Что такое дежурка в сварочном инверторе
Продолжаем изучение сварочного инвертора «Telwin». В первой части было рассказано о силовой части схемы аппарата. Пришло время разобраться в управляющей части схемы.
Вот принципиальная схема управляющей части и драйвера (control and driver).
Кликните по картинке. Рисунок схемы откроется в новом окне. Так будет удобнее более детально изучить схему.
Схема управления и драйвер.
Мозгом устройства можно считать микросхему ШИМ-контроллера. Именно она управляет работой мощных транзисторов и, так сказать, задаёт темп работы преобразователя. В зависимости от модели аппарата могут использоваться микросхемы ШИМ-контроллера типа UC3845AD (Tecnica 144-164) или VIPer20A (Tecnica 141-161, 150, 152, 170, 168GE). Микросхему ШИМ-контроллера легко найти на принципиальной схеме. Ну, а что в железе?
Далее на фото показана часть платы инвертора Telwin Force 165.
Обратимся к схеме.
По схеме микросхема ШИМ-контроллера U1 управляет работой полевого N-канального MOSFET-транзистора IRFD110 (Q4). Корпус у этого полевого транзистора довольно нестандартный (HEXDIP) – внешне похож на оптопару.
С вывода стока (D) транзистора Q4 на первичную обмотку разделителного трансформатора T1 поступают прямоугольные импульсы частотой около 65 кГц. У трансформатора T1 имеется 2 вторичные обмотки (3-4 и 5-6), с которых снимаются сигналы для управления мощными ключевыми транзисторами Q5, Q8 (см. схему силовой части).
Схема на транзисторах Q6, Q7 и "обвязка" этих транзисторов нужна для правильной работы ключевых транзисторов Q5, Q8. Транзисторы Q6, Q7 в основном помогают транзисторам Q5, Q8 закрываться. Как мы уже знаем из первой части, в качестве транзисторов Q5, Q8 используются либо IGBT-транзисторы, либо MOSFET. А это накладывает некоторые требования на процесс управления ими.
Стабилитроны D16, D17, D29, D30 (на 18V) защищают IGBT-транзисторы от превышения допустимого напряжения между затвором (G) и эмиттером (E).
Цепи регулировки и контроля.
На печатной плате сварочного инвертора «TELWIN Force 165» можно обнаружить занятную деталь – трансформатор тока T2.
Эта деталь участвует в работе анализатора-ограничителя тока. По принципиальной схеме видно, что трансформатор тока включен в цепь первичной обмотки трансформатора T3. За счёт индукции электромагнитного поля в трансформаторе тока T2 наводится переменное напряжение. Далее это напряжение выпрямляется и ограничивается схемой на элементах D2, D4, R49, R25,R15, R9, R3, R20, R10. За счёт этой схемы контролируется сила тока в первичной обмотке трансформатора T3, а сигналы, полученные от неё, участвуют в работе «задатчика» сварочного тока и генератора импульсов на микросхеме U1.
Схема контроля напряжения сети и выходного напряжения.
Для контроля напряжения в электросети, а также выходного напряжения (OUT+, OUT-) сварочного аппарата используется схема, состоящая из элементов операционного усилителя (ОУ) на микросхеме LM324: U2A и U2B.
Элементы делителя R1, R5, R14, R19, R24, R29, R36 и R38 подключены к входному сетевому выпрямителю и служат для обнаружения завышенного или заниженного напряжения в электросети.
На элементе U2C операционного усилителя LM324 выполнен суммирующий блок. Он складывает сигналы защиты по напряжению и току. Результирующий сигнал подаётся на задающий генератор импульсов – ШИМ контроллер (UC3845AD). При аварии, схема защиты и контроля подаёт сигнал на суммирующий блок. Он в свою очередь блокирует работу генератора, а, следовательно, и всей схемы.
Выходное напряжение снимается с выходов «OUT+», «OUT-» и через элемент гальванической развязки – оптрон ISO1 (H11817B), поступает в схему контроля (U2A, U2B). Так осуществляется отслеживание параметров выходного напряжения.
В случае если напряжение в электросети завышено или занижено, сработает компаратор на элементе U2A и подаст сигнал на транзистор Q1 (BC807) через делитель на резисторах R12, R11. Транзистор Q1 откроется и закоротит на корпус (общий провод) вход 10 элемента U2C. Это приведёт к блокировке работы микросхемы U1 – генератора задающих импульсов. Схема выключится.
Одновременно с этим, за счёт подачи напряжения с выхода 1 компаратора U2A засветится жёлтый светодиод D12 (Giallo – "жёлтый"), указывающий на то, что в схеме неисправность или есть проблемы с сетевым питанием. Светодиод D12 показан на силовой части схемы и подключен к CN1-1. Таким же образом сработает схема, если на выходе выпрямителя (OUT+, OUT-) параметры выйдут за рамки установленных. Такое может произойти, например, при неисправностях выпрямительных диодов или если выйдут из строя детали узла контроля – оптрон ISO1 или элементы его «обвязки», полупроводниковый диод D25, стабилитрон D15, резисторы R57, R52, R51, R50 и электролитический конденсатор C29.
О других элементах схемы.
Биполярный транзистор Q9 подаёт напряжение питания на микросхему ШИМ-контроллера U1 (UC3845AD). Этот транзистор управляется элементом операционного усилителя U2B. На вывод 6 U2B подаётся напряжение с делителя на резисторах R64, R39 (см. схему силовой части). Если напряжение с делителя поступает, то U2B подаёт сигнал на транзистор Q9, который открывается и подаёт напряжение на микросхему U1.
Можно сказать, что эта схема участвует в запуске мощного инвертора, так как именно она подаёт питание на управляющий инвертором ШИМ-контроллер.
Ручная установка сварочного тока осуществляется переменным резистором R23.
Ручка резистора выводится на панель управления аппарата.
Также в цепи регулировки задействованы резисторы R73, R74, R21, R66, R68, R13 и конденсатор C14. Напряжение с цепи ручной регулировки поступает на 10 вывод элемента U2C суммирующего блока.
Как уже говорилось, сварочный инвертор имеет в своём составе множество регулирующих, контролирующих и защитных цепей. Все они нужны для штатной работы аппарата, а также защищают силовые элементы инвертора в случае аварийного режима.
Теперь, когда мы разобрались в работе сварочного инвертора пора рассказать о реальном примере ремонта сварочного инвертора «TELWIN Force 165». Об этом читайте здесь.
Устройство сварочного инвертора
В настоящее время стали очень популярны и доступны по цене сварочные аппараты инверторного типа.
Несмотря на свои положительные качества, они, как и любое другое электронное устройство, временами выходит из строя.
Чтобы отремонтировать инвертор сварочного аппарата нужно хотя бы поверхностно знать его устройство и основные функциональные блоки.
В первых двух частях будет рассказано об устройстве сварочного аппарата модели TELWIN Tecnica 144-164. В третьей части будет рассмотрен пример реального ремонта сварочного инвертора модели TELWIN Force 165. Информация будет полезна всем тем начинающим радиолюбителям, которые хотели бы научиться самостоятельно ремонтировать сварочные аппараты инверторного типа.
Дальше будет много букв – наберитесь терпения .
Сам инверторный сварочный аппарат представляет не что иное, как довольно мощный блок питания. По принципу действия он очень схож с импульсными блоками питания, например, компьютерными блоками питания AT и ATX. Вы спросите: «Чем они похожи? Это ведь абсолютно разные устройства…». Схожесть заключается в принципе преобразования энергии.
Основные этапы преобразования энергии в инверторном сварочном аппарате:
1. Выпрямление переменного напряжения электросети 220V;
2. Преобразование постоянного напряжения в переменное высокой частоты;
3. Понижение высокочастотного напряжения;
4. Выпрямление пониженного высокочастотного напряжения.
Это кратко, так сказать, на пальцах . Такие же преобразования происходят в импульсных блоках питания для ПК.
Спрашивается, а зачем нужны эти пляски с бубном (несколько ступеней преобразования напряжения и тока)? А дело тут вот в чём.
Ранее основным элементом сварочного аппарата являлся мощный силовой трансформатор. Он понижал переменное напряжение электросети и позволял получать от вторичной обмотки огромные токи (десятки – сотни ампер), необходимых для сварки. Как известно, если понизить напряжение на вторичной обмотке трансформатора, то можно во столько же раз увеличить ток, который может отдать нагрузке вторичная обмотка. При этом уменьшается число витков вторичной обмотки, но и растёт диаметр обмоточного провода.
Из-за своей высокой мощности, трансформаторы, которые работают на частоте 50 Гц (такова частота переменного тока электросети), имеют весьма большие размеры и вес.
Чтобы устранить этот недостаток были разработаны инверторные сварочные аппараты. За счёт увеличения рабочей частоты до 60-80 кГц и более, удалось уменьшить габариты, а, следовательно, и вес трансформатора. За счёт увеличения рабочей частоты преобразования в 4 раза удаётся снизить габариты трансформатора в 2 раза. А это приводит к уменьшению веса сварочного аппарата, а также к экономии меди и других материалов на изготовление трансформатора.
Но где взять эти самые 60-80 кГц, если частота переменного тока электросети всего 50 Гц? Тут на выручку приходит инверторная схема, которая состоит из мощных ключевых транзисторов, которые переключаются с частотой 60-80 кГц. Но чтобы транзисторы работали, необходимо подать на них постоянное напряжение. Его получают от выпрямителя. Напряжение электросети выпрямляется мощным диодным мостом и сглаживается фильтрующими конденсаторами. В результате на выходе выпрямителя и фильтра получается постоянное напряжение величиной более 220 вольт. Это первая ступень преобразования.
Вот это напряжение и служит источником питания для инверторной схемы. Мощные транзисторы инвертора подключены к понижающему трансформатору. Как уже говорилось, транзисторы переключаются с огромной частотой в 60-80 кГц, а, следовательно, трансформатор работает также на этой частоте. Но, как уже говорилось, для работы на высоких частотах требуются менее громоздкие трансформаторы, ведь частота то уже не 50 Гц, а все 65000 Гц! В результате трансформатор «сжимается» до весьма малых размеров, а мощность его такая же, как и у здоровенного собрата, который работает на частоте 50 Гц. Думаю, идея понятна.
Вся эта петрушка с преобразованием привела к тому, что в схемотехнике сварочного аппарата появляется куча всяких дополнительных элементов, служащих для того, чтобы аппарат стабильно работал. Но, хватить теории, перейдём к "мясу", а точнее к реальному железу и тому, как оно устроено.
Устройство сварочного аппарата инверторного типа. Часть 1. Силовой блок.
Разбираться в устройстве сварочного инвертора желательно по схеме конкретного аппарата. К сожалению, схемы на TELWIN Force 165 я не нашёл, поэтому нагло позаимствуем схему из руководства по ремонту другого аппарата – TELWIN Tecnica 144-164. Фотографии аппарата и его начинки будут от TELWIN Force 165, так как именно он оказался в моём распоряжении. Исходя из анализа схемотехники и элементной базы, особых отличий между этими моделями практически нет, если не учитывать мелочи.
Внешний вид платы сварки TELWIN Force 165 с указанием расположения некоторых элементов схемы.
Принципиальная схема сварочного аппарата инверторного типа TELWIN Tecnica 144-164 состоит из двух основных частей: силовой и управляющей.
Сначала разберёмся в схемотехнике силовой части. Вот схема. Картинка кликабельна (нажмите для увеличения – откроется в новом окне).
Сетевой выпрямитель.
Как уже говорилось, сначала переменный ток электросети 220V выпрямляется мощным диодным мостом и фильтруется электролитическими конденсаторами. Это нужно для того, чтобы переменный ток электросети частотой 50 герц стал постоянным. Конденсаторы С21, С22 нужны для сглаживания пульсаций выпрямленного напряжения, которые всегда присутствуют после диодного выпрямителя. Выпрямитель реализован по классической схеме диодный мост. Он выполнен на диодной сборке PD1.
Следует знать, что на конденсаторах фильтра напряжение будет больше в 1,41 раза, чем на выходе диодного моста. Таким образом, если после диодного моста мы получим 220V пульсирующего напряжения, то на конденсаторах будет уже 310V постоянного напряжения (220V * 1,41 = 310,2V). Обычно же рабочее напряжение ограничивается отметкой в 250V (напряжение в сети ведь может быть и завышенным). Тогда на выходе фильтра мы получим все 350V. Именно поэтому конденсаторы имеют рабочее напряжение 400V, с запасом.
На печатной плате сварочного аппарата TELWIN Force 165 элементы сетевого выпрямителя занимают довольно большую площадь (см. фото выше). Выпрямительный диодный мост установлен на охлаждающий радиатор. Через диодную сборку протекают большие токи и диоды, естественно, нагреваются. Для защиты диодного моста на радиаторе установлен термопредохранитель, который размыкается при превышении температуры радиатора выше 90С°. Это элемент защиты.
В выпрямителе применяются диодные сборки (диодный мост) типа GBPC3508 или аналогичный. Сборка GBPC3508 рассчитана на прямой ток (I0) - 35А, обратное напряжение (VR) - 800V.
После диодного моста установлены два электролитических конденсатора (здоровенькие бочонки) ёмкостью 680 микрофарад каждый и рабочим напряжением 400V. Ёмкость конденсаторов зависит от модели аппарата. В модели TELWIN Tecnica 144 – 470 мкф., а в TELWIN Tecnica 164 – 680 мкф. Постоянное напряжение с выпрямителя и фильтра подаётся на инвертор.
Помеховый фильтр.
Для того чтобы высокочастотные помехи, которые возникают из-за работы мощного инвертора, не попадали в электросеть, перед выпрямителем устанавливается фильтр ЭМС – электромагнитной совместимости. На английский манер аббревиатура ЭМС обозначается как EMC (ElectroMagnetic Compatibility). Если взглянуть на схему, то фильтр EMC состоит из элементов С1, C8, C15 и дросселя на кольцевом магнитопроводе T4.
Инвертор.
Схема инвертора собрана по схеме так называемого "косого моста". В нём используется два мощных ключевых транзистора. В сварочном инверторе ключевыми транзисторами могут быть как IGBT-транзисторы, так и MOSFET. Например, в моделях Telwin Tecnica 141-161 и 144-164 используются IGBT-транзисторы (HGTG20N60A4, HGTG30N60A4), а в модели Telwin Force 165 применены высоковольтные MOSFET-транзисторы (FCA47N60F). Оба ключевых транзистора устанавливаются на радиатор для отвода тепла. Фото одного из двух транзисторов MOSFET типа FCA47N60F на плате TELWIN Force 165.
Снова взглянем на принципиальную схему и найдём на ней элементы инвертора.
Постоянное напряжение коммутируется транзисторами Q5 и Q8 через обмотку импульсного трансформатора T3 с частотой гораздо большей, чем частота электросети. Частота переключений может составлять несколько десятков килогерц! По сути, создаётся переменный ток, как и в электросети, но только он имеет частоту в несколько десятков килогерц и прямоугольную форму.
Для защиты транзисторов от опасных выбросов напряжения используются демпфирующие RC-цепи R46C25, R63C30.
Для понижения напряжения используется высокочастотный трансформатор T3. С помощью транзисторов Q5, Q8 через первичную обмотку трансформатора T3 (обмотка 1-2) коммутируется напряжение, которое поступает от сетевого выпрямителя (DC+, DC-). Это то самое постоянное напряжение в 310 – 350V, которое было получено на первом этапе преобразования.
За счёт коммутирующих транзисторов постоянное напряжение преобразуется в переменное. Как известно, трансформаторы постоянный ток не преобразуют. Со вторичной обмотки трансформатора T3 (обмотка 5-6) снимается уже намного меньшее напряжение (около 60-70 вольт), но максимальный ток может достигать 120 – 130 ампер! В этом и заключается основная роль трансформатора T3. Через первичную обмотку течёт небольшой ток, но большого напряжения. Со вторичной обмотки уже снимается малое напряжение, но большой ток.
Размеры этого самого трансформатора невелики.
Его вторичная обмотка выполнена несколькими витками ленточного медного провода в изоляции. Сечение провода внушительное, да и не мудрено, ток в обмотке может достигать 130 ампер!
Далее со вторичной обмотки импульсного трансформатора переменный ток высокой частоты выпрямляется мощными диодными выпрямителями. С выхода выпрямителя (OUT+, OUT-) снимается электрический ток с нужными параметрами. Это и необходимо для проведения сварочных работ.
Выходной выпрямитель.
Выходной выпрямитель собран на базе мощных сдвоенных диодов с общим катодом (D32, D33, D34). Эти диоды обладают высоким быстродействием, т. е. они могут быстро открываться и также быстро закрываться. Время восстановления trr < 50 ns (50 наносекунд).
Это свойство очень важно, поскольку они выпрямляют переменный ток высокой частоты (десятки килогерц). Обычные выпрямительные диоды с такой задачей бы не справились – они бы просто не успевали открываться и закрываться, нагревались и выходили бы из строя. Поэтому в случае ремонта заменять диоды в выходном выпрямителе следует именно быстродействующими.
В выпрямителе используются сдвоенные диоды марок STTH6003CW, FFH30US30DN, VS-60CPH03 (с ними мы ещё встретимся ). Все эти диоды являются аналогами, рассчитаны на прямой ток 30 ампер на один диод (60 ампер на оба) и обратное напряжение 300 вольт. Устанавливаются на радиатор.
Для защиты диодов выпрямителя используется демпфирующая RC-цепочка R60C32 (см. схему силовой части).
Схема запуска и реализация «мягкого пуска».
Для питания микросхем и элементов, которые расположены на плате управления, используется интегральный стабилизатор на 15 вольт – LM7815A. Он установлен на радиатор. Напряжение питания на стабилизатор поступает с основного выпрямителя PD1 через два последовательно включенных резистора R18, R35 (6,8 кОм 5W). Эти резисторы понижают напряжение и участвуют при запуске схемы.
Напряжение +15 со стабилизатора U3 (LM7815A) поступает на управляющую схему. Далее, когда схема управления и драйвер «раскачали» мощную схему инвертора, то на дополнительной вторичной обмотке трансформатора T3 (обмотка 3-4) появляется напряжение, которое выпрямляется диодом D11.
Через диод D9 напряжение питания поступает на интегральный стабилизатор LM7815A и теперь схема «запитывает» как бы сама себя. Вот такой вот хитрый «приём».
Выпрямленное напряжение после диода D11 также служит для питания реле RL1, охлаждающего вентилятора V1 и индикаторного светодиода D10 (Verde – "Зелёный"). Резисторы R40, R41, R65, R37 гасят излишки напряжения. Для стабилизации напряжения питания вентилятора V1 (12V) применяется 5-ти ваттный стабилитрон D36 на 12V.
Реле RL1 обеспечивает плавный запуск инвертора («мягкий пуск»). Разберёмся с этим подробнее.
В момент включения сварочного аппарата начинается заряд электролитических конденсаторов. В самом начале зарядный ток очень велик и может вызвать перегрев и выход из строя диодов выпрямителя. Чтобы уберечь диодную сборку от повреждения зарядным током применяется схема ограничения заряда (или «мягкого пуска»). Взглянем на схему.
Основным элементом схемы «мягкого пуска» служит резистор R4, мощность которого 8W (8 ватт). Сопротивление резистора – 47 ом. Именно на него возложена роль ограничения зарядного тока в первые моменты после включения.
После того, как заряд конденсаторов закончился, а инвертор начал работу в штатном режиме, электромагнитного реле RL1 замыкает контакты. Контакты реле шунтируют резистор R4, и в дальнейшем он не участвует в работе схемы, так как весь ток проходит через контакты реле. Таким образом реализован плавный запуск.
На плате инвертора TELWIN Force 165 также можно найти элементы схемы «мягкого пуска». В качестве реле RL1 выступает электромагнитное реле модели Finder на рабочее напряжение 24V (параметры контактов реле – 16A 250V~).
Итак, мы узнали о том, что сварочный инвертор состоит из сетевого выпрямителя 220V, мощного инвертора на транзисторах, понижающего трансформатора и выходного выпрямителя. Это силовые части схемы. Через них протекают огромные токи. Но где же «мозги» этого устройства? Кто управляет работой инвертора?
Ремонт сварочного инвертора
Пришел аппарат, ресанта саи-220 после включения в сеть 380V.
Обычно после такого издевательства вся силовая начинка испускает дым и ремонт аппарата уже становится нереентабельным но этот аппарат вышел из завода в рубашке.
Итак, пришел он ко мне без крышки, видимо клиент пытался восстановить, не получилось.
Разбираем, достаем плату.
Ок, значит. Видим вздувшийся кондер. Ага, и пленка подплавился, видимо хорошо закоротило его.
Запаиваем новый. И смотрим сопротивление силовой линии.
5Мом, отлично. Значит есть шанс на успешный запуск. Ну ок. Очищаем от канифоли и запускаем через лампочку.
Ок, светодиодик загорелся, дежурка цела.
Собираем. И снова запускаем.
Ок. Работает. Дальше уже тест на электроде.
Вы наверное удивлены тем что сварка выжила после 380? Давайте я вам поясню как этот аппарат остался в живых.
В момент когда на сварку подали питание, напряжение на конденсаторах сначало повышатся, когда напряжение достигает уровня 300в запускается дежурка, дежурка убирает токоограничивающий резистор, но у нас же не 220 а 380, то поэтому напряжение растет дальше (>300) превышая напряжение пробоя конденсатора, и тут возникает самое интересное. Конденсатор при превышении напряжения пробоя пробивается, а так как к этому моменту дежурка запустилась то и токоограничивающий резистор убирается (шунтируется) и вся сеть без ограничений залетает на ПРОБИТЫЙ КОНДЕР, так как в кондере есть еще некоторое сопротивление, то он неебически греется уменьшая свое сопротивление. Естественно в этот момент токи адовые. Ток проходит только через мост и кондер, но так как у нас еще стоит автомат, то он у нас вмомент отсекает сеть от инвертора. Все, ничего после кондера не успело выйти из строя так как конденсатор сработал как варистор.
Ремонт и доработки сварочных инверторов своими руками
Характеристики большинства бюджетных инверторов нельзя назвать выдающимися, в то же время мало кто откажется от удовольствия использовать оборудование со значительным запасом надёжности. Между тем существует немало способов усовершенствовать недорогой сварочный инвертор.
Типовая схема и принцип работы инвертора
Чем дороже сварочный инвертор, тем больше в его схеме вспомогательных узлов, задействованных в реализации специальных функций. А вот сама схема силового преобразователя остаётся практически неизменной даже у дорогостоящего оборудования. Этапы превращения сетевого электрического тока в сварочный достаточно легко проследить — на каждом из основных узлов схемы происходит определённая часть общего процесса.
С сетевого кабеля через защитный выключатель напряжение подаётся на выпрямительный диодный мост, сопряжённый с фильтрами высокой ёмкости. На схеме этот участок легко заметить, здесь расположены внушительные по размеру «банки» электролитических конденсаторов. У выпрямителя задача одна — «развернуть» отрицательную часть синусоиды симметрично вверх, конденсаторы же сглаживают пульсации, приводя направление тока практически к чистой «постоянке».
Схема работы сварочного инвертора
Далее по схеме находится непосредственно инвертор. Эта часть также легко поддаётся идентификации, здесь располагается крупнейший алюминиевый радиатор. Инвертор строится на нескольких высокочастотных полевых транзисторах или IGBT-транзисторах. Довольно часто несколько силовых элементов объединены в общем корпусе. Инвертор снова преобразует постоянный ток в переменный, но при этом частота его существенно выше — порядка 50 кГц. Такая цепочка преобразований позволяет использовать высокочастотный трансформатор, который в разы меньше и легче обычного.
С понижающего трансформатора напряжение снимает выходной выпрямитель, ведь мы хотим сварку именно на постоянном токе. Благодаря выходному фильтру природа тока меняется с высокочастотного пульсирующего до практически прямой линии. Естественно, в рассмотренной цепи преобразований есть множество промежуточных звеньев: датчиков, управляющих и контрольных цепей, но их рассмотрение выходит далеко за рамки любительской радиоэлектроники.
Конструкция сварочного инвертора: 1 — конденсаторы фильтра; 2 — выпрямитель (диодная сборка); 3 — IGBT-транзисторы; 4 — вентилятор; 5 — понижающий трансформатор; 6 — плата управления; 7 — радиаторы; 8 — дроссель
Узлы, пригодные к модернизации
Важнейший параметр любого сварочного аппарата — вольт-амперная характеристика (ВАХ), за счёт неё и обеспечивается стабильное горение дуги при разной её длине. Правильная ВАХ создаётся микропроцессорным управлением: маленький «мозг» инвертора на ходу меняет режим работы силовых ключей и мгновенно подстраивает параметры сварочного тока. К сожалению, каким либо образом перепрограммировать бюджетный инвертор нельзя — управляющие микросхемы в нём аналоговые, а замена на цифровую электронику требует незаурядных знаний схемотехники.
Однако «умений» управляющей схемы вполне достаточно, чтобы нивелировать «криворукость» начинающего сварщика, ещё не научившегося стабильно удерживать дугу. Гораздо правильнее сосредоточиться на устранении некоторых «детских» болезней, первая из которых — сильный перегрев электронных компонентов, ведущий к деградации и разрушению силовых ключей.
Вторая проблема — использование радиоэлементов сомнительной надёжности. Устранение этого недостатка сильно снижает вероятность возникновения поломок через 2–3 года эксплуатации аппарата. Наконец, даже начинающему радиотехнику будет вполне по силам реализовать индикацию фактического сварочного тока для возможности работы со специальными марками электродов, а также провести ряд других мелких доработок.
Улучшение теплоотвода
Первый недостаток, которым грешит подавляющее большинство недорогих инверторных аппаратов — плохая схема отвода тепла с силовых ключей и выпрямительных диодов. Начинать доработку в этом направлении лучше с увеличения интенсивности принудительного обдува. Как правило, в сварочных аппаратах устанавливают корпусные вентиляторы с питанием от служебных цепей напряжением 12 В. В «компактных» моделях принудительное воздушное охлаждение может вовсе отсутствовать, что для электротехники такого класса, безусловно, нонсенс.
Достаточно просто увеличить воздушный поток путём установки нескольких таких вентиляторов последовательно. Проблема в том, что «родной» кулер скорее всего придётся снять. Чтобы эффективно работать в последовательной сборке, вентиляторы должны иметь идентичную форму и число лопастей, а также скорость вращения. Собрать одинаковые кулеры в «стопку» крайне просто, достаточно стянуть их парой длинных болтов по диаметрально противоположным угловым отверстиям. Также не стоит беспокоиться о мощности источника служебного питания, как правило её достаточно для установки 3–4 вентиляторов.
Если внутри корпуса инвертора недостаточно места для установки вентиляторов, можно приладить снаружи один высокопроизводительный «канальник». Его установка проще по той причине, что не требуется подключение к внутренним цепям, питание снимается с клемм кнопки включения. Вентилятор, разумеется, должен устанавливаться напротив вентиляционных жалюзеек, часть которых можно вырезать, чтобы снизить аэродинамическое сопротивление. Оптимальное направление потока воздуха — на вытяжку из корпуса.
Второй способ улучшить теплоотвод — замена штатных алюминиевых радиаторов на более производительные. Новый радиатор нужно выбирать с наибольшим количеством как можно более тонких рёбер, то есть с наибольшей площадью контакта с воздухом. Оптимально в этих целях использовать радиаторы охлаждения компьютерных ЦП. Процесс замены радиаторов довольно прост, достаточно соблюдать несколько простых правил:
- Если штатный радиатор изолирован от фланцев радиоэлементов слюдой или резиновыми прокладками, их нужно сохранить при замене.
- Для улучшения теплового контакта нужно использовать кремнийорганическую термопасту.
- Если радиатор нужно подрезать, чтобы он поместился в корпус, обрезанные рёбра нужно тщательно обработать надфилем, чтобы снять все заусенцы, иначе на них будет обильно оседать пыль.
- Радиатор должен быть плотно прижат к микросхемам, поэтому предварительно на нём нужно разметить и просверлить крепёжные отверстия, возможно, потребуется нарезать резьбу в теле алюминиевой подошвы.
Дополнительно отметим, что нет смысла менять штучные радиаторы отдельно стоящих ключей, замене подвергаются только теплоотводы интегральных схем или нескольких высокомощных транзисторов, установленных в ряд.
Индикация сварочного тока
Даже если на инверторе установлен цифровой индикатор установки тока, он показывает не реальное его значение, а некую служебную величину, масштабированную для наглядного отображения. Отклонение от фактической величины тока может составлять до 10%, что неприемлемо при использовании специальных марок электродов и работе с тонкими деталями. Получить реальное значение сварочного тока можно путём установки амперметра.
В пределах 1 тысячи рублей обойдётся цифровой амперметр типа SM3D, его даже можно аккуратно встроить в корпус инвертора. Основная проблема в том, что для измерения столь высоких токов требуется подключение через шунт. Его стоимость находится в пределах 500–700 рублей для токов в 200–300 А. Обратите внимание, что тип шунта должен соответствовать рекомендациям производителя амперметра, как правило, это вставки на 75 мВ с собственным сопротивлением порядка 250 мкОм для предела измерения в 300 А.
Установить шунт можно либо на плюсовую, либо на минусовую клемму изнутри корпуса. Обычно размеров соединительной шины достаточно для подключения вставки длиной около 12–14 см. Изгибать шунт нельзя, поэтому если длины соединительной шины недостаточно, её нужно заменить медной пластиной, косичкой из очищенного однопроволочного кабеля или отрезком сварочной жилы.
Амперметр подключается измерительными выходами к противоположным зажимам шунта. Также для работы цифрового прибора требуется подать напряжение питания в диапазоне 5–20 В. Его можно снять с проводов подключения вентиляторов или найти на плате точки с потенциалом для питания управляющих микросхем. Собственное потребление амперметра ничтожно.
Повышение продолжительности включения
Продолжительность включения в контексте сварочных инверторов более разумно называть продолжительностью нагрузки. Это та часть десятиминутного интервала, в которой инвертор непосредственно выполняет работу, оставшееся время он должен пребывать на холостом ходу и охлаждаться.
Для большинства недорогих инверторов реальная ПН составляет 40–45% при 20 °С. Замена радиаторов и устройство интенсивного обдува позволяют увеличить этот показатель до 50–60%, но это далеко не потолок. Добиться ПН порядка 70–75% можно путём замены некоторых радиоэлементов:
- Конденсаторы обвязки ключей инвертора нужно поменять на элементы той же ёмкости и типа, но рассчитанные под более высокое напряжение (600–700 В);
- Диоды и резисторы из обвязки ключей следует заменить на элементы с большей рассеиваемой мощностью.
- Выпрямительные диоды (вентили), а также MOSFET или IGBT-транзисторы можно заменить на аналогичные, но более надёжные.
О замене самих силовых ключей стоит рассказать отдельно. Для начала следует переписать маркировку на корпусе элемента и найти подробный даташит на конкретный элемент. По паспортным данным выбрать элемент для замены достаточно просто, ключевыми параметрами служат пределы частотного диапазона, рабочее напряжение, наличие встроенного диода, тип корпуса и предельный ток при 100 °С. Последний лучше рассчитать собственноручно (для высоковольтной стороны с учётом потерь на трансформаторе) и приобрести радиоэлементы с запасом предельного тока около 20%. Из производителей такого рода электроники наиболее надёжными считаются International Rectifier (IR) или STMicroelectronics. Несмотря на довольно высокую цену, крайне рекомендуется приобретать детали именно этих брендов.
Намотка выходного дросселя
Одним из наиболее простых и в то же время самых полезных дополнений для сварочного инвертора будет намотка индуктивной катушки, сглаживающей пульсации постоянного тока, которые неизбежно остаются при работе импульсного трансформатора. Основная специфика такой затеи в том, что дроссель изготавливается индивидуально для каждого отдельного аппарата, а также может со временем корректироваться по мере деградации электронных компонентов или при изменении порога мощности.
Для изготовления дросселя понадобится всего ничего: изолированный медный проводник сечением до 20 мм 2 и сердечник, желательно из феррита. В качестве магнитопровода оптимально подойдёт либо ферритовое кольцо, либо сердечник броневого трансформатора. Если магнитопровод набран из листовой стали, его нужно просверлить в двух местах с отступом около 20–25 мм и стянуть заклёпками, чтобы иметь возможность беспроблемно прорезать зазор.
Дроссель начинает работать, начиная от одного полного витка, однако реальный результат виден, начиная с 4–5 витков. При испытаниях следует добавлять витки до тех пор, пока дуга не начнёт ощутимо сильно тянуться, мешая отрыву. Когда варить с отрывом станет затруднительно, нужно скинуть с катушки один виток и подключить параллельно дросселю лампу накаливания на 24 В.
Тонкая настройка дросселя выполняется с помощью сантехнического винтового хомута, которым можно уменьшить зазор в сердечнике, либо деревянного клина, которым этот зазор можно увеличить. Нужно добиваться, чтобы горение лампы при розжиге дуги было максимально ярким. Рекомендуется изготовить несколько дросселей для работы в диапазонах до 100 А, от 100 до 200 А и более 200 А.
Заключение
Все «навесные» дополнения, такие как дроссель или амперметр, лучше монтировать отдельной приставкой, которая включается в разрыв любой из сварочных жил посредством штекера типа байонет. Таким образом внутри корпуса инвертора сохранится достаточно пространства для вентиляции, а дополнительные устройства можно будет легко отключить за ненадобностью.
Нужно помнить, что кардинальной, глубокой модернизации провести не получится, иными словами, «РЕСАНТУ» в KEMPPI разумными силами и средствами не превратить. Однако изготовление приспособлений и мелкая доработка оборудования — отличный способ лучше изучить технологию дуговой сварки и проникнуться профессиональными тонкостями.
Почему ломаются сварки?
В предыдущем посте меня попросили рассказать про типовые неисправности сварочных инверторов РЕСАНТА, но я решил что лучше все таки рассказать почему сварки вообще ломаются а потом уже дополнить пост типовыми неисправностями.
Для начала скажу что сварки в большинстве случаев ломает сам клиент. Не читает условия эксплуатации чем и в последствии гробит аппарат. Но есть несколько основных причин:
2. Причина. Слабое питание. Слабые удлинители, плохие розетки, низкое напряжение сети, работа от генератора. В общем все что вызывает просадку питающего напряжения. Из-за просадок растет ток в первичной цепи. Сварка то у нас ММА и что бы выдать к примеру 100А на выходе он при питающем 220В берет 15А, а вот когда у нас сеть просажена до 120в то из сети уже вместо 15А будет брать все 25А. Вся эта нагрузка возлагается на IGBT транзисторы что в свою очередь просто вышибает нафиг. Поэтому проверяйте просадку напряжения в сети во время работы сварочного инвертора.
3. Падения и удары. Особенно во время работы. Я так полагаю что это связано с SMD компонентами которые особо не могут деформироваться. Удары и падения просто ломают SMD резисторы и конденсаторы что в работе сварочного инвертора вызывает просто фатальные неисправности.
4. Болезни определенных моделей сварочных инверторов. У ресант это дежурка и конденсаторы, у фубаг, гусей подобных: стойки и вышибание выходного выпрямителя.
И так, расскажу про типовые неисправности сварочных инверторов РЕСАНТА.
1. Выбитые конденсаторы на входном выпрямителе. Вот у Ресант это самая частая поломка. Связано это с очень некачественными и неправильными конденсаторами. Ну и с охотой клиента поварить в морозы или попыткой отрезать металл на максимальном токе.
Вот подскажите мне, как узнать производителя конденсаторов? Где найти мне даташит от изготовителя? Никакой информации на эту тему. То есть конденсатор какого то подвального производства.
Как видно, серия CD293-294 относится к общей серии конденсаторов. А в сварке должны стоять конденсаторы серии CD29H под высокие токи, или EPCOS B43504, или NIPPON серии KMR, LXS.
Я не знаю какие в Ресанте сидят идиоты что бы ставить такие дерьмоконденсаторы, когда можно поставить EPCOS B43504. Эти конденсаторы как нельзя лучше подойдут в сварочный инвертор. Ну ладно, допустим нельзя купить EPCOS, но можно же хотя бы CD29H(105град high ripple), ну никак не CD293 (85градусные общего применения).
И вот что интересно, эти конденсаторы серии CD293 не только ресанта обожает, но и другие производители сварок.
Только у старых ресант идет именно такая болезнь с конденсаторами. В новых ресантах сейчас ставят конденсаторы какого то китайского производителя и они перестали так неожиданно взрываться но в новых ревизиях сварок ресанта начала очень сильно экономить на комплектующих.
Раньше в аппарате на 250А ставили два диодных моста типа KBPC5010 и к ним радиатор большой. Сейчас ставят два диодных моста по меньше и радиатор сильно похудел. На IGBT ключах радиаторы тоже сильно похудели. На выходном диодном выпрямителе раньше ставили STTH6003CW, теперь уже ставят STTH3003CW или вообще диоды неизвестной фирмы. Так что ресанта немножко обарзела.
2. Поломка дежурки. Резистор R010 и R013 вообще могут просто так сгореть. Довольно частое явление когда они сгорают, все остальное остается целым. Их меняешь и аппарат дальше работает.
3. Попадание пыли, влаги в пространство между платой и электролитами. По мне так это недоработка ресанты. Ибо этот дефект легко можно устранить промазав по краям электролита герметик. Вон в том посте рассказывал как опилки попали под конденсатор и вызвали пробой. Бывало и просто от пыли сгорало, или от снега.
На счет того какую сварку покупать я даже не знаю. Нету вот действительно добротных сварок, что бы и конденсаторы качественные, и сборка добротная и по цене норм.
Если денег много, то можно трехэтажку взять. (топология BRIMA ARC-200) До жути надежные аппараты.
Если имеется возможность купить Украинского производства то хороши НОВЫЕ Патоны, эдоны(те что по дороже).
6.5K постов 38K подписчиков
Правила сообщества
ЕСЛИ НЕ ХОТИТЕ, ЧТОБЫ ВАС ЗАМИНУСИЛИ НЕ ПУБЛИКУЙТЕ В ЭТОМ СООБЩЕСТВЕ ПРОСЬБЫ О ПОМОЩИ В РЕМОНТЕ, ДЛЯ ЭТОГО ЕСТЬ ВТОРОЕ СООБЩЕСТВО:
К публикации допускаются только тематические статьи с тегом "Ремонт техники".
В сообществе строго запрещено и карается баном всего две вещи:
В остальном действуют базовые правила Пикабу.
Про переноски и прочие удлинители.
Масса людей абсолютно уверены, что раз это "инвертор", то он потребляет из сети как лампочка. Это же не трансформаторный.
Мои жалкие попытки сообщить, что если аппарату надо отдать 100А, то свои 20А из сети он заберет в любом случае и неважно, какой тип аппарата.
Потом эти люди берут 20м кабеля 0,75 сечением и пытаются варить.
Я не знаю какие в Ресанте сидят идиоты что бы ставить такие дерьмоконденсаторы, когда можно поставить EPCOS B43504.
так известно какие.
Кто такие «сварки»? Зачем так писать?
Деньги которые просит ресанта за свой аппарат отбиваются на Ура. Сломался? Да и хуй с ним - купил другой. как-то так.
Добавлю в этой же теме, для автора и других интересующихся. Довольно сложно ремонтировать 3ех фазные инверторы. Дело не в самом процессе ремонта а в деталях. Если для обычных инверторов IGBT транзисторы не являются проблемой то для 3 фазных это караул. Большинство того что предлагают на Али -перемаркер. Хорошие качественные транзисторы стоят ближе к 1000 руб за штуку. Кроме того на раскачку используются 5А транзисторы в корпусах SOT23 и SOT223 что тоже на каждом углу не продаются. Да ток я лично видел там на инверторе до 500А , наверное мосты можно резать или рельсы))))
Ребят. От пыли и всякой вредной хрени внутри несложно избавится соорудив фильтр из "нетканого текстиля", "Геоткани" или специально изготовляемых фильтровых материалов. Рамку можно сделать из стальной проволоки или реек. Важно лишь для минимального сопротивления потоку делать фильтр максимальной площади, хорошо бы во всю "морду" аппарата. Есть мысль использовать автомобильные воздушные фильтры, например от КамАза, сложить пару колец, заклеить одну сторону. Могут оказаться великоватыми по габаритам, тогда применить от других марок. Да. Лучший вариант всё же самодельный со специальным фильтроматериалом на каркасе, можно даже ткань. И периодически выбивать и продувать.
Автор, у меня вопрос: есть ли смысл покупать сварочный аппарат полуавтомат и дуговой в одном устройстве? И какая модель для начинающих подойдёт? Если раньше никогда не варил.
Вот что стало с ресантой 220.
Спасибо ЧЕЛОВЕЧЕЩЕ. Вдохновленный твоим постом и собрав волю в кулак, пойду в гараж реанимировать Ресанту, вдруг получиться .
Ресанты и свароги реальное говно Берут нонэйм китайцев и лепят свою марку Из годных фирм по моему только кемпики и фрониусы остались Даже миллеры скатились
"Я не знаю какие в Ресанте сидят идиоты что бы ставить такие дерьмоконденсаторы" - там не идиоты, там хитрожопы ну и большие числа рулят, по копейке сэкономил - заработал миллион. Плюс сервисам обеспечил заработок. Это как автомобили современные: по частям стоят в три раза дороже и сервис не простаивает. Ну это если правильный ресурс заложен.
Нету вот действительно добротных сварок, что бы и конденсаторы качественные, и сборка добротная и по цене норм
Так за копейки добротных быть и не может. Хочешь добротный - вот добротный.
Ценник, конечно, совершенно космический после 14 года.
Так то Ресанта дерьмовинькие аппараты
С трехэтажками согласен. Если Ресантоподобных я ремонтировал ну штук ..за 20 скажем, то трехэтажек только 2 штуки были в ремонте. Хотя может они просто менее распространены
Подскажите, есть ли смысл в "предупредительном" ремонте? Т.е. заранее поменять те же конденсаторы, увеличить радиаторы и т.п.? Или это экономически бессмысленно?
Всем привет. Кто нибудь пользуется инвертором Telwin ? Если кто в курсе , какие есть родовые болячки у итальянца?
Щас выбираю инвертор на дачу не подскажете какой модели лучше взять? Думаю пока ресанту или фубаг, в районе 8000 тыс.
не понял, что за сварки?
Подскажите пожалуйста, имеется кемпик минарк 150 у него большое напряжение холостого хода - низкий ток сварки. Как победить?
Пользую в хвост и в гриву Ресанту-190 с 2014 года. Поменял только заводской держак. Что со мной не так?
А мне ММА 200 в основном с дохлыми релюшками попадаются.
У меня есть один животрепещущий вопрос, вроде пост располагает. Интересна резка металла (не более 3мм) инвертором. Читал что режут простым сварочным электродов, но однажды я где-то мельком заметил комменты о резке инвертором металла при помощи вольфрамового электрода. Возможно ли это, как это скажется на инверторе. Гугл ничего стоящего не предлагает по этой теме. И хочется и боязно. Сварка Элитек. Выдержит ли.
Ребят, вопрос не по теме. У меня в сервисе один мастер по сварочникам, работаем 50/50. Работы столько, что нужен ещё спец, но не могу в Хабаровске найти человека. Может, кто подскажет, где искать вменяемых профессионалов?
Ещё не лишним будет проверить как транзисторы к радиатору притянуты, как оказалось могут и вообще не притянуты быть.
В ноябре купил Патон ВДИ200Е (с ручкой), насмотревшись роликов на ютубе от Стаса с канала "Измаил Инвертор".
Пока всем доволен, разве что из явных минусов - антистик на 2мм электроде не работает. И не только у меня судя по отзывам.
А так - и варит и режет. Использую от 2.5мм.кв. алюминиевых жил при сетевом напряжении 230-235.
А такие аппараты вам попадались?
"не знаю какие в Ресанте сидят идиоты что бы ставить такие дерьмоконденсаторы"
Я думаю руководствуются только одним условием - изделия должны проработать только свой гарантийный срок.
Главное- не покупать сварочное оборудование фирмы сэлма. Наплакался в свое время. Правда, тогда сэлму делали хохлы украинские братья и сестры, но думаю, в эпоху крымнаш ничего не поменялось.
Лично я предпочел продукцию трудолюбивых китайских товарищей, и не жалею.
Купил себе в 2010-м году сварку "Радуга - 190 А" в модном розовом цвете, со скидкой за 4, по-моему, 500 р. А сосед какую-то ресанту то ли за 7, то ли за 8 тыр. Моя до сих пор работает (тьфу-тьфу-тьфу), а вот дядя Ваня уже четвертую ресанту поменял.
Не "сварки", а сварочные аппараты! *крик птеродактиля*
А что скажете про два в одном? И сварка и плазморез
Купил QUATTRO ELEMENTI года 3 назад. Варить люблю много и долго. Разной самодельщиной занимаюсь. У сварки ни намека на выход из строя.
Ответ PolusZ в «Я сделал две дырочки в мыльнице»
Такая хрень очень часто в муниципальных организациях происходит. Лет 10 назад работал в трамвайном депо ремонтником (проработал год, потом ушёл из-за маразма руководства) работа заключалась в поддержании рабочего состояния вагонов, которым лет 40-50. Так вот что я скажу: что либо выпросить для работы это бюрократический ад. По первости намекнул что для улучшения работы можно купить инструмент получше: набор с трещотками, головками, удлиннителями, карданчиками и прочим. Показал мастеру какой набор будет оптимальным, стоил он 8.5к. Мастер сказал писать заявку. Ок, написал. Через 3 дня устроили дикую головомойку из-за того что девочка в отделе закупок нашла набор за 990р (хз какой) и написала докладную: такой-то такойтович заподозрен в попытке растраты бюджета предприятия, чуть ли не в сговоре с продавцами обвинили. Ну крч хрен мне а не инструмент, выговор. Советские рожковые ключи рулят. Даже за пачку пластиковых хомутов или моток изоленты приходилось расписывать талмуд на несколько страниц: почему нужно купить там, точно ли это самая низкая цена, зачем они тебе нужны, насколько они необходимы в работе, почему без них нельзя обойтись, насколько увеличится производительность труда и тд. Многие психовали и покупали за свои. А случай, послуживший поводом увольнения был таким: Перед новым годом дали задание украсить самый новый и красивый (86 года выпуска) гирляндами, ну хоть гирлянды дали, слава всему. Я прикидываю что это великолепие можно закрепить на двусторонний скотч, на весь вагон 5-6 рулонов. Подхожу к начальству, говорю: мол скотч нужен, цена вопроса 1000р, если буду писать через закупки, даже если одобрят, украшенный вагон нужно выпускать послезавтра, они не успеют. На что мне ответили "уклончиво" мол гирлянды дали, задание дали, делай, за невыполнение штраф, выговор и тд. Своей зарплаты в 15.500 а ещё и перед новым годом мне не хватало, поэтому вариант покупки за свои меня крайне не устраивал.
Ну хер с вами, кровельные саморезы отлично вошли в борта, проволока удерживала конструкцию, вагон больше напоминал мишень чем вагон, загляденье. После праздников забил отверстия чопиками, сверху жирный слой краски. В апреле краска начала трескаться, в вагоне становилось сыро, аккурат на отверстиях пошла ржавчина. Когда с администрации начали спрашивать что за безобразие, с должности на должность вела вереница указательных пальцев, которая закончилась на мне. Тогда я вылетел с треском, по статье. Бывшие коллеги рассказывали что мне очень повезло, что меня пожалели и не повесили на меня стоимость вагона.
Прошу простить за неграмотность, простой я колхозник, из лаптей недавно вылез
Читайте также: