углерода (С) в стали в сотых долях процента, т.е. среднее содержание углерода в стали 0,40%.
- Буква Х указывает, что сталь легирована хромом, отсутствие цифры после буквы указывает, что содержание хрома в стали до 1,5%.
- Буква Н указывает, что сталь легирована никелем, отсутствие цифры после буквы указывает, что содержание никеля в стали до 1,5%.
Вид поставки
- Сортовой прокат, в том числе фасонный: ГОСТ 4543-71, ГОСТ 2590-88, ГОСТ 2591-88, ГОСТ 2879-88, ГОСТ 10702-78.
- Калиброванный пруток ГОСТ 4543-71, ГОСТ 7417-75, ГОСТ 8560-78, ГОСТ 10702-78.
- Шлифованный пруток и серебрянка ГОСТ 4543-71, ГОСТ 14955 — 77.
- Лист толстый ТУ 14-1-1930-77.
- Полоса ГОСТ 103-76.
- Поковка и кованая заготовка ГОСТ 4543-71, ГОСТ 1133-71, ГОСТ 8479-70.
- Валки ОСТ 24.013.21-85
- Труба ОСТ 14-21-77.
Характеристики и применение [3]
Сталь 40ХН является хромо-никелевой конструкционной легированной сталью, относится к группе улучшаемой стали и к сталям повышенной прокаливаемости, т.е. прокаливающейся в деталях диаметром 50-75 мм.
Сталь данной марки относится к лучшим образцам конструкционной стали. Комбинация никеля с хромом позволяет применять сталь 40ХН для изготовления деталей ответственного назначения, например:
- оси,
- валы,
- шатуны,
- зубчатые колеса,
- валы экскаваторов,
- муфты,
- валы-шестерни,
- шпиндели,
- болты,
- рычаги,
- штоки,
- цилиндры и другие ответственные нагруженные детали, подвергающиеся вибрационным и динамическим нагрузкам, к которым предъявляются требования повышенной прочности и вязкости.
- Валки рельсобалочных и крупносортных станов для горячей прокатки металла.
Так как никель целиком растворяется в твердом растворе, он способствует более значительному увеличению твердости и прочности феррита, чем хром. Особенно важно, что упрочнение здесь сопровождается также увеличением пластичности. При одновременном присутствии в стали никеля и хрома достигается хорошее сочетание механических свойств (прочности и вязкости), а также большая прокаливаемость.
Сталь 40ХН широко применяется в нефтяном машиностроении для изготовления наиболее ответственных деталей, например:
- особо нагруженных подъемных, трансмиссионных и промежуточных валов,
- зубчатых соединительных муфт,
- звездочек ценных передач буровых установок,
- пластин и роликов втулочно-роликовых цепей,
- осей талевых блоков,
- стволов вертлюг,
- защелок и осей элеваторов.
При применении стали хромо-никелевой стали необходимо иметь в виду, что она обладает склонностью к отпускной хрупкости особенно в интервале температур 450-550°C. Поэтому детали из этой стали следует после высокого отпуска охлаждать быстро (в воде или в масле). При в ведении в сталь 40ХН небольшого количества молибдена склонность к отпускной хрупкости понижается.
Рекомендации по применению стали 40Х для деталей арматуры и пневмоприводов, не работающих под давлением и не подлежащих сварке, предназначенных для эксплуатации в условиях низких температур (ГОСТ 33260-2015)
Марка стали | Закалка + отпуск при температуре, °С | Примерный уровень прочности, Н/мм (кгс/мм2) | Температура применения не ниже, °С | Использование в толщине не более, мм |
40ХН | 500 | 1000(100) | -80 | 50 |
Температура критических точек, °С
Химический состав, % (ГОСТ 4543-71)
C | Si | Mn | Сr | Ni | P | S | Cu |
не более | |||||||
0,36-0,44 | 0,17-0,37 | 0,50-0,80 | 0,45-0,75 | 1,00-1,40 | 0,035 | 0,035 | 0,30 |
Химический состав, % (ГОСТ 4543-2016)
Массовая доля элементов, % | |||||||||
C | Si | Mn | Cr | Ni | Mo | Al | Ti | V | В |
0,36-0,44 | 0,17-0,37 | 0,50-0,80 | 0,45-0,75 | 1,00-1,40 | — | — | — | — | — |
ПРИМЕЧАНИЕ: Знак «-» означает, что массовую долю данного элемента не нормируют и не контролируют, если иное не указано в 7.1.2.3 (ГОСТ 4543-2016).
Рекомендуемые температуры закалки отожженной стали 40ХН при нагреве ТВЧ [1]
Марка Стали | Температура нагрева в °C при скорости нагрева выше Ac1 град/сек | ||
30-60 | 100-200 | 400-500 | |
Продолжительность нагрева выше Ac1 сек | |||
2-4 | 1,0-1,5 | 0,5-0,8 | |
40ХН | 900-940°C | 920-960°C | 960-1020°C |
Режим умягчающей обработки стали 40ХН [1]
Марка Стали | Операция | Температура нагрева в °C | Условия охлаждения* |
40ХН | Отжиг | 800-820 | 30-40° С/ч |
Ориентировочные режимы термической обработки стали 40ХН [1]
Марка Стали | Температура нагрева для закалки и нормализации в °C | Охлаждающая среда | Температура отпуска в °C | Механические свойства | |||
Твердость | Предел прочности при растяжении σв в кГ/мм2 | δ в % | |||||
HB | HRC | ||||||
40ХН | 800-840 | Масло | 180-200 | — | 45-50 | 150 | 8 |
550-600 | 255-286 | — | 85-95 | 14-16 |
ПРИМЕЧАНИЕ. Охлаждение с указанной скоростью до 500°C, а затем на воздухе.
Ориентировочные режимы предварительной термической обработки стали 40ХН [2]
Марка стали | Операция термической обработки | Температура, °C | Способ охлаждения | Твердость HB |
40ХН | Нормализация | 840-860 | На воздухе | 207-255 |
Отжиг | 800-830 | Медленное | 187-241 |
Механические свойства
Источник | Состояние поставки | Сечение, мм | КП | Предел текучести σ0,2, МПа | Предел прочности при растяжении σв, МПа | Относительное удлинение после разрыва δ5 (δ4), % | Относительное сужение ψ, % | KCU, Дж/см2 | Твердость HB, не более |
не менее | |||||||||
ГОСТ 4543-71 | Пруток. Закалка с 820°С в воде или масле; отпуск при 500°С, охл. в воде или масле | 25 | — | 785 | 980 | 11 | 45 | 69 | — |
ГОСТ 8479-70 | Поковка. Нормализация | 100-300 | 315 | 315 | 570 | 14 | 35 | 34 | 167-207 |
300-500 | 12 | 30 | 29 | 167-207 | |||||
500-800 | 11 | 30 | 29 | 167-207 | |||||
Поковка. Закалка+отпуск | 300-500 | 345 | 345 | 590 | 14 | 38 | 49 | 174-217 | |
До 100 | 395 | 395 | 615 | 17 | 45 | 59 | 187-229 | ||
100-300 | 15 | 40 | 54 | ||||||
300-500 | 13 | 35 | 49 | ||||||
500-800 | 11 | 30 | 39 | ||||||
До 100 | 440 | 440 | 635 | 16 | 45 | 59 | 197-235 | ||
100-300 | 14 | 40 | 54 | ||||||
300-500 | 13 | 35 | 49 | ||||||
500-800 | 11 | 30 | 39 | ||||||
До 100 | 490 | 490 | 655 | 16 | 45 | 59 | 212-248 | ||
100-300 | 13 | 40 | 54 | ||||||
До 100 | 540 | 540 | 685 | 15 | 45 | 59 | 223-262 | ||
100-300 | 13 | 40 | 49 | ||||||
До 100 | 590 | 590 | 735 | 14 | 45 | 59 | 235-277 | ||
100-300 | 13 | 40 | 49 |
Механические свойства проката в зависимости от сечения [2]
Сечение, мм | Предел текучести σ0,2, МПа | Предел прочности при растяжении σв, МПа | Относительное удлинение после разрыва δ5, % | Относительное сужение ψ, % | Твердость HB |
40 | 780 | 960 | 18 | 58 | 325 |
80 | 730 | 920 | 20 | 54 | 302 |
120 | 710 | 910 | — | 50 | 300 |
ПРИМЕЧАНИЕ. Нормализация при 870-925°С; закалка с 790°С в масле; отпуск при 540°С.
Механические свойства в зависимости от температуры отпуска
tотп, °С | Предел текучести σ0,2, МПа | Предел прочности при растяжении σв, МПа | Относительное удлинение после разрыва δ5, % | Относительное сужение ψ, % | KCU, Дж/см2 | Твердость HB |
400 | 1220 | 1370 | 10 | 41 | 32 | 387 |
600 | 1080 | 1160 | 14 | 51 | 46 | 302 |
600 | 760 | 910 | 20 | 60 | 83 | 241 |
ПРИМЕЧАНИЕ. Закалка с 820°С в масле.
Механические свойства при повышенных температурах
tисп, °С | Предел прочности при растяжении σв, МПа | Относительное удлинение после разрыва δ5, % | Относительное сужение ψ, % |
Нормализация при 850°С | |||
20 | 790 | 18 | 48 |
200 | 750 | — | 50 |
300 | 690 | 20 | — |
400 | 540 | 25 | 65 |
500 | 480 | 25 | 79 |
600 | 350 | 27 | 85 |
Образец диаметром 6мм, длиной 30 мм, кованый и нормализованный. Скорость деформирования 50мм/мин, скорость деформации 0,031/c | |||
700 | 225 | 36 | 92 |
800 | 130 | 57 | 96 |
900 | 91 | 71 | 100 |
1000 | 62 | 75 | 100 |
1100 | 45 | 76 | 100 |
1200 | 31 | — | 100 |
Предел выносливости
Характеристики прочности | σ-1, МПа | τ-1, МПа |
Предел текучести σ0,2=780 МПа; Предел прочности при растяжении σв=980 МПа;НВ 300-320 | 490 | 294 |
Предел текучести σ0,2=690 МПа; Предел прочности при растяжении σв=880 МПа;НВ 270-300 | 441 | 274 |
Предел текучести σ0,2=570 МПа; Предел прочности при растяжении σв=780 МПа;НВ 200-240 | 392 | 235 |
Предел прочности при растяжении σв=790 МПа; нормализация; НВ 197 | 314-392(n=107) | — |
Ударная вязкость KCU
Состояние поставки | КСU, Дж/см2 при температуре, °С | |||
+20 | -20 | -40 | -60 | |
Поковка 200×30мм. Закалка+отпуск | 116 | 116 | 93 | 80 |
ПРИМЕЧАНИЕ. σ4252,6/10000=103 МПа, σ4256/10000=138 МПа, σ4256,1/100000=69 МПа; σ5353,2/10000=21 МПа.
Технологические свойства
Температура ковки, ° | Сначала 1250, конца 830. Сечения до 50 мм охлаждаются на воздухе, сечения от 51 до 200 мм — охлаждение в мульде, сечения с 201 до 300 мм — с печью. |
Свариваемость | Трудносвариваемая. Способ сварки — РДС, АДС под флюсом, ЭШС. Необходимы подогрев и последующая термообработка. |
Обрабатываемость резанием | Kv тв.спл. = 1,0 и Kv б.ст. = 0,9 в горячекатанном состоянии при НВ 166-170 и Предел прочности при растяжении σв=690 МПа. |
Флокеночувствительность | Повышенно чувствительна. |
Склонность к отпускной хрупкости | Склонна |
Прокаливаемость
Полоса прокаливаемости для стали 40ХН после нормализации при 850°С и закалки с 820°С приведена на рисунке ниже.
Критический диаметр d после закалки в различных средах
Плотность ρп кг/см3 при температуре испытаний, °С
Коэффициент линейного расширения α*106, К-1
Марка стали | α*106, К-1 при температуре испытаний, °С | |||
20-100 | 20-200 | 20-300 | 20-400 | |
40ХН | 11,8 | 12,3 | 13,4 | 14,0 |
Коэффициент теплопроводности λ Вт/(м*К)
Марка Стали | λ Вт/(м*К), при температуре испытаний, °С | |||||
20 | 100 | 200 | 300 | 400 | 500 | |
40ХН | — | 44 | 43 | 41 | 39 | 37 |
Модуль Юнга (нормальной упругости) Е, ГПа
Библиографический список
- И.С.Каменичный. Краткий справочник технолога термиста. 1963 г.
- Фиргер И.В. Термическая обработка сплавов: Справочник. 1982 г.
- Шрейбер Г.К., С.М.Перлин, Б.Ф.Шибряев. Конструкционные материалы в нефтяной, нефтехимической и газовой промышленности. 1969 г.
Узнать еще
Сталь 30 конструкционная углеродистая качественная…
Сталь 6ХС инструментальная штамповая…
Сталь Р18 инструментальная быстрорежущая…
Сталь 50(50А) — конструкционная углеродистая…
Свойства легированной конструкционной стали 40ХН
Температура нагрева для начала кузнечной обработки составляет 1250˚C, завершение ковки при 850˚C. При поперечном сечении заготовки до 50 мм охлаждение необходимо проводить на воздухе, до 200 мм в корытообразной мульде, более 200 мм в постепенно остывающей печи. Сталь относится к категории трудно свариваемых материалов и требует предварительного нагрева при любом виде сварочной обработки.
Удельный вес стали марки 40ХН составляет 7820 кг/м3 при твердости 207 МПа и временном сопротивлении на разрыв 690 МПа.
Область применения
Технические и физические характеристики, которыми обладает сталь марки 40ХН, позволяют широко использовать этот сплав в машиностроении и других промышленных отраслях, связанных с металлообработкой, выпуском механизмов и деталей машин. Из этого металла изготавливают:
- оси, валы, цилиндры и соединительные муфты;
- прокатные валки станов;
- зубчатые колеса механизмов;
- штоки, рычаги и шатуны;
- соединительные и фиксирующие элементы;
- другие детали с повышенными требованиями к прочности и износостойкости.
Марка 40ХН хорошо переносит вибрационные, динамические и ударные нагрузки. Поэтому используется при изготовлении специального оборудования и отдельных узлов машин, работающих в тяжелых эксплуатационных условиях.
Описание
Сталь 40ХН применяется: для производства поковок и штамповок, осей, валов, шатунов, зубчатых колес, валов экскаваторов, муфт, вал-шестерней, шпинделей, болтов, рычагов, штоков, цилиндров и других ответственных нагруженных деталей, подвергающихся вибрационным и динамическим нагрузкам, к которым предъявляются требования повышенной прочности и вязкости; валков рельсобалочных и крупносортных станов для горячей прокатки металла.
Читайте также: