Что такое динамические свойства сварочных источников питания

Обновлено: 09.01.2025

В реальных установках ток может меняться довольно быстро. Вследствие тепловой инерции дугового столба изменение сопротивления дуги отстает от изменения тока.

Зависимость напряжения на дуге от тока при быстром его изменении называется динамической вольт-амперной характеристикой.

При возрастании тока динамическая характеристика идет выше статической (кривая В на рис. 1.4), так как при быстром росте тока сопротивление дуги падает медленнее, чем растет ток. При уменьшении - ниже, поскольку в этом режиме сопротивление дуги меньше, чем при медленном изменении тока (кривая С на рис.1.4).

Рисунок 1.4. - Динамическая вольт-амперная характеристика

Динамическая характеристика в значительной степени определяется скоростью изменения тока в дуге. Если в цепь ввести очень большое сопротивление за время, бесконечно малое по сравнению с тепловой постоянной времени дуги, то в течение времени спада тока до нуля сопротивление дуги остается постоянным. В этом случае динамическая характеристика изобразится прямой проходящей из точки 2 в начало координат (прямая Д), т.е. дуга ведет себя как металлический проводник, так как напряжение на дуге пропорционально току.

Падение напряжения на дуговом промежутке:

где Uз = Uк + Uа - околоэлектродное падение напряжения, Ed - продольный градиент напряжения в дуге, Id - длина дуги.

Из формулы следует, что с увеличением длины дуги падение напряжения на дуге будет увеличиваться, и ВАХ будет располагаться выше.

Чем быстрее уменьшать ток, тем ниже будут лежать динамические ВАХ. Это объясняется тем, что при снижении тока такие параметры дуги, как сечение ствола, температура, не успевают быстро измениться и приобрести значения, соответствующие меньшему значению тока при установившемся режиме.

Тема 1.3. Характеристики и свойства источника питания

Система «источник-дуга». Статические характеристики источников. Внешняя ВАХ источника. Графическое представление ВАХ источника: пологопадающие, крутопадающие, жесткие. Динамические свойства источников. Сварочные свойства источников питания. Надежность зажигания дуги. Устойчивость и стабильность процесса сварки. Начальное зажигание дуги. Схема зажигания дуги высоковольтным разрядом. Осциляторы. Влияние длины дуги на устойчивость системы. Влияние колебаний напряжения сети. Настройка режимов сварки. Эффективность регулирования параметров режима. Принцип саморегулирования. Системы управления сварочными источниками: АРДС и АРНД. Управление переносом электродного металла. Управление формированием сварного шва. Оценка сварочных свойств источников. Параметры источников питания. Основные требования к источникам питания.

Источники питания сварочной дуги имеют также свои вольт-амперные характеристики, которые могут быть падающими (рис. 1.4,а), жесткими (рис. 1.4,б,) и возрастающими (рис. 1.4,в).


а б в

Рисунок 1.4. - Вольт-амперные характеристики источников питания

Для стабильного горения дугинеобходимо, чтобы было равенство между напряжениями и токами дуги (Uд, Iд) и источника питания (Uп, In).

Источники питания с падающей и жесткой характеристиками применяют при ручной дуговой сварке, с возрастающей характеристикой - при полуавтоматической сварке, с жесткой и возрастающей - при автоматической сварке под флюсом и для наплавки.

Устойчивое горение сварочной дуги возможно только в том случае, когда источник питания сварочной дуги поддерживает постоянным необходимое напряжение при протекании тока по сварочной цепи.

Работу сварочной цепи и дуги нужно рассматривать при наложении статической вольт-амперной характеристики (ВАХ) сварочной дуги на статическую вольт-амперную характеристику источника питания (называемую также внешней характеристикой источника питания).

Ручная электросварка обычно сопровождается значительными колебаниями длины дуги. При этом дуга должна гореть устойчиво, а ток дуги не должен сильно изменяться. Также часто требуется увеличить длину дуги, поэтому дуга должна иметь достаточный запас эластичности при удлинении, т. е. не обрываться.

Статическая характеристика сварочной дуги при ручной сварке обычно является жесткой, и отклонение тока при изменении длины дуги зависит только от типа внешней характеристики источника питания. При прочих равных условиях эластичность дуги тем выше, а отклонение тока дуги тем меньше, чем больше наклон внешней характеристики источника питания. Поэтому для ручной электросварки применяются источники питания с падающими внешними характеристиками. Это дает возможность сварщику удлинять дугу, не опасаясь ее обрыва, или уменьшать длину дуги без чрезмерного увеличения тока. Также обеспечиваются высокая устойчивость горения дуги и ее эластичность, стабильный режим сварки, надежное первоначальное и повторное зажигание дуги благодаря повышенному напряжению холостого хода, ограниченный ток короткого замыкания.

Ограничение этого тока имеет большое значение, так как при ручной дуговой сварке происходит переход капли расплавленного металла электрода на изделие, и при этом возможно короткое замыкание.

При больших значениях тока короткого замыкания происходят прожоги металла, прилипание электрода, осыпание покрытия электрода и разбрызгивание расплавленного металла. Обычно значение тока короткого замыкания больше тока дуги в 1,2-1,5 раз.

Основными данными технических характеристик источников питания сварочной дуги являются напряжение холостого хода, номинальный сварочный ток, пределы регулирования сварочного тока.

Напряжение холостого хода источника сварочного тока - напряжение на его зажимах при отсутствии дуги, номинальный сварочный ток - допустимый по условиям нагрева источника питания ток при номинальном напряжении на дуге.

В процессе сварки непрерывно меняются значения тока и напряжения на дуге в зависимости от способа первоначального возбуждения дуги и при горении дуги - характера переноса электродного металла в сварочную ванну.

При сварке капли расплавленного металла замыкают дуговой промежуток, периодически изменяя силу тока и длину дуги, происходит переход от холостого хода к короткому замыканию, затем к горению дуги с образованием капли расплавленного металла, которая вновь замыкает дуговой промежуток. При этом ток возрастает до величины тока короткого замыкания, что приводит к сжатию и перегоранию мостика между каплей и электродом. Напряжение возрастает, дуга вновь возбуждается, и процесс периодически повторяется.

Изменения тока и напряжения на дуге происходят в доли секунды, поэтому источник питания сварочной дуги должен обладать высокими динамическими свойствами, т. е. быстро реагировать на все изменения в дуге.

В реальном аппарате после размыкания контактов расстояние между ними меняется и дуга имеет переменную длину. В этом случае процесс отключения можно представить следующим образом.

Разобьем путь, который проходит контакт, на участки и нанесем статические вольт-амперные характеристики, соответствующие концу каждого участка (рис. 1.5). Если индуктивность цепи мала, то по мере увеличения длины дуги ток будет быстро принимать значения, соответствующие точке пересечения статических характеристик с прямой U-iR. В точке 0 ток достигнет критического значения. При дальнейшем увеличении длины дуги наступят условия для гашения.

Длина дуги, при которой статическая характеристика касается прямой U-iR, называется критической длиной дуги. После точки 0 ток быстро уменьшается до нуля, дута гаснет.


Рисунок 1.5. - Динамическая вольт-амперная характеристика с участками

В цепи с большой индуктивностью спадание тока из-за большой величины индуктивности замедляется; вольт-амперная характеристика дуги сразу же после расхождения контактов поднимается выше прямой U-iR. В момент гашения дуги возможны большие перенапряжения.

При отключении активной нагрузки гашение происходит быстро, никаких перенапряжений не происходит.

Вольт-амперные характеристики источников сварочного тока

ВДМ-6301 Сварочное оборудование

ВДМ-6301

Статические характеристики источников сварочного тока

Вольт-амперной характеристикой дуги называют зависимость между напряжением и током дуги в установившемся (статическом) режиме. Напряжение в процессе сварке зависит от длины дуги, чем длиннее сварочная дуга, тем выше напряжение. Чем круче вольт-амперная характеристика источника сварочного тока, тем меньше влияет длина сварочной дуги на сварочный ток.

Статическая вольт-амперная характеристика дуги показывает зависимость между установившимися значениями тока и напряжения дуги при постоянной ее длине.

При ручной сварке статическая характеристика сварочной дуги обычно является жесткой, и отклонение тока при изменении длины дуги зависит только от типа внешней характеристики источника питания.

Внешняя вольт-амперная характеристика представляет собой зависимость Uи= f(Iд), которую в общем виде получим из анализа схемы энергетической системы «источник- дуга»

Источник может pаботать в одном из тpех режимов: холостой ход, нагpузка, коpоткое замыкание.

При холостом ходе дуга не горит, ток отсутствует. В этом случае напряжение источника, называют напряжением холостого хода, максимальное напряжение источника

При нагрузке по дуге и источнику идет ток, напряжение, ниже, чем при холостом ходе, на величину падения напряжения внутри источника.

Экспериментально внешняя характеристика источника снимается измерением напряжения и тока при плавном изменении сопротивления нагрузки, при этом дуга обычно имитируется линейным активным сопротивлением-балластным реостатом.

Графическое представление полученной зависимости напряжения от тока и есть внешняя вольт- амперная характеристика источника. При уменьшении сопротивления нагрузки увеличивается ток и снижается напряжение источника. Таким образом, в общем случае внешняя вольт- амперная характеристика источника- падающая.

Оценим коэффициент полезного действия источников тока и режимов их работы. Очевидно, что для повышения коэффициента полезного действия, т.е. повышения эффективности расходования энергии, следует уменьшать внутренние сопротивление источника. Самый высокий коэффициент, близкий к единице, получается при самых малых сварочных токах, когда сопротивление приближается к бесконечности.

Динамические свойства источника сварочного тока

Динамические свойства характеризуются временем восстановления напряжения с момента короткого замыкания, до рабочего значения, когда горит дуга. Чем быстрее восстанавливается напряжение, тем лучше динамичнее свойства источника тока

Процессы в реальной системе «источник — дуга» чрезвычайно быстры. Интервалы установившегося состояния длятся не более нескольких секунд. Переходные процессы возникают от воздействия со стороны сварщика вызывают, переход от режима холостого хода к короткому замыканию и далее к режиму нагрузки, плавное снижение тока при удлинении дуги в конце сварки. Процессы могут вызываться внешним воздействием, такими, как колебания напряжения сети, или внутренними, возникающими, например, при капельном переносе электродного металла. Импульсные воздействия могут генерироваться источником для управления переносом электродного металла и формированием шва. Но чаще пульсирующий характер питающего напряжения считается недостатком, такое напряжение имеют, например, трехфазные сварочные выпрямители и особенно однофазные выпрямители без сглаживающего фильтра. В режиме непрерывного переходного процесса идет сварка дугой переменного тока. В этой связи возникает вопрос о правомерности понятия статической вольт- амперной характеристики применительно к источникам переменного и выпрямленного не сглаженного тока. Однако доказано,что если статическая характеристика такого источника построена для действующих(или средних) значений тока и напряжения, то почти все выводы, полученные для источника постоянного тока, с известной точностью pаспpостpаняются и на нее.

В простейших источниках необходимый уровень динамических свойств обеспечивался подбором таких параметров источника, как напряжение холостого хода, внутреннее сопротивление, а также индуктивность сварочной цепи.

Развиваются также источники с обратными связями. В них с помощью датчиков тока и напряжения контролируется фактическое значение характеристик переходного процесса(пикового тока, длительности короткого замыкания и т.д.), а после сопоставления их с регламентированными значениями система управления воздействует на источник, приводя эти характеристики в норму. Этот принцип управления динамическими свойствами назван компенсационным.

Разумеется, в конкретном источнике могут сочетаться несколько принципов управления.

Проверка свойств сварочных свойств источников питания

Для испытания источников питания ручной дуговой сварки применяют дифференцированный и совокупный методы.

Дифференцированный метод применяют для оценки:

  • начального зажигания дуги;
  • стабильности процесса сварки;
  • разбрызгивания металла;
  • качества формирования шва;
  • эластичности дуги.

Совокупный метод испытаний применяют при сравнительных испытаниях для оценки сварочных свойств в целом по единичному обобщенному показателю, при этом сравнение проводят с двумя образцовыми источниками питания с заранее известными и различными по значению показателями сварочных свойств.

Для испытания источников питания автоматической и полуавтоматической сварки в углекислом газе применяют дифференцированный метод, по которому оценивают:

  • надежность установления процесса сварки;
  • потери металла;
  • качество формирования шва.

Дифференцированный метод оценки сварочных свойств источников питания ручной дуговой сварки применяют при периодических, типовых, предварительных и приемочных испытаниях, а источников питания сварки в углекислом газе, кроме того, при сравнительных испытаниях.

При предварительных, приемочных и сравнительных испытаниях, наряду с оценкой сварочных свойств источников, проводят оценку сварочных свойств серийного источника того же назначения.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источники сварочного тока

Источники сварочного тока должны обладать хорошими динамическими свойствами, т. е. мгновенно реагировать на изменения вольтамперной характеристики сварочной дуги, что отличает их от источников тока, питающих силовую и осветительную (бытовую) сети, которые должны обеспечивать постоянное напряжение независимо от нагрузки (величины тока, идущего потребителям). Их внешняя вольтамперная характеристика близка к прямой, параллельной абсциссе и называется жесткой (линия А на рис. 3.6).

Внешней характеристикой источника тока называется зависимость напряжения на его выходных клеммах от тока в сварочной цепи.

Обмотку сварочных генераторов и трансформаторов необходимо предохранить от разрушения токами короткого замыкания при возбуждении дуги. Поэтому внешняя вольтамперная характеристика источников сварочного тока должна быть падающей (кривая Б на рис. 3.6). Напряжение при их работе уменьшается с увеличением тока, а при токе короткого замыкания оно падает до нуля.

Напряжение холостого хода обычно 60–80В, что достаточно для зажигания дуги и относительно безопасно для работы сварщика. Точка 1 на рис. 3.6 соответствует режиму холостого хода в работе источника тока, т. е. в период, когда дуга не горит и сварочная цепь разомкнута. Точка 3 соответствует режиму короткого замыкания при зажигании дуги, когда напряжение стремится к нулю, а ток повышается. Величина тока ограничена, чтобы не допустить перегрева токопроводящих проводов и источников тока.

Режим устойчивого горения дуги определяется точкой 2 на рис. 3.6 при пересечении вольтамперных характеристик дуги (кривая В) и источника сварочного тока (кривая Б).

Рис. 3.6. Внешние характеристики источников питания и электростатическая характеристика дуги

Для питания сварочной дуги применяют источники переменного тока (сварочные трансформаторы) и источники постоянного тока (сварочные генераторы, выпрямители). Источники переменного тока более распространены.

Сварочные трансформаторы проще и надежнее в эксплуатации, долговечнее, у них выше КПД.

Однако устойчивость дуги при использовании постоянного тока значительно выше, чем при применении переменного тока. При питании переменным током нормальной частоты (50 Гц) происходит синусоидальное изменение напряжения и тока; ток в секунду 100 раз меняет свое направление, дуга периодически гаснет и зажигается, а при наличии недостаточной ионизации между электродами может прерваться.

При постоянном токе повышается устойчивость горения дуги, улучшаются условия сварки в различных пространственных положениях, появляется возможность вести сварку на прямой и обратной полярностях. Последнее, вследствие более высокой температуры на аноде, позволяет проводить сварку электродами с тугоплавкими покрытиями и флюсами. Выбор источника питания дуги определяется конкретными условиями производства.

В современной сварочной технике применяют разные системы сварочных трансформаторов.

Трансформатор с отдельной дроссельной катушкой.Падающая вольт-амперная характеристика этого трансформатора (рис. 3.7, б, кривая 1) обеспечивается последовательным включением индуктивного сопротивления дросселя.

Понижающий трансформатор (рис. 3.7, а) состоит из магнитопровода 3 (сердечника), первичной 1 и вторичной 2 обмоток. Он снижает напряжение сети 220 или 380 В до напряжения холостого хода 60–80 В. Дроссель 5 предназначен для получения падающей внешней характеристики и регулирования величины сварочного тока. При прохождении переменного тока через обмотку дросселя 5, установленную на магнитопроводе 4 и представляющую собой катушку с большим индуктивным сопротивлением, в ней возбуждается ЭДС самоиндукции, направленная противоположно основному напряжению.

Причем чем выше величина сварочного тока, тем больше падает напряжение на дросселе и уменьшается величина напряжения на дуге. Этим обеспечивают получение падающей внешней характеристики сварочного трансформатора (рис. 3.7, б).

Регулирование сварочного тока производится изменением воздушного зазора δ в дроссельной катушке с помощью рукоятки 6. Увеличение зазора приводит к увеличению сварочного тока I св 2 и уменьшению кривизны падающей вольтамперной характеристики источника питания сварочной дуги.

Уменьшение зазора соответствует уменьшению сварочного тока Iсв1 и увеличению кривизны вольт-амперной характеристики (рис. 3.7, б).

Рис. 3.7. Сварочный трансформатор с отдельной дроссельной катушкой: а – схема; б – внешние характеристики трансформатора (1) и сварочной дуги (2)

Устойчивость горения дуги достигается сдвигом во времени между нулевыми значениями напряжения и тока на обмотке дросселя. Плавное регулирование величины сварочного тока обеспечивают изменением воздушного зазора рукояткой 6 в сердечнике дросселя. С увеличением зазора индуктивное сопротивление дросселя уменьшается, а сварочный ток увеличивается от Iсв1 до Iсв2, при уменьшении зазора – наоборот (рис. 3.7, б).

Трансформатор с увеличенным магнитным рассеянием и подвижной вторичной обмоткой(рис. 3.8). При работе трансформатора основной магнитный поток Ф0, создаваемый первичной 1 и вторичной 2 обмотками, замыкается через магнитопровод 3. Часть магнитного потока ответвляется и замыкается вокруг обмоток через воздушное пространство, образуя потоки рассеяния ФS1 и ФS2, которые индуктируют в обмотках ЭДС, противоположную основному напряжению. С увеличением сварочного тока увеличиваются потоки рассеяния и, следовательно, возрастает индуктивное сопротивление вторичной обмотки, что создает падающую внешнюю характеристику.

Для обеспечения плавного регулирования сварочного тока изменяют расстояние между обмотками трансформатора. При сближении обмоток (рис. 3.8, б) частично уничтожаются противоположно направленные потоки рассеянияФS1 и ФS2, что уменьшает индуктивное сопротивление вторичной обмотки и увеличивает сварной ток. Минимальный сварочный ток соответствует наибольшему расстоянию между обмотками и максимальному потоку рассеяния.

Рис. 3.8. Трансформатор с увеличенным магнитным рассеянием и подвижной вторичной обмоткой

Сварочные генераторыявляются электрическими машинами постоянного тока и в зависимости от конструктивных особенностей могут иметь падающие, жесткие, пологопадающие и комбинированные внешние характеристики. Наиболее распространены генераторы с падающими внешними характеристиками, работающие по одной из следующих трех схем:

с независимым возбуждением и размагничивающей последовательной обмоткой;

с намагничивающей параллельной и размагничивающей последовательной обмотками возбуждения;

Динамические свойства источника

Переходные процессы в системе «источник постоянного тока — линейное активное сопротивление» проще, чем в системе с дугой, это облегчает анализ динамических свойств источника. Рассмотрим осцил­лограмму тока при переходе такой системы, показанной на рисунок. 5.4, от режима холостого хода к короткому замыканию, а затем к режиму нагрузки (рисунок. 5.5). В интервалах I, III и V энергетическая система находится в установившемся состоянии, характеризующемся относитель­ным постоянством тока (и напряжения). В переходных процессах II и IV происходит изменение параметров.

Рисунок. 5.4 – Обобщенная схема системы «источник—дуга»


Рисунок. 5.5 – Осциллограмма переходных процессов в системе «источник — линейное сопротивление»


Рисунок. 5.6 – Осциллограммы напряжения типичных сварочных источников

Переходные процессы в реальной системе «источник — дуга» чрез­вычайно динамичны. Интервалы установившегося состояния длятся не более нескольких секунд. Реальная осцил­лограмма сварочного тока выявляет непрерывную череду пе­реходных процессов, редко завершающихся до конца, а зачастую накладывающихся друг на друга. Переходные процессы возни­кают как в результате целесообразных уп­равляющих, так и вредных возмущающих воздействий. Управляющие воздействия со стороны сварщика вызывают переход от ре­жима холостого хода к короткому замыка­нию и далее к режиму нагрузки, плавное снижение тока при удлинении дуги в конце сварки и т.д. Возмущающие воздействия мо­гут быть внешними, такими, как колебания напряжения сети, или внутренними, возни­кающими, например, при капельном перено­се электродного металла. Импульсные воз­действия могут генерироваться источником для управления переносом электродного ме­талла (рисунок. 5.6, а) и формированием шва (рисунок. 5.6, б). Но чаще пульсирующий харак­тер питающего напряжения считается недо­статком, такое напряжение имеют, напри­мер, трехфазные сварочные выпрямители (рисунок. 5.6, в) и особенно однофазные выпрямители без сглаживающего фильтра (рисунок. 5.6, г). В режиме непрерывного переходного процесса идет сварка дугой переменного тока (рисунок. 5.6, д). В этой связи возникает воп­рос о правомерности понятия статической вольт-амперной характерис­тики применительно к источникам переменного и выпрямленного несглаженного тока. Однако доказано, что если статическая характеристика такого источника построена для действующих (или средних) значений тока и напряжения, то почти все выводы, полученные для источника по­стоянного тока, с известной точностью распространяются и на нее.

Общие принципы управления динамикой, укладываю­щиеся в три классификационных подразделения.

В простейших источниках необходимый уровень динамических свойств обеспечивался подбором таких параметров источника, как на­пряжение холостого хода Uхх, внутреннее сопротивление ZH, а также индуктивность сварочной цепи L. Различные переходные процессы предъявляют к перечисленным параметрам различные, зачастую про­тиворечивые требования, поэтому принятые при конструировании или настройке режима, но не меняющиеся при сварке параметры обычно удовлетворяют не всем требованиям. Этот принцип управления дина­микой назван параметрическим.

Другой принцип (координатный) заключается в программном уп­равлении, т.е. изменении тока и напряжения во времени в соответствии с жестким алгоритмом. Быстродействие таких систем связано с частотой срабатывания силовых элементов источника. Так, современные управ­ляемые выпрямители работают с частотой включения тиристоров не более 300 Гц, поэтому продолжительность любого интервала программы не может быть меньше 1/300 ~ 0,003 с. Такое быстродействие удовлет­воряет требованиям систем управления формой шва, но не всегда достаточно при управлении переносом электродного металла. Лучшим быстродействием обладают инверторные выпрямители, у которых на промежуточной стадии преобразования энергии частота достигает 1-100 кГц.

Развиваются также источники с обратными связями. В них с помощью датчиков тока и напряжения контролируется фактическое значение характеристик переходного процесса (пикового тока, длительности короткого замыкания и т.д.), а после сопоставления их с регламентированными значениями система управления воздействует на источник, приводя эти характеристики в норму. Этот принцип управления динамическими свойствами назван компенсационным.

Вольт-амперная характеристика дуги (ВАХ)

Вольт-амперная характеристика дуги

Характеристика имеет три области

Первая область I характеризуется резким падением напряжения Uд на дуге с увеличением тока сварки Iсв. Такая характеристика называется падающей и вызвана тем, что при увеличении тока сварки происходит увеличение площади, а следовательно, и электропроводности столба дуги.

Во второй области II характеристики увеличения тока сварки не вызывают изменения напряжения дуги. Характеристика дуги на этом участке называется жесткой. Такое положение характеристики на этом участке происходит за счет увеличения сечения столба дуги, анодного и катодного пятен пропорционально величине сварочного тока. При этом плотность тока и падение напряжения на протяжении всего участка не зависят от изменения тока и остаются почти постоянными.

В третьей области III с увеличением сварочного тока возрастает напряжение на дуге Uд. Такая характеристика называется возрастающей. При работе на этой характеристике плотность тока на электроде увеличивается без увеличения катодного пятна, при этом возрастает сопротивление столба дуги и напряжение на дуге увеличивается.

Род тока при сварке - постоянный или переменный, полярность на постоянном токе может быть прямой (минус от источника на электроде), или обратной (минус от источника присоединяется к детали).

Ток обратной полярности применяют при сварке тонкого металла легкоплавких сплавов, легированных, специальных и высокоуглеродистых сталей, чувствительных к перегреву, при полуавтоматической сварке арматуры и металлоконструкций легированной проволокой сплошного сечения, при сварке электродами с фтористо-кальциевым покрытием.

При сварке на переменном токе полярность электродов и условия существования дуги периодически изменяются в соответствии с частотой тока.

В каждом полупериоде ток и напряжение меняют полярности при переходе синусоиды через нулевое значение. Дуга при этом угасает, температура активных пятен и дугового промежутка снижается. Повторное зажигание дуги в новом полупериоде происходит при повышенном напряжении - пике зажигания, которое выше напряжения на дуге.

Для повышения устойчивости дуги переменного тока добавляют в покрытия электродов и сварочные флюсы такие материалы, как мел, мрамор, полевой шпат и др., содержащие калий, натрий, кальций и другие элементы.

Газы, вводимые в зону горения дуги для защиты расплавленного металла, оказывают влияние на зажигание дуги переменного тока. При сварке с инертными газами (гелий, аргон) зажигание дуги затруднено, но возбужденная дуга горит устойчиво.

При сварке вольфрамовым электродом в среде аргона происходит испарение частиц металла с поверхности сварочной ванны и ближайших холодных зон, вместе с которыми удаляются и окисные пленки, что улучшает условия сварки и качество шва.

Углекислый газ при сварке на переменном токе действует отрицательно, поэтому сварка в углекислом газе применяется преимущественно на постоянном токе обратной полярности.

Источники питания сварочной дуги имеют также свои вольт-амперные характеристики, которые могут быть падающими, жесткими и возрастающими.

Для стабильного горения дуги необходимо, чтобы было равенство между напряжениями и токами дуги (Uд, Iд) и источника питания (Uп, Iп).

Работу сварочной цепи и дуги нужно рассматривать при наложении статической вольт-амперной характеристики (ВАХ) сварочной дуги на статическую вольт-амперную характеристику источника питания (называемую также внешней характеристикой источника питания) .

Читайте также: