Диоды для сварочного аппарата ресанта
Продолжение о ремонтах бытовой силовой техники.
На этот раз сварочный аппарат Ресанта САИ190К принёс сосед по даче с диагнозом — аппарат упал, хлопнул, потерял сознание, очнулся, не работает :)
Если Вас данная тема действительно интересует, пожалуйста, ознакомьтесь с предыдущими статьями по этому профилю.
mysku.club/blog/diy/78892.html
mysku.club/blog/aliexpress/74617.html
У меня самого в пользовании сварочный аппарат Ресанта САИ190К, но он и внешне и внутренне отличается от ремонтируемого. Новый аппарат гораздо компактнее, жертва маркетинга и экономики, заявленного тока 190А там очевидно и близко нет.
Из своего опыта ремонта отмечу, что Ресанта под одной и той же моделью умудряется выпускать сварочники разных модификаций с разными схемами, параметрами и габаритами.
Сравнение аппаратов
Данный сварочный аппарат 2017г и ранее не ремонтировался, что как правило упрощает ремонт.
Вскрываем, изучаем…
Для сравнения, старая Ресанта 190К
Причина неисправности видна сразу
Производитель не поставил изоляционную планку между радиаторами силовых транзисторов и при ударе они нашли друг друга. Встреча была искренней, зажигательной и шумной :)
Самое обидное, что производитель эту планку не поставил специально, я уже видел такие аппараты без планок. Зачем так сделали, догадаться несложно…
Внутренности стоят от Ресанты САИ160, собрано на печатной плате SD-mini-140-1.3 SH112 на ток 140А :(
Похожая на 90% схема
Схемотехника отличается от стандартной Ресантовской:
— полностью отсутствует сетевой фильтр. Сетевые помехи гарантированы
— косой полумост всего на двух транзисторах (ранее ставили четыре).
— снижена суммарная ёмкость входных накопительных конденсаторов (2х560мкФ)
— диоды рекуперации не установлены на радиаторах
— отсутствует снижение рабочей частоты при залипании электрода
— более компактный и лёгкий корпус
Странно, что ради экономии забыли убрать выходной дроссель, в следующей модификации это обязательно поправят :)
Первичная диагностика показала, что по меньшей мере, вышли из строя силовые IGBT транзисторы, откручиваю радиаторы и выпаиваю транзисторы вместе с радиаторами.
Установлены подозрительные транзисторы Toshiba GT50JR22 — надпись читается очень плохо, шрифт на обоих транзисторах разный.
Ломаю один, а там мелкий кристалл и отсутствует кристалл обратного диода…
В принципе, косой полумост нормально работает и без обратных диодов.
Ради интереса, сломал новый транзистор, чтобы сравнить внутренности
Новый — справа
Внутри транзисторы абсолютно одинаковы, а различия надписей вызвано разным годом выпуска транзисторов.
Тошиба как-то умудряется встроить обратный диод в единый основной кристалл. Ранее, я такой фишки ни у кого не встречал, буду теперь иметь в виду :)
Транзисторы буду менять на такие-же, но не потому, что они такие хорошие (на самом деле нет), а потому, что они уже были в наличии.
Параметры оригинальных транзисторов 44А 115W (100ºC) 600V 1,55V (50A) 2700pF 330ns (Off)
Ну и конечно, сравнение старых и новых транзисторов (все оригинальные)
Дополнительно, обнаружен оборванный размагничивающий (рекуперационный) диод MURF860 в пластике (8A 600V 1,2V).
Кому интересны внутренности пластикового корпуса TO-220F — кристалл расположен на медной пластине для лучшего распределения тепла. Тут кристалл уже сошлифован.
Обычно в этой цепи ставят RHRP1560 или аналогичные, причём часто на радиаторах. Менять буду оба на одинаковые более мощные MUR1560G (15A 600V 1,2V).
Блок питания выполнен на базе SD6834 со встроенным ключом.
ШИМ — привычный 3845
Выходные диодные сборки 60F30 (60A 300V 1,05V 40ns) – 3шт
Сам ремонт:
К сожалению, технологическая перемычка, разделяющая питание силовой части и питание схемы отсутствует. Но ничего страшного в этом нет, если придерживаться нужной последовательности.
1. Подготавливаю и меняю рекуперационные диоды
Для изоляции фланца, использую термоусадку. Изоляция нужна для предотвращения касания диода и радиатора при ударе.
2. Проверяю элементы драйвера методом сравнения каналов и в соответствии со схемой. В данном случае повезло и драйвер в порядке
3. Через разделительный трансформатор, ЛАТР и лампу накаливания 150W, подключаю сварочник к сети. Регулятор тока устанавливается в среднее положение.
Для удобства и безопасности, сколотил стенд развязки, регулирования и токоограничения — очень удобно :)
4. Постепенно повышаю напряжение ЛАТРа, при этом лампа не должна загораться. Вентилятор начинает работать при сетевом напряжении около 55В, далее включается реле запуска.
5. Плавно повышаю напряжение до номинального и проверяю все питающие напряжения с блока питания.
6. Проверяю осциллографом импульсы на затворах обоих транзисторов относительно их эмиттеров
Частота 53кГц — в норме, странная форма импульсов из-за отсутствия нагрузки драйвера в виде затворных емкостей. Узкая ширина импульса из-за работающей защиты от залипания. На некоторых Ресантах с той-же целью снижают рабочую частоту преобразователя.
7. Замыкаю выход оптрона 3IS1 (обведён красным) для отключения защиты от залипания и проверяю расширение импульса до номинального значения, частота при этом не меняется.
8. Проверяю наличие импульсов во всём рабочем диапазоне сетевого напряжения — они появляются при напряжении от 140В и выше.
9. Устанавливаю транзисторы на радиаторы, не забывая про теплопроводную пасту (использовал GD900).
10. Прикручиваю радиаторы на место
И только потом припаиваю. Наоборот делать нельзя — поломаете транзисторы и печатную плату!
11. Из куска текстолита изготавливаю и устанавливаю планку, чтобы радиаторы больше не касались друг друга
12. Собираю аппарат и проверяю на стенде и затем на балласте.
Максимальный ток составил всего 136А, на дуге ток будет ещё меньше и это печально…
13. Проверяю на дуге. Троечкой варит уверенно, на четвёрке тока уже не хватает (на дуге ток около 120-125А). Обычно я сварку проверяю четвёркой — если на максимальном токе удаётся непрерывно сжечь один электрод, значит работать будет. Но тут четвёрка шла настолько медленно, что я пожалел аппарат и проверял троечкой.
В данном аппарате есть форсаж дуги, но работает он плохо. Дело в том, что порог его включения привязан к выходному напряжению, которое на холостом ходу привязано к сетевому напряжению. Вот и получается, что форсаж сильно зависит от сетевого напряжения. Лучше-бы его вообще не делали…
После тестирования, аппарат был возвращён хозяину и пока работает нормально.
Ремонт сварочного инвертора Ресанта
Восстанавливаем работу сварочного инвертора Ресанта САИ-250ПН
Как-то раз в мои руки попал сварочный инвертор Ресанта САИ 250ПН. Аппарат, без сомнения, внушает уважение.
Те, кто знаком с устройством сварочных инверторов, оценят всю мощь по внешнему виду электронной начинки.
Как уже говорилось, начинка сварочного инвертора рассчитана на большую мощность. Это видно по силовой части устройства.
Во входном выпрямителе два мощных диодных моста на радиаторе, четыре электролитических конденсатора в фильтре. Выходной выпрямитель также укомплектован по полной: 6 сдвоенных диодов, массивный дроссель на выходе выпрямителя.
три ( ! ) реле мягкого пуска. Их контакты соединены параллельно, чтобы выдержать большой скачок тока при запуске сварки.
Если сравнить эту Ресанту (Ресанта САИ-250ПН) и TELWIN Force 165, то Ресанта даст ему лихую фору.
Но, даже у этого монстра есть ахиллесова пята.
Аппарат не включается;
Охлаждающий кулер не работает;
Нет индикации на панели управления.
После беглого осмотра выяснилось, что входной выпрямитель (диодные мосты) оказались исправны, на выходе было около 310 вольт. Стало быть, проблема не в силовой части, а в цепях управления.
Внешний осмотр выявил три перегоревших SMD-резистора. Один в цепи затвора полевого транзистора 4N90C на 47 Ом (маркировка – 470), и два на 2,4 Ом (2R4) – включенных параллельно – в цепи истока того же транзистора.
Транзистор 4N90C (FQP4N90C) управляется микросхемой UC3842BN. Эта микросхема – сердце импульсного блока питания, который запитывает реле плавного пуска и интегральный стабилизатор на +15V. Он в свою очередь питает всю схему, которая и управляет ключевыми транзисторами в инверторе. Вот кусочек схемы Ресанта САИ-250ПН.
Также обнаружилось, что в обрыве ещё и резистор в цепи питания ШИ-контроллера UC3842BN (U1). На схеме он обозначен, как R010 (22 Ом, 2Вт). На печатной плате имеет позиционное обозначение R041. Предупрежу сразу, что обнаружить обрыв данного резистора при внешнем осмотре довольно трудно.
Трещина и характерные подгары могут быть на той стороне резистора, что обращена к плате. Так было в моём случае.
Судя по всему, причиной неисправности послужил выход из строя ШИ-контроллера UC3842BN (U1). Это в свою очередь привело к увеличению потребляемого тока, и резистор R010 сгорел от резкой перегрузки. SMD-резисторы в цепях MOSFET-транзистора FQP4N90C сыграли роль плавкого предохранителя и, скорее всего, благодаря им транзистор остался цел.
Как видим, вышел из строя целый импульсный блок питания на UC3842BN (U1). А он питает все основные блоки сварочного инвертора. В том числе и реле плавного пуска. Поэтому сварка и не подавала никаких "признаков жизни".
В итоге имеем кучу "мелочёвки", которую нужно заменить, дабы оживить агрегат.
После замены указанных элементов, сварочный инвертор включился, на дисплее показалось значение установленного тока, защумел охлаждающий кулер.
Тем, кто захочет самостоятельно изучить устройство сварочного инвертора – полная принципиальная схема "Ресанта САИ-250ПН".
Устройство сварочного инвертора
В настоящее время стали очень популярны и доступны по цене сварочные аппараты инверторного типа.
Несмотря на свои положительные качества, они, как и любое другое электронное устройство, временами выходит из строя.
Чтобы отремонтировать инвертор сварочного аппарата нужно хотя бы поверхностно знать его устройство и основные функциональные блоки.
В первых двух частях будет рассказано об устройстве сварочного аппарата модели TELWIN Tecnica 144-164. В третьей части будет рассмотрен пример реального ремонта сварочного инвертора модели TELWIN Force 165. Информация будет полезна всем тем начинающим радиолюбителям, которые хотели бы научиться самостоятельно ремонтировать сварочные аппараты инверторного типа.
Дальше будет много букв – наберитесь терпения .
Сам инверторный сварочный аппарат представляет не что иное, как довольно мощный блок питания. По принципу действия он очень схож с импульсными блоками питания, например, компьютерными блоками питания AT и ATX. Вы спросите: «Чем они похожи? Это ведь абсолютно разные устройства…». Схожесть заключается в принципе преобразования энергии.
Основные этапы преобразования энергии в инверторном сварочном аппарате:
1. Выпрямление переменного напряжения электросети 220V;
2. Преобразование постоянного напряжения в переменное высокой частоты;
3. Понижение высокочастотного напряжения;
4. Выпрямление пониженного высокочастотного напряжения.
Это кратко, так сказать, на пальцах . Такие же преобразования происходят в импульсных блоках питания для ПК.
Спрашивается, а зачем нужны эти пляски с бубном (несколько ступеней преобразования напряжения и тока)? А дело тут вот в чём.
Ранее основным элементом сварочного аппарата являлся мощный силовой трансформатор. Он понижал переменное напряжение электросети и позволял получать от вторичной обмотки огромные токи (десятки – сотни ампер), необходимых для сварки. Как известно, если понизить напряжение на вторичной обмотке трансформатора, то можно во столько же раз увеличить ток, который может отдать нагрузке вторичная обмотка. При этом уменьшается число витков вторичной обмотки, но и растёт диаметр обмоточного провода.
Из-за своей высокой мощности, трансформаторы, которые работают на частоте 50 Гц (такова частота переменного тока электросети), имеют весьма большие размеры и вес.
Чтобы устранить этот недостаток были разработаны инверторные сварочные аппараты. За счёт увеличения рабочей частоты до 60-80 кГц и более, удалось уменьшить габариты, а, следовательно, и вес трансформатора. За счёт увеличения рабочей частоты преобразования в 4 раза удаётся снизить габариты трансформатора в 2 раза. А это приводит к уменьшению веса сварочного аппарата, а также к экономии меди и других материалов на изготовление трансформатора.
Но где взять эти самые 60-80 кГц, если частота переменного тока электросети всего 50 Гц? Тут на выручку приходит инверторная схема, которая состоит из мощных ключевых транзисторов, которые переключаются с частотой 60-80 кГц. Но чтобы транзисторы работали, необходимо подать на них постоянное напряжение. Его получают от выпрямителя. Напряжение электросети выпрямляется мощным диодным мостом и сглаживается фильтрующими конденсаторами. В результате на выходе выпрямителя и фильтра получается постоянное напряжение величиной более 220 вольт. Это первая ступень преобразования.
Вот это напряжение и служит источником питания для инверторной схемы. Мощные транзисторы инвертора подключены к понижающему трансформатору. Как уже говорилось, транзисторы переключаются с огромной частотой в 60-80 кГц, а, следовательно, трансформатор работает также на этой частоте. Но, как уже говорилось, для работы на высоких частотах требуются менее громоздкие трансформаторы, ведь частота то уже не 50 Гц, а все 65000 Гц! В результате трансформатор «сжимается» до весьма малых размеров, а мощность его такая же, как и у здоровенного собрата, который работает на частоте 50 Гц. Думаю, идея понятна.
Вся эта петрушка с преобразованием привела к тому, что в схемотехнике сварочного аппарата появляется куча всяких дополнительных элементов, служащих для того, чтобы аппарат стабильно работал. Но, хватить теории, перейдём к "мясу", а точнее к реальному железу и тому, как оно устроено.
Устройство сварочного аппарата инверторного типа. Часть 1. Силовой блок.
Разбираться в устройстве сварочного инвертора желательно по схеме конкретного аппарата. К сожалению, схемы на TELWIN Force 165 я не нашёл, поэтому нагло позаимствуем схему из руководства по ремонту другого аппарата – TELWIN Tecnica 144-164. Фотографии аппарата и его начинки будут от TELWIN Force 165, так как именно он оказался в моём распоряжении. Исходя из анализа схемотехники и элементной базы, особых отличий между этими моделями практически нет, если не учитывать мелочи.
Внешний вид платы сварки TELWIN Force 165 с указанием расположения некоторых элементов схемы.
Принципиальная схема сварочного аппарата инверторного типа TELWIN Tecnica 144-164 состоит из двух основных частей: силовой и управляющей.
Сначала разберёмся в схемотехнике силовой части. Вот схема. Картинка кликабельна (нажмите для увеличения – откроется в новом окне).
Сетевой выпрямитель.
Как уже говорилось, сначала переменный ток электросети 220V выпрямляется мощным диодным мостом и фильтруется электролитическими конденсаторами. Это нужно для того, чтобы переменный ток электросети частотой 50 герц стал постоянным. Конденсаторы С21, С22 нужны для сглаживания пульсаций выпрямленного напряжения, которые всегда присутствуют после диодного выпрямителя. Выпрямитель реализован по классической схеме диодный мост. Он выполнен на диодной сборке PD1.
Следует знать, что на конденсаторах фильтра напряжение будет больше в 1,41 раза, чем на выходе диодного моста. Таким образом, если после диодного моста мы получим 220V пульсирующего напряжения, то на конденсаторах будет уже 310V постоянного напряжения (220V * 1,41 = 310,2V). Обычно же рабочее напряжение ограничивается отметкой в 250V (напряжение в сети ведь может быть и завышенным). Тогда на выходе фильтра мы получим все 350V. Именно поэтому конденсаторы имеют рабочее напряжение 400V, с запасом.
На печатной плате сварочного аппарата TELWIN Force 165 элементы сетевого выпрямителя занимают довольно большую площадь (см. фото выше). Выпрямительный диодный мост установлен на охлаждающий радиатор. Через диодную сборку протекают большие токи и диоды, естественно, нагреваются. Для защиты диодного моста на радиаторе установлен термопредохранитель, который размыкается при превышении температуры радиатора выше 90С°. Это элемент защиты.
В выпрямителе применяются диодные сборки (диодный мост) типа GBPC3508 или аналогичный. Сборка GBPC3508 рассчитана на прямой ток (I0) - 35А, обратное напряжение (VR) - 800V.
После диодного моста установлены два электролитических конденсатора (здоровенькие бочонки) ёмкостью 680 микрофарад каждый и рабочим напряжением 400V. Ёмкость конденсаторов зависит от модели аппарата. В модели TELWIN Tecnica 144 – 470 мкф., а в TELWIN Tecnica 164 – 680 мкф. Постоянное напряжение с выпрямителя и фильтра подаётся на инвертор.
Помеховый фильтр.
Для того чтобы высокочастотные помехи, которые возникают из-за работы мощного инвертора, не попадали в электросеть, перед выпрямителем устанавливается фильтр ЭМС – электромагнитной совместимости. На английский манер аббревиатура ЭМС обозначается как EMC (ElectroMagnetic Compatibility). Если взглянуть на схему, то фильтр EMC состоит из элементов С1, C8, C15 и дросселя на кольцевом магнитопроводе T4.
Инвертор.
Схема инвертора собрана по схеме так называемого "косого моста". В нём используется два мощных ключевых транзистора. В сварочном инверторе ключевыми транзисторами могут быть как IGBT-транзисторы, так и MOSFET. Например, в моделях Telwin Tecnica 141-161 и 144-164 используются IGBT-транзисторы (HGTG20N60A4, HGTG30N60A4), а в модели Telwin Force 165 применены высоковольтные MOSFET-транзисторы (FCA47N60F). Оба ключевых транзистора устанавливаются на радиатор для отвода тепла. Фото одного из двух транзисторов MOSFET типа FCA47N60F на плате TELWIN Force 165.
Снова взглянем на принципиальную схему и найдём на ней элементы инвертора.
Постоянное напряжение коммутируется транзисторами Q5 и Q8 через обмотку импульсного трансформатора T3 с частотой гораздо большей, чем частота электросети. Частота переключений может составлять несколько десятков килогерц! По сути, создаётся переменный ток, как и в электросети, но только он имеет частоту в несколько десятков килогерц и прямоугольную форму.
Для защиты транзисторов от опасных выбросов напряжения используются демпфирующие RC-цепи R46C25, R63C30.
Для понижения напряжения используется высокочастотный трансформатор T3. С помощью транзисторов Q5, Q8 через первичную обмотку трансформатора T3 (обмотка 1-2) коммутируется напряжение, которое поступает от сетевого выпрямителя (DC+, DC-). Это то самое постоянное напряжение в 310 – 350V, которое было получено на первом этапе преобразования.
За счёт коммутирующих транзисторов постоянное напряжение преобразуется в переменное. Как известно, трансформаторы постоянный ток не преобразуют. Со вторичной обмотки трансформатора T3 (обмотка 5-6) снимается уже намного меньшее напряжение (около 60-70 вольт), но максимальный ток может достигать 120 – 130 ампер! В этом и заключается основная роль трансформатора T3. Через первичную обмотку течёт небольшой ток, но большого напряжения. Со вторичной обмотки уже снимается малое напряжение, но большой ток.
Размеры этого самого трансформатора невелики.
Его вторичная обмотка выполнена несколькими витками ленточного медного провода в изоляции. Сечение провода внушительное, да и не мудрено, ток в обмотке может достигать 130 ампер!
Далее со вторичной обмотки импульсного трансформатора переменный ток высокой частоты выпрямляется мощными диодными выпрямителями. С выхода выпрямителя (OUT+, OUT-) снимается электрический ток с нужными параметрами. Это и необходимо для проведения сварочных работ.
Выходной выпрямитель.
Выходной выпрямитель собран на базе мощных сдвоенных диодов с общим катодом (D32, D33, D34). Эти диоды обладают высоким быстродействием, т. е. они могут быстро открываться и также быстро закрываться. Время восстановления trr < 50 ns (50 наносекунд).
Это свойство очень важно, поскольку они выпрямляют переменный ток высокой частоты (десятки килогерц). Обычные выпрямительные диоды с такой задачей бы не справились – они бы просто не успевали открываться и закрываться, нагревались и выходили бы из строя. Поэтому в случае ремонта заменять диоды в выходном выпрямителе следует именно быстродействующими.
В выпрямителе используются сдвоенные диоды марок STTH6003CW, FFH30US30DN, VS-60CPH03 (с ними мы ещё встретимся ). Все эти диоды являются аналогами, рассчитаны на прямой ток 30 ампер на один диод (60 ампер на оба) и обратное напряжение 300 вольт. Устанавливаются на радиатор.
Для защиты диодов выпрямителя используется демпфирующая RC-цепочка R60C32 (см. схему силовой части).
Схема запуска и реализация «мягкого пуска».
Для питания микросхем и элементов, которые расположены на плате управления, используется интегральный стабилизатор на 15 вольт – LM7815A. Он установлен на радиатор. Напряжение питания на стабилизатор поступает с основного выпрямителя PD1 через два последовательно включенных резистора R18, R35 (6,8 кОм 5W). Эти резисторы понижают напряжение и участвуют при запуске схемы.
Напряжение +15 со стабилизатора U3 (LM7815A) поступает на управляющую схему. Далее, когда схема управления и драйвер «раскачали» мощную схему инвертора, то на дополнительной вторичной обмотке трансформатора T3 (обмотка 3-4) появляется напряжение, которое выпрямляется диодом D11.
Через диод D9 напряжение питания поступает на интегральный стабилизатор LM7815A и теперь схема «запитывает» как бы сама себя. Вот такой вот хитрый «приём».
Выпрямленное напряжение после диода D11 также служит для питания реле RL1, охлаждающего вентилятора V1 и индикаторного светодиода D10 (Verde – "Зелёный"). Резисторы R40, R41, R65, R37 гасят излишки напряжения. Для стабилизации напряжения питания вентилятора V1 (12V) применяется 5-ти ваттный стабилитрон D36 на 12V.
Реле RL1 обеспечивает плавный запуск инвертора («мягкий пуск»). Разберёмся с этим подробнее.
В момент включения сварочного аппарата начинается заряд электролитических конденсаторов. В самом начале зарядный ток очень велик и может вызвать перегрев и выход из строя диодов выпрямителя. Чтобы уберечь диодную сборку от повреждения зарядным током применяется схема ограничения заряда (или «мягкого пуска»). Взглянем на схему.
Основным элементом схемы «мягкого пуска» служит резистор R4, мощность которого 8W (8 ватт). Сопротивление резистора – 47 ом. Именно на него возложена роль ограничения зарядного тока в первые моменты после включения.
После того, как заряд конденсаторов закончился, а инвертор начал работу в штатном режиме, электромагнитного реле RL1 замыкает контакты. Контакты реле шунтируют резистор R4, и в дальнейшем он не участвует в работе схемы, так как весь ток проходит через контакты реле. Таким образом реализован плавный запуск.
На плате инвертора TELWIN Force 165 также можно найти элементы схемы «мягкого пуска». В качестве реле RL1 выступает электромагнитное реле модели Finder на рабочее напряжение 24V (параметры контактов реле – 16A 250V~).
Итак, мы узнали о том, что сварочный инвертор состоит из сетевого выпрямителя 220V, мощного инвертора на транзисторах, понижающего трансформатора и выходного выпрямителя. Это силовые части схемы. Через них протекают огромные токи. Но где же «мозги» этого устройства? Кто управляет работой инвертора?
Все своими руками
Приветствую друзья. Сегодня опять ремонт сварочного Ресанта, на этот раз Ресанта САИ-190К. Друг принес ее и говорит просто перестала варить после долгой работы, более информации по ней нет.
Предварительно из интернета скачиваю схему Ресанта САИ 190, вот ссылка на схему. Схематика косой мост с двумя парами IGBT транзисторов и обратными диодами на 16А. Стандартный драйвер с развязкой через трансформатор. Выходные диоды и дроссель. Наличие дросселя особенно радует
Схема сварочного Ресанта САИ 190
Разбираю сварочный и что вижу внутри?
Крупных размеров силовой трансформатор с хорошей изоляцией обмоток. Маленький дросселек, похоже он тут для понтов. Два радиатора по одному IGBT транзистору и два конденсатора вместо трех.
Так эта Ресанта похоже подвальной сборки, потому что ни обной на столько упрощенной схемы я не нашел. Китайская не китайская, а ремонтировать все равно буду.
На всякий случай с обратной стороны этот китаец выглядит так.
Ремонт сварочного Ресанта САИ 190
По стандартной схеме проверяю силовую часть. Для этого использую мультиметр Unit И тут же нахожу пробой между плюсом и минусом по шине 310В.
Тут вариантов несколько: транзисторы, диодный мост и обратные диоды. Проверяю транзисторы звонятся как мертвые. На всякий случай выпаиваю транзисторы и вижу под радиатором пробитые обратные диоды
Вместо 16А стоят 8А и напряжение пробоя 600В. Че то уже совсем не вразумительное, сколько же тока он дает на дугу.
Проверяю уже выпаянные транзисторы и они действительно пробиты
Короткое замыкание по шине 310В пропало, но все равно проверю диодный мост на обрыв, и мостик оказался жив. Осталось проверить драйвер транзисторов и можно проверить инвертор. Проверяю все детали и снимаю осциллограммы
Проверку управляющего сигнала провел карманным осцилографом DSO 138. Проверяю сигнал только с нагрузкой в виде керамической емкости. Емкость выбирается такой же как емкость затвора, для данного апарата не помню уже какие транзисторы стояли.
Второй транзистор проверяется так же. На фото вы видите такую осциллограмму, потому что я щупы перепутал местами. Но все же прямоугольник присутствует, ну почти прямоугольник 🙂 А так же есть смещение относительно нуля, потому что я не откалибровал нуль перед замерами.
По моему все хорошо, можно паять транзисторы на место и проверить работу сварочного инвертора. Запускаю инвертор через лампу и лампа как всегда моргнула и погасла, все хорошо. Пускаю напрямую и на выходе инвертора напряжение ХХ
Не вижу препятствий для полноценной проверки сварочного инвертора на балластную нагрузку
И эта «шляпа» господа. Максимальный ток сварочного Ресанта САИ 190 всего 120А. Клевая подделка, мне нравиться. Напоминает мой Procraft с индикацией на 300А, а током на 80А. Как я его доработал Прокрафт до 120А вот ссылка
Далее сжег пару электродов 3мм и инвертор Ресанта полностью прошел проверку
На этом все, если хотите новых статей подписывайтесь на мои каналы в социальных сетях. Ссылки вверху страницы
С ув. Эдуард
6 комментариев для “ Ремонт сварочного Ресанта ”
Здравствуйте,Эдуарт Я хочу купить китайский сварочный аппарат для домашнего использования.Сварка не длительная и не частая Не могли бы Вы посоветовать какой марки мне купить,чтобы была не очень дорогая и не плохого качества.Заранее Вас благодарю.
Все китайские китайцы одинаковы. Я не могу вам ничего сказать пока не потрогаю своими руками.
Из проверенного Ресанта, Rubik, Сталь, Эдон. Варил этими аппаратами, все норм. Но опять же если Ресанта и Эдон не паленый, токи будут до 160-180А. Можно 4 варить смело)
Если оно бахнет, то не с такой силой, как бахнуло бы без лампы. Потому что кондеи не зарядиться полностью.
И опять же лампа спасет, если остались какие то случайные сопли из припоя. или допустим в дежурке КЗ, лампа спасет))
Это не подделка, это просто другая фабрика, их на данный момент 3. Вышел из строя он от удара, причем во включенном состоянии, его попросту уронили, из за чего замкнули радиаторы IGBT транзисторов, место кз отлично видно на фото. Упрощенный? Чем же? Тем что стоит 2 электролита вместо 3х? Ну а на емкость то вы не обратили внимания? Там где их 3 они на 470 мкф, а тут на 680, это компакт серия, потому так и сделали.
Че там, где видно КЗ меж радиаторов? Черный след? капелька сплавленного металла?
470мкф там, а не 680. ток 120А. Вроде так все было, не знаю о чем вы.
Комплектующие для сварочного аппарата РЕСАНТА
Мы являемся поставщиком комплектующих и запасных частей для сварочного аппарата РЕСАНТА. Запросите стоимость у нас:
Вентиляторы для сварочного аппарата РЕСАНТА
Арт. | Название | Цена | Наличие |
---|---|---|---|
AN14382 | Вентилятор / 120x120x25мм / DC 12В / YL12025HS / 0,4A | 750 | в наличии |
AN14381 | Вентилятор / 92x92x25мм / DC 12В / 0,15A | 650 | недоступен для заказа |
AN16851 | Вентилятор / 92x92x25мм / DC 12В / RDH9025S1 / JF0925B1H-R 0.35A R-37-120551-01-00 fanMMA 140 Digital, MMA160 Digital | 714 | в наличии |
AN14380 | Вентилятор / 92x92x25мм / DC 12В / 0,25A | 650 | под заказ |
AN29375 | Вентилятор / 92x92x25мм / DC 12В / RD9225S12H / 0,32A | 650 | под заказ |
AN31139 | Вентилятор / 92x92x25мм / DC 24В / VD9225HHS / 0,24A | 650 | под заказ |
AN18646 | Вентилятор / 92x92x25мм / DC 24В / Y-Y9225H24S (JF0925B2H) / 0,19A | 650 | под заказ |
AN14379 | Вентилятор / 92x92x25мм / DC 24В / YDH9025S24 / 0,25A | 650 | под заказ |
Транзисторы для сварочного аппарата РЕСАНТА
Диоды для сварочного аппарата РЕСАНТА
Арт. | Название | Цена | Наличие |
---|---|---|---|
AN16742 | - Диод IN4007 R-04-010100-02-00 Diode/IN4007 | 54 | в наличии |
AN17640 | 1n4007 (1A 700V 500nS) | 205 | в наличии |
AN15546 | BAV99 SOT-23 NXP Диод импульсный | 20 | в наличии |
AN15663 | BYS10-45-E3/TR3 DO-214AC Vishay | 30 | в наличии |
AN13450 | HFA25TB60 TO-220AC IR Сверхбыстрый диод | 300 | в наличии |
AN14319 | STTH6003CW TO-247 ST | 260 | в наличии |
AN16975 | UF4007 DO-41 Диод ультрабыстрый 1А 1000В | 10 | в наличии |
AN16740 | Диод / IN5408 R-04-010100-03-00 / DO-201 / 3А / 1000В / Diodes / | 32 | в наличии |
AN16207 | Диод / Ультрабыстрый MUR1560G / TO-220AC / 15А / 600В / ONS / | 318 | в наличии |
AN13508 | Диод выпрямительный / BYG20G / DO-214AC / 1.5А / 400В / Vishay / | 100 | в наличии |
Микросхемы для сварочного аппарата РЕСАНТА
Арт. | Название | Цена | Наличие |
---|---|---|---|
AN15008 | CA3140EZ DIP8 Intersil Операционный усилитель | 200 | в наличии |
AN16885 | HCPL3120-000E DIP8 сварка | 300 | в наличии |
AN17030 | HCPL3120-1105B DIP8 сварка | 270 | в наличии |
AN13840 | L7815CV ST Стабилизатор напряжения TO220 | 100 | в наличии |
AN14308 | LM317T ST TO220 сварка | 100 | в наличии |
AN18775 | LM324M SMD/аналог LM2902 | уточняйте | в наличии |
AN15022 | PC817 SHARP DIP | 150 | в наличии |
AN14814 | RC4558P DIP8 | 100 | в наличии |
AN16066 | SG3525A YR6471BA шим dip16 сварка | 100 | в наличии |
AN16175 | SG6859 DIP8 аналог SG6860 aaqcd сварка | 400 | в наличии |
Конденсаторы для сварочного аппарата РЕСАНТА
Арт. | Название | Цена | Наличие |
---|---|---|---|
AN14977 | 470 мкФ 35В 17x10мм Электролитический | 100 | в наличии |
AN34556 | 560 мкФ 400В 45x35мм 105С Электролитический | 450 | в наличии |
AN28020 | 680 мкФ 450В 35х48мм 85С Электролитический | 740 | в наличии |
AN16378 | 2200 мкФ 50В 31x16 | 30 | под заказ |
Резисторы для сварочного аппарата РЕСАНТА
Арт. | Название | Цена | Наличие |
---|---|---|---|
AN29272 | Резистор / 2,2 Ом / 0,25 Вт / | 10 | в наличии |
AN16760 | Резистор / 6,8 Ом / 0,25 Вт / (R-01-010002-04-00) | 32 | в наличии |
AN15998 | Резистор проволочный мощный (цементный) (SQP) / 22 Ом / 5 Вт / | 232 | в наличии |
AN15622 | Резистор проволочный мощный (цементный) (SQP) / 47 Ом / 10 Вт / | 160 | в наличии |
AN16098 | Резистор проволочный мощный (цементный) (SQP) / 51 Ом / 10 Вт / | 218 | в наличии |
AN18791 | Резистор углеродистый (CF-25) / 10 Ом / 0,25 Вт / | 10 | в наличии |
AN18788 | Резистор углеродистый (CF-25) / 2,2 Ом / 0,25 Вт / | 10 | в наличии |
AN13453 | Резистор / 18 Ом / 0,25 Вт / | 100 | под заказ |
AN16916 | Резистор / 22 Ом / 0,25 Вт / 5% / | 20 | под заказ |
AN13454 | Резистор / 36 Ом / 0,25 Вт / | 100 | под заказ |
Стабилитроны для сварочного аппарата РЕСАНТА
Арт. | Название | Цена | Наличие |
---|---|---|---|
AN13482 | BZV55-C10.115 NXP DO-41 | 100 | в наличии |
AN15665 | BZV55-C20 DC SOD80 | 75 | в наличии |
AN13301 | BZX55C18 DC DO-35 | 34 | в наличии |
AN29577 | BZX79C 18V DO-3 | 203 | в наличии |
AN13298 | BZV55-C15 DC SOD80 | 100 | под заказ |
AN13303 | BZV55-C18.115 NXP SOD80 | 100 | под заказ |
AN16242 | BZV55-C20.115 NXP SOD80 | 100 | под заказ |
AN15900 | BZX55C18 DC DO-41 | 20 | под заказ |
AN15873 | BZX55C4V7 DC SOD80 | 50 | под заказ |
AN15541 | BZX55C4V7 Тайвань DO-35 4.7В 0.5Вт | 205 | под заказ |
Переключатели, контакторы, кнопки для сварочного аппарата РЕСАНТА
Арт. | Название | Цена | Наличие |
---|---|---|---|
AN15612 | Вилка сетевая с заземлением (белая) / Кабельная / P+N+PE / 16А - 250В | 100 | под заказ |
AN16907 | Выключатель клавишный Power switch/HY12-9-4 20A 220V(Red/красный) ARC 160 mini N-07-020000-12-00 | 345 | под заказ |
AN35250 | Выключатель клавишный RWB-502 (Зеленый) | 245 | под заказ |
AN16094 | Переключатель сети клавишный (зеленая) 20A 250VAC 4-PIN (JD03-A1) | 343 | под заказ |
Комплектующие REDBO, EDON (Редбо, Эдон) для сварочного аппарата РЕСАНТА
Арт. | Название | Цена | Наличие |
---|---|---|---|
AN29083 | _ Транзистор FGH40N60 корпус ТО-247 | уточняйте | под заказ |
AN29123 | _ Транзистор FGH60N60 корпус ТО-247 | 560 | под заказ |
Горелки для сварочного аппарата РЕСАНТА
Клапаны для сварочного аппарата РЕСАНТА
Арт. | Название | Цена | Наличие |
---|---|---|---|
AN16138 | Клапан газовый углекислотный электромагнитный 220V | 1 4 00 | под заказ |
Аксессуары для сварочного аппарата РЕСАНТА
Арт. | Название | Цена | Наличие |
---|---|---|---|
AN14448 | Кабельная вилка (наконечник) TRAK-SK 10-25мм ВМ-100 | 250 | в наличии |
AN18563 | Кабельная вилка 10-25mm ISQ0070 | 605 | под заказ |
AN17047 | Панельная розетка 10-25 | 450 | недоступен для заказа |
AN13809 | Розетка силовая (панельная) СКРП-25 ГП-100 10-25 | 250 | недоступен для заказа |
AN14615 | Розетка силовая BlueWeld | 250 | под заказ |
Переменные резисторы (потенциометры) для сварочного аппарата РЕСАНТА
Арт. | Название | Цена | Наличие |
---|---|---|---|
AN15658 | RV28 B103 10kOhm | 450 | под заказ |
AN16805 | Ручка для потенциометра 1 kOhm / (R-37-231220-01-01) Красная, маленькая ,Series 180,Beak / ARC 160 mini | 260 | под заказ |
Механизмы протяжки проволоки/подающие механизмы для сварочного аппарата РЕСАНТА
Арт. | Название | Цена | Наличие |
---|---|---|---|
AN34606 | Держатель катушки/подкатушечник 5 кг. Mig 175D/Aurora Mig 175D 00010959 Aurora | 1 7 75 | в наличии |
AN18421 | ПРОФИ MIG 175 Digital держатель катушки wire coil holder ПРОФИ MIG 175 Digital на 5 кг R-37-221100-03-00 | 1 7 75 | под заказ |
Дополнительные комплектующие
Название | Цена | Наличие |
---|---|---|
Корпусные части для сварочного аппарата РЕСАНТА * | уточнить стоимость и сроки | |
Индикаторы для сварочного аппарата РЕСАНТА * | уточнить стоимость и сроки | |
Трансформаторы для сварочного аппарата РЕСАНТА * | уточнить стоимость и сроки | |
Разъемы для сварочного аппарата РЕСАНТА * | уточнить стоимость и сроки | |
Прочее для сварочного аппарата РЕСАНТА * | уточнить стоимость и сроки |
* Может не точно соответствовать модели, требуется уточнение
Не нашли нужную деталь? Отправьте запрос нашим менеджерам:
Весь спектр услуг по ремонту сварочного аппарата РЕСАНТА в Санкт-Петербурге от компании Deria.
© 2017 Дериа Компьютерс. Все права защищены.
Со всеми вопросами и предложениями
обращайтесь по телефону (812) 599-50-50
Читайте также: