Дефекты при сварке алюминия

Обновлено: 25.01.2025

ИМХО:Спекулянты.) Внешний вид. Швы на видео вначале темы где чел каркас авто из алюминиевых труб варит.

При полуавтоматической сварке алюминиевых сплавов часто возникает нагар на поверхности сварного соединения.

Основной причиной нагара являются загрязнения жидкого металла сварочной ванны

оксидами алюминия и магния, которые всплывают на поверхность после кристаллизации сварного шва.

Нагар возможен при увеличении вылета или неправильном угле сварки.

При сварке способом «углом назад» глубина проплавления увеличивается и большая часть копоти вплывает на поверхность шва и сварной шов имеет более высокие пластические свойства.

При сварке способом «углом вперед» глубина проплавления уменьшается и большая часть загрязнений остается в шве.

При этом, пластические свойства шва снижаются по сравнению со сваркой способом

Нагар после сварки удаляется металлической щеткой.

При полуавтоматической сварке алюминиевых сплавов часто возникает нагар на поверхности сварного соединения.

Ну не знаю. У нас копоть по краям шва, а шов сам чистый. Оксиды магния и алюминия имеют белый цвет насколько я понимаю, и черными быть наверно не могут. Хотя можд я и ошибаюсь.

ну это не я придумал. Взято из литературы.

Я вот всё думаю: какая окись алюминия или магния? Белые они. С чем окисляться магнию и алюминию в среде аргона, где кислород?
А чёрный налёт это испарённый алюминий скорее всего. Прямых обоснований не приведу, ну а косвенные: вспомните цвет ладоней если долго тереть в них алюминиевую трубу к примеру, или что будет если ткнуть вольфрамом в ванну при рАДС. В обоих случаях чёрный налёт.

Че за литература та?)

тогда наверное произойдет выплеск магния из сварочной ванны который вылетит из зоны защиты аргоном. Атом магния врубиться в молекулу СО2 и отберет у неё кислород а С выпадет в виде черной копати.(но это мои домыслы скорее всего.) Остается объяснить почему атом магния не взаимодействует со свободным атомом кислорода, а забирает кислород у молекулы углекислого газа.)))

Я вот всё думаю: какая окись алюминия или магния? Белые они. С чем окисляться магнию и алюминию в среде аргона, где кислород?
А чёрный налёт это испарённый алюминий скорее всего. Прямых обоснований не приведу, ну а косвенные: вспомните цвет ладоней если долго тереть в них алюминиевую трубу к примеру, или что будет если ткнуть вольфрамом в ванну при рАДС. В обоих случаях чёрный налёт.

В обычных условиях наверное практически не возможно обеспечить полную чистоту и защиту т.к. из за высокой активности алюминия окисляется он мгновенно, уже через 15 минут пленка достигает в среднем 0.04мм! Еще стоит отметить, что в ажной характеристикой окисной пленки алюминия является ее способность абсорбировать газы, в особенности водяной пар, который удерживается окисной пленкой до температуры плавления металла. В от вам и причины для образования нагара. Думаю что 100%-ю защиту вы сможете получить только в камере. Сам лично в камере не сваривал, но наверно если там находится чистый металл то теоретически сварка должна быть чистой.

Металлургические и технологические особенности сварки алюминия

Применение алюминия в технике обусловлено его малой плотностью (2,7 г/см 3 ), примерно в 3 раза меньшей, чем у стали, повышенной хладо-стойкостью, коррозионной стойкостью в окислительных средах и на воздухе. Чистый алюминий обладает малой прочностью (σВ ≤ 10 кгс/мм 2 ), поэтому из него изготовляют изделия, для которых требуется только высокая коррозионная стойкость.

Алюминий и его сплавы обладают низкой температурой плавления (температура плавления чистого алюминия 660° С), высокой тепло и электропроводностью, повышенным по сравнению со сталью коэффициентом линейного расширения и более низким значением модуля упругости.

Алюминий и его сплавы делят на две основные группы: деформируемые, применяемые в прессованном, катаном и кованом состояниях, и литейные (недеформируемые), используемые в виде литья. Деформируемые сплавы, в свою очередь, делят на термически не упрочняемые, к которым относятся технический алюминий и сплавы его с марганцем и магнием, и термически упрочняемые, к которым относятся сплавы алюминия с медью, цинком и другими элементами. К литейным относятся сплавы со значительным содержанием кремния или меди.

Большинство сварных конструкций изготовляют из деформируемых термически не упрочняемых сплавов алюминия в ненагартованном виде. В последние годы для изготовления сварных конструкций все в большем объеме начинают применять термически упрочняемые сплавы. Затруднение при сварке этих сплавов вызывает снижение прочности металла в околошовной зоне. Ранее для получения конструкций на этих сплавов применяли исключительно контактную точечную и стыковую сварку. В настоящее время научились применять также аргоно-дуговую и злектронно-лучевую сварку.

Литейные сплавы находят ограниченное применение в сварных конструкциях. Сварку их выполняют преимущественно при исправлении дефектов литья и при соединении литейных деталей с узлами из деформируемых сплавов.

Постоянными примесями в техническом алюминии и его сплавах являются железо и кремний.

Металлургические и технологические особенности сварки.

Для алюминия и его сплавов применяют практически все промышленные способы сварки плавлением и давлением. Газовую и дуговую сварку угольными или графитовыми электродами, а также сварку вручную покрытыми электродами в настоящее время используют редко. Наиболее широкое распространение для изготовления конструкций, особенно ответственных, приобрела сварка в среде инертных газов. При электроннолучевой сварке алюминия и некоторых его сплавов получаются швы, обладающие высокими механическими свойствами. Автоматическая дуговая сварка с использованием флюсов (полуоткрытой и закрытой дугой) применяется для крупногабаритных конструкций, а ЭШС - для сплавов больших толщин. Из способов сварки в твердом состоянии широко используется контактная сварка. Такие виды сварки, как диффузионная и холодная для алюминия и особенно его сплавов, применяются в ограниченных масштабах главным образом из-за трудностей при создании особо чистых поверхностей соединяемых деталей, свободных от оксидных пленок. Специфические теплофизические свойства алюминия и его сплавов (высокая теплоемкость, теплопроводность и скрытая теплота плавления при сравнительно низкой температуре, плавления) определяют оптимальные параметры процесса сварки. Так, при сварке алюминия плавлением необходим сварочный ток, превосходящий в 1,2-1,5 раза ток для стали, несмотря на то что температура плавления алюминия значительно ниже, чем стали.

Затруднение при сварке вызывает также большая склонность металла шва к образованию пор и кристаллизационных трещин (особенно характерных для сплавов на основе алюминия). На сплавах повышенной прочности (например, легированных цинком и магнием) наблюдается появление холодных трещин. Для их предотвращения применяют предварительный подогрев изделия (или зоны расположения швов) до температуры 250-400° С. Предварительный подогрев также эффективен для снижения затрат погонной энергии, особенно при сварке массивных деталей. Большая жидкотекучесть алюминия и малая его прочность при температуре выше 550° С обусловливают применение подкладок при сварке.

Значительная усадка при затвердевании сварного шва, а также высокий коэффициент линейного расширения приводят к существенным остаточным деформациям (большим, чем деформации конструкций из малоуглеродистой стали). При сварке нагартованного алюминия и термически упрочненных алюминиевых сплавов снижается прочность сварного соединения по сравнению с прочностью основного металла, что создает определенные трудности.

Существенные затруднения при сварке возникают вследствие легкой окисляемости алюминия в твердом и расплавленном состояниях. Образующаяся тугоплавкая пленка оксида алюминия Аl2О3 препятствует формированию шва и является источником неметаллических включений в металле шва. Для получения качественных соединений при сварке плавлением необходимы защита шва от насыщения примесями-газами атмосферы и принятие специальных мер для удаления или разрушения пленки оксидов.

Подготовка к сварке.

Качество сварных соединений из алюминия и его сплавов в значительной степени определяется подготовкой поверхности свариваемых кромок и электродной проволоки.

Перед сваркой тщательно удаляют жировую смазку, которой покрывают полуфабрикаты при консервации. Поверхность металла на ширине 100-150 мм от кромки обезжиривают ацетоном, авиационным бензином, уайт-спиритом или другими растворителями. Пленку оксидов, находящуюся под жировой смазкой, удаляют механическими способами или химическим травлением. При механических способах свариваемые кромки на ширине 25-30 мм зачищают наждачной бумагой, шабером или металлической щеткой. Для щеток рекомендуется использовать проволоку из нержавеющей стали диаметром не более 0,15 мм. Зачистка кромок шабером и металлической щеткой предпочтительнее, так как не создает опасности загрязнения шва абразивом. Шабрение рекомендуется выполнять непосредственно перед сваркой.

В случае удаления пленки оксидов химическим способом детали травят в течение 0,5-1 мин в реактиве следующего состава: 50 г едкого натра технического и 45 г фтористого натрия технического на 1 л воды. После травления следуют промывка в проточной воде и осветление в течение 1-2 мин в 30-35 %-ном растворе азотной кислоты для алюминия и сплавов типа АМц или в 25 %-ном растворе ортофосфорной кислоты для сплавов типа АМг и В95. После повторной промывки в проточной воде обработка заканчивается сушкой сжатым воздухом при температуре 80-90° С до полного испарения влаги.

Подготовленная таким образом поверхность сохраняет свои свойства в течение 3-4 дней. При более длительном хранении на зачищенной поверхности адсорбируется влага из воздуха и образуется оксидная пленка. Для того чтобы избежать дефектов швов, необходимо повторно зачистить кромки. Изучению кинетики образования и структуры оксидной пленки на поверхности алюминия посвящено большое число исследований.

Для очистки поверхности алюминиевой сварочной проволоки рекомендуется следующая ее обработка: промывка растворителем для обезжиривания; травление в 15%-ном растворе технического едкого натра в течение 5-10 мин при Т = 60 - 70° С; промывка в холодной воде, сушка, дегазация при Т = 350° С в течение 5-10 ч при вакууме 0,133 Па (вакуумная сушка). Операция вакуумирования может быть заменена прокалкой в атмосфере воздуха при температуре 300° С в течение 10-30 мин.

Хорошие результаты по очистке поверхности алюминиевой проволоки дает электрополирование ее поверхности. В качестве электролита используют раствор следующего состава: 70 мл Н3РО4, 300 мл H2SO4, 42 г Сг2О3. Полирование происходит при температуре 95-100 ° С. Для каждого диаметра проволоки при постоянной скорости протяжки ее через ванну существует минимальная величина тока, при котором: возможен процесс полирования. Так, при скорости протяжки 100 м/ч электрополирование проволоки марки АМг6 диаметром 1,6 мм возможно при токе 19,8 А, а диаметром 2,5 мм - при токе 130 А.

Для уменьшения пористости швов и удаления адсорбированной влаги после химической обработки рекомендуется сварочную проволоку подогревать в инертном газе при Т=200 - 480° С в течение 30-80 мин. Подогрев проволоки в аргоне снижает содержание адсорбированной влаги не менее чем в 5 раз.

Требуемая чистота кромок и сварочных материалов достигается при сварке изделий из алюминия и его сплавов на специально оборудованных участках.

Сварка алюминия

Даже в современных условиях сварка алюминия является достаточно сложным технологическим процессом. Именно по этой причине существует множество различных видов технологий, чтобы достичь максимально качественного результата при определенных условиях. Также, как это происходит при сварке нержавейки, во многом вина сложности сваривания ложится на свойства металла. Из-за частого использования материала в разнообразных сферах, с ним нередко приходится встречаться мастерам по сварке, так что создана целая индустрия, которая работает в этом направлении

Технология сварки алюминия своими руками

Сварочный шов после сварки алюминия

Свойства алюминия

Сварка алюминия становится более сложной, благодаря тому, что металл имеет высокую тепло- и электропроводность. Также роль играет относительно небольшая плотность, что дает малый вес. Сплавы алюминия обладают более высокими механическими свойствами, но сам металл в чистом виде легко поддается механическому воздействию. Тем не менее, он применяется во многих сферах благодаря своей легкости. Алюминий и его сплавы создаются согласно ГОСТ 4784-97.

Свариваемость

Одной из главных проблем свариваемости является то, что на поверхности металла очень быстро образуется пленка из оксидов. Температура ее плавления составляет более двух тысяч градусов, тогда как у алюминия она намного менее. Таким образом, пленка остается на расплавленных каплях, что делает его сваривание очень затруднительным. Из-за этого не всегда получается монолитный шов и страдает качество соединения. Для борьбы с такой пленкой требуется дополнительная защита, которую может обеспечить сварка аргоном.

Дефекты при сварке алюминия

Дефекты при сварке алюминия

Когда идет сварка алюминия, то очень трудно управлять ванной расплавленного металла, так как он обладает высокой жидкотекучестью. Благодаря этому приходится использовать теплоотводящие подкладки во время процесса сваривания. Шов может быть ослаблен и из-за появления кристаллизационных трещин, так как в алюминий может попасть водород, которые будет стремиться выйти наружу, образуя напряжения и, как следствие, трещины. Когда идет сварка алюминия, то происходит большая усадка, вызванная высоким коэффициентом линейного расширения. Из-за этого может возникнуть деформация.

По причине высокой теплопроводности металла для работы с ним требуется увеличивать ток, примерно, в 1,5 раза, как если бы шла работа со сталями. Это с учетом того, что температура плавления стали зачастую намного выше. Из-за этого тонкие листы могут прожигаться при любом неосторожном движении. Сложность повышает и то, что когда идет сварка алюминия в домашних условиях, то нередко нельзя точно выяснить, с какой именно маркой идет работа и какой у нее состав. Это усложняет подбор электрода.

Способы сварки алюминия

Сварка алюминия может проходить множеством различных способов, которые зависят от использования специальных технических средств, а также благодаря другим особенностям технологии. Могут использоваться защитные газы, флюсы и прочие вещи. Среди основных методов можно выделить:

  • ММА. Сварка алюминия без газа стандартными алюминиевыми электродами с защитным покрытием (наименее эффективный способ из-за большой вероятности получения бракованных соединений);
  • DC MIG. Сварка алюминия при помощи проволоки полуавтоматом с автоматической подачей присадочного материала;
  • AC TIG. При использовании неплавящегося вольфрамового электрода в среде защитных газов.

Все дополнительные защитные средства помогают бороться с образованием оксидной пленки. Для большего эффекта ток, вне зависимости от своего рода. Должен иметь обратную полярность, которая обеспечивает катодное распыление, что помогает разрушить пленку без воздействия сверхвысокой температуры. В любом из вышеприведенных способов нельзя использовать прямую полярность, иначе не будет должного эффекта.

Подготовка алюминия к сварке

Перед тем как пройдет сварка алюминия, металлические заготовки следует обработать. В особенности это касается кромок изделий, которые будут непосредственно участвовать в сваривании. Это помогает не только очистить от загрязнений и налетов, но и побороть оксидную пленку. Для подготовки следует выполнить следующий ряд процедур:

  • Обезжирить и очистить. Присадочный материал, а также сами детали заготовки тщательно очищаются от всех налетов масла, жира и грязи. Обезжирить алюминий можно при помощи ацетона, растворителем или авиационным бензином.
  • При необходимости, следует провести разделку кромок, если того требует толщина детали. Если толщина кромок составляет менее 4 мм, то их не стоит разделывать, так как при должном режиме сварка алюминия даст нормальный результат. Если идет сваривание при помощи стандартных электродов, то кромку не разделывают до 2 см толщины. Если происходит сварка тонких листов металла, толщина которых менее 1,5 мм, то следует варить встык с применением отбортовки.
  • Ликвидация оксидной пленки может происходить при помощи наждачной бумаги, если толщина детали составляет 2,5-3 см. Также можно использовать напильник или щетку по металлу. Эффективно борются с ней дополнительные флюсы.
Пошаговая инструкция при сварке

Технология сварки алюминия хоть и отличается от работы с другими видами металла, но во многом схожа с ними.

  1. В первую очередь всегда идет подготовка, теми методами, которые описаны выше. Ведь даже если деталь ранее была обработана, на ней могут появиться пленки после этого, так что всем этим нужно заниматься непосредственно перед сваркой.
  2. Далее следует выложить флюс на места сваривания. На кромках должно быть достаточное количество дополнительного материала, который помогает бороться с плохой свариваемостью металла.
  3. После этого технику, при помощи которой будут проводиться работы, следует выставить на нужные режимы, соответствующие сплаву и толщине металла.
  4. Затем следует подогреть металл горелкой, чтобы избежать резких перепадов температуры;
  5. После этого можно приступать к свариванию. Движения должны быть аккуратными, так как расплавленный металл имеет низкую вязкость и по своей плотности больше напоминает воду, что требует особого опыта при работе.
  6. После того как шов дошел до конца, металл желательно подогревать, чтобы он медленно и постепенно остывал, так как это помогает снять напряжения и высвободиться водороду, который мог попасть внутрь.

Технология сварки алюминия своими руками

Технология сварки алюминия своими руками

«Важно!

При работе с алюминием требуется очень деликатно следить за параметрами, так как все это может привести к порче заготовки.»

Защитный газ при сварке алюминия

Сварка алюминия предполагает использование защитных средств. Газ является основным из них, так как эффективность его применения стоит значительно выше других. К примеру, аргон является инертной средой, которая не пропускает ни какие другие элементы и вещества в сварочную ванну. Во время горения газ обволакивает расплавленный металл, так что даже воздух из атмосферы, в котором имеется кислород, не влияет на состояние расплавленного металла. Сварка алюминия без аргона также возможна, но будет не столь эффективной. Для этого используются другие инертные газы, ацетилен или обмазка электрода.

Защитный газ при сварке алюминия

Защитный газ при сварке алюминия

Температура горения защитной среды, как правило, заметно ниже, чем те6мпература плавления металла, поэтому, он выполняет только защитную и функцию подогрева, тогда как для расплавления применяется электрический ток. Применение газа является относительно дорогостоящей процедурой, так что используется преимущественно для таких сложных процессов как сварка алюминия.

Предотвращение дефектов

Высокий коэффициент линейного расширения дает большую усадку, которая может вызвать деформацию детали. Чтобы избежать данного дефекта, следует учитывать данный коэффициент, для чего нужен опыт работы с алюминием.

Для снятия напряжений в металле необходимо использовать предварительный подогрев, прежде чем начинать основной процесс сваривания. Это же касается и последующего остужения, так как это помогает выбраться водороду из швов.

Обработка швов при сварки алюминия

Обработка швов при сварки алюминия

Чтобы избежать появления непроверенных мест требуется опыт формирования плотного валика с жидкотекучими материалами. При работе могут также образовываться трещины и раковины. Для защиты от них применяют газ и прочие инертные среды. Благодаря всему этому сварка алюминия становится более простой и результативной.

Финишная обработка сварных швов

Когда сварка алюминия окончена, то следует обработать полученное изделие, чтобы результат был не только качественным, но и имел эстетический вид. В первую очередь нужно оббить образовавшийся на поверхности шлак, чтобы оценить внешний вид качества соединения. После этого нужно провести зачистку поверхности от мелких загрязнений, которые не оббились, что можно провести при помощи металлической щетки. После этого следует отшлифовать поверхность, чтобы она была максимально приближена к основному металлу и не имела выпирающих частей.

Особенности новых технологий

Сварка алюминия при помощи новых технологий, куда можно отнести и аргонно-дуговую технологию, дает более надежный результат, максимально защищенный от дефектов. Одной из основных особенной здесь является что идет сварка алюминия угольным электродом, или его вольфрамовым аналогом. Таким образом, не нужно подбирать присадочный материал, который бы соответствовал марке свариваемого металла, так как основным материалом служит тот, что на заготовке, а перемешивание идет неплавящимся электродом. Также новые технологии позволяют легче подобрать требуемый режим, так как обладают плавными регулировками.

Особенности сварки алюминия

Особенности сварки алюминия

Меры безопасности

Сварка алюминия может оказаться опасным процессом, если не придерживаться техники безопасности. В первую очередь следует позаботиться о наличии средств индивидуальной защиты, которые помогут защититься от негативного воздействия электрической дуги на глаза, а также от брызг металла и искр. Для этого понадобится защитная сварочная маска и спецодежда. Также необходимо соблюдать элементарные требования электро- и газовой безопасности. Не ставить баллон с газом ближе 5 метров от источника огня, а также всегда следить за его целостностью и исправностью.

Как предотвратить проблемы при сварке алюминия?

Проблемы при сварке алюминия часто становятся больной темой для неопытных сварщиков. Чтобы в ваших алюминиевых сварных швах не появлялись дефекты, первым делом узнайте, как предотвратить их появление – и примите превентивные меры.

Сварка алюминия

Быстрое и эффективное устранение проблем в ваших сварочных работах может сослужить вам хорошую службу в минимизации простоев и излишних затрат. Однако еще более полезно – узнать, как с самого начала предотвратить эти проблемы, независимо от того, какой материал вы используете при сварке.

Сварка алюминия предполагает решение специфических задач. Обладая низкой температурой плавления и высокой теплопроводностью, алюминий к тому же особо склонен к прожёгу на тонких участках металла, в то время как на толстых участках может наблюдаться непровар. Серьезной проблемой также являются дефекты сварки алюминия, такие как трещины, нагар и копоть, пористость в сварных швах.

Свойства алюминия оптимальны для многих областей применения

Тем не менее, коррозионная стойкость алюминия, высокое отношение предела прочности к весу в сочетании с высокой электропроводностью делают его отличным материалом для многих областей применения – от аэрокосмической промышленности до теплообменников, изготовления прицепов и, в последнее время, автомобильных кузовных панелей и рам.

Сварной раскос из алюминиевого сплава для космического корабля

Во избежание негативных воздействий на производительность и качество сварки, важно понять причины дефектов сварки алюминия, принять меры для их предотвращения и найти способы быстрого устранения оплошностей, если таковые возникают. Вот ответы на некоторые распространенные вопросы, которые помогут вам разрешить проблемы при сварке алюминия, возникающие на производстве.

Проблемы при сварке алюминия — причина появления шовных трещин

Горячая трещина в кратере

Горячее растрескивание и растрескивание под действием напряжения может произойти при автоматической дуговой сварке в среде инертного газа плавящимся электродом (GMAW) и неплавящимся электродом (GTAW). При наличии любого вида трещин, даже маленьких, сварной шов не отвечает требованиям стандартов и, в конечном счете, может разрушиться. Горячее растрескивание – это преимущественно химическое явление, в то время как растрескивание под напряжением – следствие механических нагрузок.

Трещина шва под действием напряжения

Существует три основных фактора, повышающих вероятность образования горячих трещин при сварке алюминия. Первый фактор – чувствительность основного металла к растрескиванию. К примеру, некоторые сплавы, такие как серия 6000, более склонны к растрескиванию, чем другие. Второй фактор – это присадочный металл, который вы используете. Третьим фактором является конструкция сварного соединения – некоторые конструкции ограничивают добавление присадочного металла.

Растрескивание под действием напряжения может произойти, когда сварной шов на алюминии охлаждается, и во время затвердевания присутствует чрезмерное напряжение усадки. Это может быть связано с вогнутым профилем наплавленного валика, слишком медленной скоростью перемещения электрода, жёстким защемлением свариваемых элементов или оседанием металла в конце сварного шва (кратерная трещина).

Как предотвратить появление трещин?

GMAW-сварка

Проблемы при сварке алюминия в виде горячего растрескивания в некоторых случаях можно легко решить. Для этого достаточно выбрать присадочный металл, химические свойства которого обуславливают более низкую чувствительность к растрескиванию при сварке. Каждый присадочный металл на основе алюминия имеет классификацию по стандарту AWS (Американское общество сварщиков), которая соответствует его регистрационному номеру Ассоциации производителей алюминия, а вместе они определяют химические свойства конкретного сплава.

Сварной шов со скошенной кромкой

Всегда обращайтесь к проверенным руководствам по выбору присадочного материала, поскольку не все присадочные материалы на основе алюминия подходят для каждого основного металла из алюминиевого сплава. Некоторые руководства по присадочным материалам дают рекомендации, непосредственно касающиеся ряда сварочных характеристик, таких как склонность к растрескиванию, прочность, пластичность, коррозионная стойкость, высокотемпературная прочность, сочетание оттенков цветов после анодирования, термообработка шва после сварки и ударная вязкость. Если вас беспокоит возможность растрескивания, выберите присадочный материал с самым высоким рейтингом в категории растрескивания.

Помимо этого, используйте такую конструкцию сварного соединения, которая может предотвратить образование горячих трещин. Например, хорошо использовать сварное соединение со скошенными кромками, так как эта конструкция позволяет добавить больше присадочного металла, что приводит к большему разбавлению основного металла и, как следствие, уменьшает его склонность к растрескиванию.

GTAW-сварка

Растрескивание под напряжением можно предотвратить использованием присадочного металла, содержащего кремний. Этот тип присадочного металла снижает усадочные напряжения, когда это возможно, особенно в трещиноопасных зонах, таких как начало и конец сварного шва (или кратеры). Также используйте функцию автоматического заполнения кратера или другие надежные методы заполнения кратера. Увеличение скорости движения электрода также уменьшает вероятность появления трещин в алюминии путем сужения зоны термического влияния (ЗТВ) и снижения количества расплавленного основного металла.

Еще один вариант борьбы с растрескиванием – предварительный подогрев. Он сводит к минимуму уровень остаточных напряжений в основном металле при сварке и после нее. Внимательный контроль количества подводимой теплоты имеет ключевое значение в этом деле. Для некоторых сплавов излишний подогрев может неприемлемо снизить предел прочности на растяжение основного металла.

Как лучше всего избежать прожёга и непровара

Использование импульсной GMAW-сварки – хорошая защита от прожёга алюминия толщиной 1/8 дюйма или тоньше. При этом способе сварки источники питания работают, переключаясь между высоким пиковым током и низким базовым током. В фазе пикового тока от алюминиевой проволоки отрывается капля и движется к сварному соединению, в то время как в фазе низкого базового тока дуга остается стабильной, и перенос металла отсутствует. Сочетание высокого пикового и низкого базового токов снижает подвод теплоты. Таким образом предотвращается прожёг, а образование брызг будет минимальным или нулевым.

Гелий и аргон

Проблемы при сварке алюминия значительной толщины весьма часто возникают из-за слабой силы тока. Поэтому учитывайте такие моменты во время работы. Обязательно установите достаточно высокую силу тока, это поможет полноценно проварить соединение. Хороший практический метод – использовать 250А для сварки материала толщиной 1/4 дюйма и 350А для сварки материала толщиной 1/2 дюйма. В некоторых случаях есть смысл добавить гелий в защитную газовую смесь, чтобы обеспечить более горячую дугу с лучшим проваром шва на более толстых участках. Для процесса GMAW-сварки хорошо использовать смесь 75% гелия с 25% аргона. При GTAW-сварке толстых участков алюминия используйте смесь 25% гелия и 75% аргона, чтобы улучшить провар.

Почему на сварном шве появились цвета побежалости?

Цвета побежалости на алюминии

Цвета побежалости и сажа появляются, если на основном металле и сварном шве скопились оксиды алюминия или магния. Это явление наиболее распространено при GMAW-сварке, поскольку при прохождении сварочной проволоки через дугу и плавлении некоторая её часть нагревается до температуры парообразования и конденсируется на более холодном основном металле, который недостаточно защищен средой инертного газа.

Сварка углом назад

Выбор подходящего присадочного металла – к примеру, из алюминиевого сплава серии 4000, который практически не содержит магния (по сравнению с 5000 серией алюминиевой присадки, которая содержит около 5% магния) – снижает вероятность того, что материал проволоки испарится в дуге и конденсируется на сварном шве в виде сажи.

Уменьшение расстояния от контактного наконечника до свариваемого изделия (CTWD), правильный угол наклона сварочного пистолета и скорость истечения защитного газа также препятствуют появлению цветов побежалости. Используйте сварку углом назад, которая помогает совершать очищающие движения от дуги в передней части сварного шва с целью удаления сажи. Увеличение размера сопла пистолета для GMAW-сварки или горелки для GTAW-сварки способствует защите дуги от сквозняков, из-за которых в зону сварки может попасть кислород. Всегда держите сопло чистым от брызг, чтобы обеспечить постоянный поток газа для защиты сварочной ванны.

Как устранить пористость?

Пористость – это общая неоднородность, формирующаяся главным образом из-за того, что водород попадает в сварочную ванну во время плавления и остается внутри сварного шва после его затвердения. Вы можете сделать несколько вещей, чтобы её предотвратить. Во-первых, убедитесь, что основной металл и присадочный метал чистые и сухие. Перед сваркой протрите алюминий с помощью растворителя и чистой тряпки, чтобы удалить всю краску, масло, жир либо смазочные материалы, которые могут привести к попаданию углеводородов в сварной шов. Затем почистите сварное соединение щеткой из нержавеющей стали, предназначенной для этой работы. Если основной металл из алюминиевого сплава хранился в прохладном месте, позвольте ему прогреться при температуре цеха в течение 24 часов. Это предотвращает образование конденсата на алюминии.

Хранение неупакованного присадочного металла в обогреваемом шкафу или помещении также снижает риск возникновения пористости. Это позволяет избежать условий точки росы и сводит к минимуму вероятность образования гидроксида на поверхности проволоки для GMAW-сварки или прутков для GTAW-сварки.

Заказывать присадочные металлы следует у проверенных производителей. Это связано с тем, что такие компании, как правило, тщательно очищают проволоку и прутки от вредных оксидов для GTAW-сварки, а также соблюдают все процедуры, необходимые для минимизации водородосодержащих осадочных соединений.

ac+dc_3typesAC_sample

И, наконец, рассмотрите возможность приобретения защитного газа с низкой точкой росы. Такие действия помогут предотвратить пористость шва. Соблюдайте все рекомендованные сварочные процедуры, касающиеся расхода защитного газа и цикла продувки.

Как и для любого метода сварки любых материалов, необходимо выполнить ряд рекомендаций, чтобы получить хороший результат. Механические и химические свойства алюминия таковы, что его сварка может оказаться непростой задачей. Всегда используйте самые эффективные методы очистки и хранения материалов и присадки, тщательно выбирайте правильное оборудование. Ведь проблемы при сварке алюминия всегда легче упредить, чем решать их постфактум.

Читайте также: