Дуговая сварка по методу славянова и по методу бенардоса

Обновлено: 10.01.2025

Явление электрического дугового разряда и возможность использования тепла дуги для расплавления металлов были открыты и исследованы в 1802 г. академиком Василием Владимировичем Петровым.

В 1882 г. русский инженер Николай Николаевич Бенардос предложил использовать электрическую дугу для сварки металлов . Сущность этого метода заключается в следующем: электрическая дуга возбуждается и горит между угольным электродом и изделием. Угольный электрод укрепляется в держателе, а дуга питается током от генератора. Под действием тепла дуги металл плавится; угольный электрод при этом почти не расходуется. При остывании и кристаллизации сварочной ванны образуется сварной шов, соединяющий обе детали. Иногда, особенно при сварке толстого металла, в ванну добавляют так называемый присадочный металл, для чего в дугу непрерывно подается металлический пруток или проволока .

В 1886 г. русский инженер Николай Гаврилович Славянов разработал новый способ — сварку металлическим электродом. Сущность этого способа состоит в том, что дуга горит между металлическим электродом 2 и изделием 1. В этом случае плавящийся металлический электрод является одновременно и присадочным металлом.

Усовершенствование способов дуговой сварки, предложенных Н. Н. Бенардосом и Н. Г. Славяновым, шло по двум направлениям: изысканию средств защиты и металлургической обработки металла сварочной ванны и автоматизации процесса. Первые шаги в этих направлениях сделаны самими изобретателями. Например, Н, Г. Славянов впервые выдвинул идею о необходимости защиты ванны и ее металлургической обработки при сварке. В частности, он предложил добавлять в процессе сварки в ванну ферросплавы и стекло.

Развитие этой идеи в конечном итоге привело к созданию покрытых электродов, а впоследствии способа дуговой сварки под слоем гранулированного флюса. Н. Н. Бенардос впервые предложил применять при сварке защиту ванны газом и изготовил для этого горелку, положив начало развитию дуговой сварки в защитных газах.

В настоящее время существует большое число различных способов дуговой сварки, отличающихся принятыми при сварке средствами защиты металла от воздуха, типом электрода, особенностями горения дуги и степенью автоматизации процесса.

По виду защиты металла от окружающей атмосферы существующие способы дуговой сварки можно разделить на две группы:

  • со шлаковой и газошлаковой защитой;
  • с газовой защитой.

Последние можно разделить на несколько подгрупп:

  • по виду применяемого газа — на способы с защитой инертными и активными газами;
  • по виду защиты — на способы с местной защитой ванны и общей защитой изделия (сварка в камерах);
  • по давлению газа в реакционной зоне — на способы сварки при нормальном внешнем давлении, в разреженном пространстве и при повышенном внешнем давлении.

По типу применяемого электрода различают способы дуговой сварки плавящимся электродом и неплавящимся электродом.

По особенностям горения дуги могут быть выделены способы однодуговой и многодуговой сварки, трехфазной, расщепленным электродом, с непрерывным и импульсным режимами горения дуги, свободногорящей и сжатой дугой.

По степени автоматизации процесса могут быть выделены способы ручной, механизированной и автоматической сварки.

В результате различного сочетания указанных технологических особенностей получено большое число способов дуговой сварки ( рис. 3.1 ). Технологические особенности способов отражены при чтении колонок сверху вниз. Например, сварка электродами с защитно-легирующими покрытиями может осуществляться по трем вариантам А, Б и В, отличающимся числом электродов.

Остальные отличительные признаки, отмеченные кружками, остаются постоянными (однодуговая, непрерывный режим горения; нормальное давление окружающей среды; вид процесса — ручной).

  • Сварочная электрическая дуга
  • Режимы дуговой сварки
  • Источники питания сварочной дуги
  • Типы сварных соединений
  • Ручная электродуговая сварка
  • Сварочные электроды
  • Свариваемость металлов
  • Сварка под флюсом
  • Сварка в среде защитных газов
  • Электрошлаковая сварка

Рис. 3.1. Различные сочетания дуговой сварки, применяемые в промышленности

Сварка по Н.Н. Бенардосу и Н. С. Славянову.

Такая сварка металлов является изобретением русского ученого, академика В. В. Петрова, открывшего в 1802 г. явления дугового разряда и возможность использования выделяемой теплоты (около 6000°) дуги для расплавления металлов. Используя электрическую дугу, талантливые русские инженеры-изобретатели Н. Н. Бенардос (1842-1905), а несколько позднее - горный инженер Н. Г. Славянов (1854 - 1897) разработали новые способы сварки.

Н. Н. Бенардос в 1882 г. запатентовал способ дуговой сварки угольным электродом, а в 1888 г. Н. Г. Славянов предложил способ дуговой сварки, отличающейся от способа Бенардоса тем, что вместо угольного электрода он применил металлический электрод того же металла, что и металл свариваемой детали. Этот способ получил наиболее широкое применение.

При сварке по способу Бенардоса (рис. 25, а) свариваемая деталь помещается на плиту. Электрический ток подводится к свариваемому металлу 1 и электрододержателю 2, в котором зажат графитовый электрод 3, соединенный с сварочным генератором при помощи шинного шланга. Электрическая дуга 4, возникающая между электродом и металлом, имеющая температуру около 6000°, расплавляет основной металл и вводимую присадочную проволоку 5. При передвижении дуги расплавленный металл застывает и, затвердевая, образует прочный шов.



Рис. 25. Виды сварки:

а - по способу Бенардоса: 1 - свариваемый металл, 2- электрододержатель, 3 - графитовый электрод, 4 - электрическая дуга, 5 - присадочная проволока; б - по способу Славянова: 1 - свариваемый металл, 2 - электрододержатель, 3 - металлический электрод, 4 - сварочная дуга;

По способу Славянова (рис. 25, б) металлический электрод 3 плавится в сварочной дуге 4 и вместе с расплавленным основным металлом 1 образует жидкую ванну, заполняющую кромки свариваемых деталей. При этом способе сварки обычно применяется постоянный ток прямой полярности (минус на электроде и плюс на изделии), что обеспечивает устойчивость дуги, меньший расход электрода и лучший подогрев металла.

Дуга зажигается кратковременным соприкосновением электрода со свариваемым изделием. Электрическая дуга поддерживается на неизменном расстоянии между основным металлом и электродом. Это расстояние приблизительно равно диаметру электрода.

Сварка по способу Бенардоса в настоящее время в промышленности не имеет широкого распространения и применяется главным образом для сварки тонкостенных стальных деталей, а также для сварки цветных металлов и чугуна.

Сварка по способу Славянова получила наиболее широкое применение и осуществляется главным образом на постоянном токе.

Виды сварочных соединений. Виды сварочных швов.

Для того чтобы научиться качественно варить, недостаточно освоить только удержание электрической дуги. Помимо этого, нужно разбираться в том, какие бывают виды сварных соединений и швов. Начинающие сварщики нередко допускают грубейшие ошибки, например, не проваривают металл. А бывает, что готовые детали имеют слабое сопротивление на излом. В чем причина? В первую очередь в неверном выборе вида соединения, ошибках в технике. Сегодня предлагаем поговорить о различных видах сварки, видах сварных соединений, а также о дефектах! Сварной шов: определение Для начала определимся с определением сварного (сварочного) шва. Так принято называть закристаллизовавшийся металл, который в момент сварки находился в расплавленном состоянии. В структуру сварочного шва входят: зона наплавленного металла; зона механического сплавления; зона термического влияния; переходная зона к основному металлу. Сварное соединение: что это? Сварным соединением обычно называют ограниченный участок конструкции, который содержит один или более сварных швов. Именно по внешнему виду соединения специалист может определить квалификацию сварщика, понять, какой способ сварки применялся. Сварное соединение рассказывает и о технологическом предназначении конструкции. Сварные швы: классификация Опытные сварщики говорят: в основу классификации типов швов могут быть приняты самые разные факторы, например конструктивные и прочностные, геометрические и технологические. Если рассматривать швы с точки зрения месторасположения, их можно разделить на нижние, наклонные, горизонтальные и вертикальные. Нижний шов можно назвать не только самым простым, но и самым прочным. Дело в том, что сила тяжести металла позволяет лучше заполнить зазоры между соединяемыми поверхностями. К тому же этот тип является самым экономичным. Существуют определенные условия, так, к примеру, горелка или электрод обязательно должны быть направлены сверху вниз. Горизонтальный шов обычно формируется тогда, когда поверхности расположены перпендикулярно плоскости электрода. Расход флюсов и электродов при этом типе существенно увеличивается. При медленном ведении шва возможны потеки, а при быстром - непроваренные места. Качественные рольставни для красивой жизни! Более 20 цветов 6 типов ручных механизмов и электроприводы Защита от взлома! Узнать больше. SlickJump® Продукция соответствует требованиям ISO 9001 TUV CERT Значительно сложнее сделать качественный вертикальный шов. Здесь возрастают потери металла, увеличивается неравномерность (на финальном этапе сварки шов получается более толстым). Этот способ требует определенной классификации сварщика. Применяется он обычно для сварки труб или при скреплении больших конструкций. Самой сложной сварщики считают потолочную сварку. Как ее производят? Наносят шов прерывистой дугой. Сила тока при этом небольшая. Такой тип обычно используется при сварке труб, которые нельзя провернуть. Сварные соединения: типы и виды Предлагаем поговорить о том, какие виды сварных соединений по видам примыкания поверхностей бывают. В зависимости от таких факторов, как толщина металла, геометрическая форма деталей, требуемой герметичности соединения можно разделить сварные соединения на: тавровые; внахлест; стыковые; угловые. Все виды сварных соединений имеют свое предназначение, которое подходит под определенные потребности готовых элементов. Предлагаем рассмотреть эти виды подробнее! –


Стык Самый распространенный вид сварного соединения – стык. Его применяют, когда сваривают торцы труб, листы стали или какие-либо геометрические фигуры. Детали, которые присоединяют встык, отличаются по толщине изделия, по стороне накладывания шва. Можно выделить несколько подвидов соединений: одностороннее обычное; одностороннее, при котором края обрабатываются под углом в 45 градусов; одностороннее, при котором обрабатывается одна кромка под углом в 45 градусов; одностороннее, при котором фрезой снимается кромка на обеих деталях; двухстороннее, которое подразумевает обрез кромок под углом в 45 градусов с каждой стороны. Важно отметить, что при этом виде сварного соединения большую роль играет толщина свариваемых поверхностей. Если она не более 4 миллиметров, то применяется односторонний шов, а вот если толщина превышает 8 миллиметров, шов необходимо накладывать с двух сторон. Если же толщина изделия превышает 5 мм, однако шов нужно накладывать только с одной стороны, получив при этом высокую прочность, следует разделить кромки. Осуществлять его нужно с помощью напильника или болгарки, хватит и 45-градусного скоса. Угловое соединение Существует несколько вариантов углового соединения: односторонний – как с предварительной разделкой, так и без нее; двухсторонний – обычный и с разделкой. С помощью такого соединения можно скрепить между собой два элемента под любым углом. При этом первый шов будет внутренним, а второй – наружным. Этот тип идеально подходит для сваривания различных навесов и козырьков, кузовов грузовых автомобилей и каркасов беседок. Если нужно соединить две пластины с разной толщиной, этот вид сварного соединения по ГОСТу необходимо выполнять следующим образом: более толстую пластину следует расположить внизу, а тонкую – поставить на нее ребром. Электрод или горелка при этом должны быть направлены на толстую часть – так на детали не будет прожогов или подрезов. Соединение внахлест Две пластины можно сваривать не только встык, но и внахлест – слегка натянув одну на поверхность второй. Такой вид сварного соединения специалисты рекомендуют применять там, где требуется большая сопротивляемость на разрыв. Шов необходимо класть с каждой стороны – это позволит не только увеличить прочность, но и предотвратит накопление влаги внутри готового изделия. Тавровое соединение Этот тип аналогичен угловому соединению, однако есть и отличия – пластина, приставляемая ребром, должна выставляться не с краю нижнего основания, а на небольшом расстоянии. Классификация по технологии и форме шва Сварщики различают виды сварных соединений по типу сварных швов. Шов может быть: Ровный. Он достигается при оптимальных настройках сварочного аппарата и при его удобном положении. Выпуклый. Такой шов возможно получить при малой силе тока и прохождению в несколько слоев. Выпуклый шов требует механической обработки. Вогнутый. Получить такой шов можно только при повышенной силе тока. Для такого шва характерна отличная проплавка, к тому же он не требует шлифовки. Сплошной. Чтобы выполнить качественный сплошной шов, необходимо делать его непрерывно. Это предотвратит появление свищей. Прерывистый. Такой шов следует применять для изделий из тонких листов. Сварщик, знакомый с основными видами соединений и их принципиальными отличиями, может грамотно подобрать вид шва, способный удовлетворить основные требования по прочности и герметичности.

Сварочная электрическая дуга

В 1882 г. русский инженер Николай Николаевич Бенардос предложил использовать электрическую дугу для сварки металлов . Сущность этого метода ( рис. 188, а ) заключается в следующем: электрическая дуга 7 возбуждается и горит между угольным электродом 3 и изделием 1. Угольный электрод укрепляется в держателе 4, а дуга питается током от генератора 5. Под действием тепла дуги металл плавится; угольный электрод при этом почти не расходуется. При остывании и кристаллизации сварочной ванны образуется сварной шов, соединяющий обе детали 1. Иногда, особенно при сварке толстого металла, в ванну добавляют так называемый присадочный металл, для чего в дугу непрерывно подается металлический пруток или проволока 2.

Рис. 188. Схемы сварки: а — по способу Бенардоса; б - по способу Славянова

В 1886 г. русский инженер Николай Гаврилович Славянов разработал новый способ — сварку металлическим электродом ( рис. 188, б ). Сущность этого способа состоит в том, что дуга горит между металлическим электродом 2 и изделием 1. В этом случае плавящийся металлический электрод является одновременно и присадочным металлом.

Электрическая сварочная дуга представляет собой мощный электрический разряд в сильно ионизированной среде, состоящей из положительных и отрицательных ионов и свободных электронов . Дуговой разряд характеризуется выделением большого количества теплоты и света. Температура сварочной дуги достигает 6000°С. Дуга состоит из трех областей — катодной, анодной и столбадуги.

Для упорядочения движения свободных электронов в металле и электронов, которые освобождаются на нагретой поверхности катода, создается электрическое поле путем подведения к дуговому промежутку соответствующей разности потенциалов.

Движущиеся в дуговом промежутке электроны взаимодействуют с нейтральными молекулами паров и газов и разделяют их на ионы и электроны. Схема движения электронов представлена на рис. 189. Сорвавшийся с конца нагретого катода 1 (электрода — металлического или угольного) электрон 2 проходит через катодное пространство с высокой напряженностью поля по направлению к аноду 3. На пути следования электрона может встретиться атом (молекула) газа или атом какого-либо другого вещества (например, паров металла) и вступить с ним во взаимодействие. В результате нейтральная частица ионизируется.

Рис.189 . Схема процесса ионизаци дугового промежутка.

Тепловая мощность дуги может быть рассчитана по формуле:

q = 0,24 U д ּ I д кал/сек,

где U д — падение напряжения на дуге, в вольтах; I д — ток, в амперах; 0,24 — тепловой эквивалент электрической мощности.

На нагрев изделия расходуется около 50% тепловой мощно дуги, на нагрев электрода около 30% и в окружающую теряется примерно 20%. Таким образом, 75—85% всей мощности дуги расходуются на полезный нагрев и расплавление металл. При этом на катоде выделяется 30 ÷ 38%, на аноде — 42 — 43% от общего количества теплоты. Выделение тепловой энергии на электродах неодинаково, в связи с этим температура анода выше температуры катода.

Высокая температура электрической дуги и большая концентрация теплоты, выделяемой ею, позволяют почти мгновенно расплавлять небольшие объемы металлов изделия и электрода.В настоящее время в промышленности распространены следующие способы электродуговой сварки: ручная металлическими электродами со специальными покрытиями, автоматическая под плавленными и керамическими флюсами и сварка в среде защитных газов. Нанесенные покрытия на электроды, а также использование флюсов и защитных газов предотвращает контакт и взаимодействие расплавленного металла с окружающей атмосферой.

Дуговая сварка

При ручной сварке используются электроды с тонким или ионизирующим покрытием и с качественным покрытием. Покрытие первого типа повышает устойчивость горения дуги за счет улучшения ионизации дугового промежутка.

При сварке электродами с качественным покрытием создается газовая защита дугового промежутка, а образующийся жидкий шлак защищает сварочную ванну и переходящие в нее капли электродного металла. Дуговой промежуток насыщен парами и газами компонентов качественного покрытия ( рис. 190, а ).

При автоматической сварке под флюсом дуговой промежуток и жидкий металл изолированы от контакта с воздухом шлаковой оболочкой, засыпанной сверху слоем флюса значительной толщины ( Рис. 190, б ).

Рис. 190. Схемы процессов сварки: а — ручной: 1 — свариваемый металл; 2 — газовая защита; 3 — сварочная дуга; 4 — электрод; 5 — покрытие; 6 — капля; 7 — жидкий шлак; 8 — ванна; б — автоматической металл; 2 — присадочная проволока; 3 — сварочная дуга; 4 — флюс; 5 — ванна; 6 — жидкий флюс.

В сварочной ванне при сварке электродами с качественным покрытием или под флюсом протекают весьма сложные металлургические процессы. Специфичными условиями их протекания являются: малый объем ванны и большая скорость ее охлаждения; а также высокая температура на поверхности ванны.Способы дуговой сварки в среде защитных газов классифицируются в зависимости от состава газа, типа электродов и степени механизации.

По двум последним признакам дуговая сварка в среде защитных газов разделяется на ручную и механизированную сварку неплавящимся вольфрамовым электродом и полуавтоматическую и автоматическую плавящимся электродом. При ручной сварке неплавящимся электродом подача присадочной проволоки и движение горелки производятся сварщиком; при механизированной сварке неплавящимся электродом присадочная проволока подается механически, а движение горелки выполняется сварщиком; при автоматической сварке плавящимся электродом подача электродной проволоки и движение горелки осуществляются механически.

Дуговая сварка и резка

Дуговая сварка и резка

В 1802 г. акад. В. В. Петров открыл явление дугового разряда. В 1882 г. русский изобретатель Н. Н. Бенардос предложил применить электрическую дугу для сварки металлов угольным электродом. В 1888 г. горный инженер Н. Г. Славянов заменил графитовый электрод металлическим. В настоящее время около 99 % работ, выполняемых дуговой сваркой, производится по способу Славянова. Дуговая сварка по распространению занимает первое место среди других видов сварки. Ее используют при производстве всех видов подвижного состава железнодорожного транспорта, морских и речных судов, котлов, автомобилей, подъемнотранспортных сооружений, трубопроводов для газов, жидкостей и сыпучих материалов, металлических конструкций и арматуры зданий, промышленных сооружений, мостов, узлов и деталей электрических, сельскохозяйственных и других машин и механизмов.

К числу металлов, свариваемых электрической дугой, относятся почти все конструкционные стали, серый и ковкий чугуны, медь, алюминий, никель, титан и их сплавы и другие металлы и сплавы.

Сварка по способу Бенардоса

. Сварка производится графитовым электродом с присадочным металлом от прутка или без него; сварка этим способом имеет ограниченное применение. Ею пользуются для соединения с отбортовкой тонких стальных заготовок, где не требуется присадочный металл, для цветных металлов и чугуна, а также для наплавки порошковых твердых сплавов. Обычно применяют постоянный ток, причем для устойчивости дуги и лучшего прогрева стыка при сварке пользуются прямой полярностью: заготовку включают анодом (+), а электрод — катодом (—).

Сварка по способу Славянова

. При сварке применяют металлический электрод в виде проволоки. Дуга возбуждается между электродом и основным металлом и плавит их оба, причем образуется общая ванночка, где перемешивается весь расплавленный металл. Электродная проволока выпускается диаметром от 0,3 до 12 мм. Для сварки углеродистой стали применяют проволоку марок Св08А, Св08ГС, Св10Г2, для сварки легированной стали различных марок — легированную проволоку марок Св08ГС, Св18ХГС, СвЮХМФТ, Св12ХПНМФ, Св12Х13, Св09Х16Н25М6АФ и др.

При ручной сварке пользуются электродами, покрытыми обмазкой. Обмазки бывают стабилизирующими, защитными и легирующими.

По толщине покрытия электроды бывают с тонкими, средними, толстыми и особо толстыми покрытиями. Тонкие покрытия являются стабилизирующими; они состоят из мела и жидкого стекла. Находящийся в составе мела кальций выделяется в плазме дуги, ионизирует ее, тем самым способствует устойчивости горения дуги.

Средние, толстые и особо толстые покрытия обеспечивают устойчивость горения дуги, а также защиту и легирование металла. Состав этих обмазок подбирается так, чтобы вокруг дуги создавалась газовая среда, защищающая металл электрода, стекающий в дуге, и металл ванночки от окисления и растворения в нем газов. По мере плавления электродов обмазка шлакуется и шлак равномерно покрывает шов, защищая металл от окисления и насыщения азотом. Кроме того, шлак замедляет охлаждение металла, что способствует выделению растворенных газов и уплотнению шва. В случае надобности в обмазку добавляют ферросплавы для легирования. Таким образом, в состав этих покрытий входят ионизирующие (например, мел), газообразующие (мука), шлакообразующие (полевой шпат) вещества, а также раскислители (ферромарганец) и легирующие компоненты. Во всех случаях, когда сварная конструкция должна выдерживать большие нагрузки, применяют электроды с толстыми и особо толстыми покрытиями, обеспечивающими прочность и вязкость шва, не уступающие основному металлу.

Электрические параметры дуги могут изменяться в широких пределах: применяют токи от 1 до 3000 А при напряжении от 10 до 50 В; мощность дуги — от 0,01 до 150 кВт. Такой диапазон мощности дуги позволяет использовать ее для сварки как мельчайших, так и больших и тяжелых изделий.

Аппаратура для сварки

. Дуговая сварка возможна на постоянном и переменном токах. Дуга на постоянном токе устойчивее, но расход электроэнергии выше. Для питания дуги постоянным током применяют генераторы и выпрямители.

Сварочные аппараты и генераторы делят на однопостовые — для питания одной дуги и многопостовые — для питания нескольких дуг. Для сварки используют стандартное напряжение тока (220, 380, 500 В).

Схема включения сварочного аппарата

Рисунок 44 Схема включения сварочного аппарата

На рис. 44 приведена схема включения сварочного аппарата переменного тока. Первичная обмотка П трансформатора 4 подключается к сети; ко вторичной обмотке В низкого напряжения (55—65 В) подключается регулятор тока (дроссель) 3. ток регулируется изменением индуктивного сопротивления дросселя: часть 2 сердечника может перемещаться с помощью винта от вращения рукоятки 1, при этом изменяется воздушный зазор с, а также регулируется сварочный ток.

Сварочные генераторы постоянного тока приводятся в действие электродвигателем или двигателем внутреннего сгорания.

Автоматизация электродуговой сварки. При ручной сварке сварщик должен поддерживать дугу, подавать электрод по мере его расходования и передвигать дугу вдоль шва. Автоматизация этих приемов приводит к автоматической сварке. Сущность способа автоматической дуговой сварки под флюсом состоит в следующем.

Автоматическая сварка

Рисунок 45 Автоматическая сварка

Сварочная головка 5 (рис. 45) подает в зону дуги электродную проволоку 3 из кассеты 6. Для питания дуги, образующейся между основным металлом 2 и электродной проволокой, обычно пользуются переменным током. По мере образования шва 9 головка 5, а с ней и дуга автоматически перемещаются вдоль разделки 1. Вместе с головкой перемещается и бункер 4, из которого в разделку шва перед дугой засыпают гранулированный флюс. Таким образом, сварка протекает под слоем флюса, защищающего наплавляемый металл от воздуха. Часть флюса расплавляется от соприкосновения с дугой и при остывании образует корку 8, покрывающую шов. Сыпучий флюс, оставшийся поверх корки, отсасывается в бункер через сопло и шланг 7. Автоматическая сварка под слоем флюса в 5—10 раз производительнее ручной сварки.

Дуговая сварка в среде защитных газов. Дуговая сварка в среде защитных газов — углекислом, аргоне или гелии — обеспечивает лучшую, чем при сварке покрытыми электродами или под слоем флюса, защиту от воздействия кислорода и азота воздуха, лучшее использование тепла дуги. Вместе с тем сварка в среде защитных газов не заменяет названные способы сварки, а применяется в машино и приборостроении там, где эти способы не дают необходимых результатов.

Для сварки в струе углекислого газа применяют горелкидержатели (рис. 46).

Горелка держатель

Рисунок 46 Горелка держатель

Дуга 4 горит между заготовкой 5 и электродной проволокой 1, которая автоматически подается с постоянной скоростью. Подвод тока к проволоке обеспечивается через контактные сапожки 2. Сварка выполняется на переменном или постоянном токе. Углекислый газ в зону сварки подается через сопло 3; к горелке он поступает от баллона. Образующийся при сварке оксид железа раскисляется марганцем и кремнием, которые в повышенном количестве содержатся в электродной проволоке. Сварку в углекислом газе широко применяют для углеродистой стали, заварки дефектов стальных отливок, наплавки и восстановления изношенных деталей.

Сварка в инертных газах (аргоне, гелии или их смесях) применяется для коррозионностойких сталей, титана, алюминия, меди, никеля, их сплавов и сплавов магния. Сварка выполняется плавящимся или неплавящимся электродом, постоянным или переменным током. Общая схема установки для сварки плавящимся электродом аналогична установке при сварке в углекислом газе; электродная проволока применяется того же состава, что и основной металл. В качестве неплавящегося электрода используют вольфрамовую проволоку, которую устанавливают в горелку. Для заполнения разделки кромок в зону дуги вводят присадочный металл.

Дуговая резка. Резкой с использованием дуги разделяют металл не выжиганием, а расплавлением. Этот способ применяют для резки углеродистой и легированной сталей, чугуна, алюминия, меди и их сплавов, отделения литниковой системы от отливок и т. д. Дуговая резка производится угольным или металлическим электродом. Автоматическая дуговая резка под флюсом применяется для разделки листов коррозионностойкой стали.

Воздушнодуговая резка производится угольным или графитовым электродом, который закрепляется в резаке или режущей головке. В контактносопловой части резака (головки) имеются отверстия, через которые струи воздуха выдувают расплавленный металл из реза.

Читайте также: