Автоматическая и полуавтоматическая сварка под флюсом
Факторы, которые влияют на качество соединения – сила тока и скорость подачи проволоки. Первый показатель устанавливают в зависимости от толщины деталей, скорость – равномерной и достаточной для получения качественного шва.
Полуавтоматической сваркой соединяют изделия из алюминия, низколегированных и коррозионностойких металлов толщиной от 1,5 до 10 мм.
Государственные стандарты техпроцесса и применяемого оборудования
Технологию и параметры процесса регламентирует государственный стандарт СССР от 1977 г., продлённый в 1991 году, ГОСТ 11533-75 «Автоматическая и полуавтоматическая дуговая сварка под флюсом. Соединения сварные под острыми и тупыми углами». ГОСТ вводит обозначения подвидов метода:
- Ас – автоматическая дуговая сварка под флюсом на стальной подкладке;
- Апш – автоматическая дуговая сварка под флюсом с предварительным наложением подварочного шва;
- П — полуавтоматическая дуговая сварка под флюсом;
- Пс – полуавтоматическая дуговая сварка под флюсом на стальной подкладке;
- Ппш – полуавтоматическая дуговая сварка под флюсом с предварительным наложением подварочного шва.
Необходимые параметры оборудования содержит ГОСТ 18130-79 «Полуавтоматы для дуговой сварки плавящимся электродом», созданный в 1980-м, продлённый в 2015 году. В нём требования по номинальному напряжению, электрическим схемам, суммарному сечению кабелей, условиям эксплуатации и другим характеристикам процесса.
Особенности полуавтоматического способа
Благодаря компактности, полуавтоматом работают в труднодоступных местах: на высотных конструкциях, в тесных помещениях и тоннелях.
В отличие от метода с использованием газобаллонного оборудования в полуавтоматическом используют прямое подключение: на электрод подают «минус», а на заготовку – «плюс». При этом создаётся температура, достаточная для сгорания флюсового порошка и возникновения защитной среды.
Прижимные ролики устанавливают в соответствии с диаметром проволоки. На самом ролике указан диапазон диаметров, которые можно использовать. Нельзя прикладывать слишком большое усилие, затягивая ролик, это может привести к сдавливанию полой внутри проволоки и затору в кабель-канале.
Конструкция и принцип работы аппарата, типы проволоки
- сварочная горелка-пистолет;
- узел управления;
- механический блок подвода проволоки;
- гибкие шланги;
- бобина с проволокой;
- трубопровод для подачи электрода;
- электрические провода.
В зону соединения подаётся электрический ток, дуга плавит электрод, флюс, испаряясь, защищает сварочную ванну от попадания кислорода. Подача электрода осуществляется автоматически, горелку перемещают вручную.
Инверторные сварочные полуавтоматы более производительны и эргономичны, дугу разжигают быстрее.
Примерная стоимость сварочных аппаратов на Яндекс.маркет
Сварочная проволока различается по сечению:
Техника работы полуавтоматом без газа
Перед началом работы подготавливают сплавляемые поверхности: зачищают место шва шлифовальной машинкой, затем обезжиривают зону сварки. Производители крепят на установках таблицы выбора силы тока в зависимости от толщины заготовки. После определения нужного показателя тока:
- сменными шестернями регулируют скорость подачи проволоки так, чтобы она не проскальзывала, но и не была плотно прижата;
- для подбора стабильной величины дуги проваривают небольшой пробный участок;
- устанавливают переключатель подачи электрода в положение «вперёд», чиркают наконечником, после появления дуги ведут шов;
- контролируют плавность процесса.
Достоинства и недостатки полуавтоматического метода работы без газа
К плюсам относят:
- мобильность (нет тяжёлого газобаллонного снаряжения);
- возможность непрерывно сваривать протяжённые участки соединения;
- оперативность визуального контроля качества шва;
- скорость процесса;
- соединение конструкций в труднодоступных местах;
- производительность вследствие непрерывности процесса.
- высокая себестоимость работ;
- потребность в оборудовании, сложность настройки;
- трудоёмкость зачистки швов из-за толстого слоя шлака;
- сложность работы с деталями толщиной менее 2 мм.
Из-за доступности и простоты эксплуатации техники сварку полуавтоматом без газа используют в домашних хозяйствах, гаражах и мастерских для мелких работ и ремонтов.
Что такое сварка под флюсом, как происходит процесс и какой вид флюса и режим выбрать для сварки разных металлов?
Сварка под флюсом – это способ сварки деталей из высоколегированной марганцевой, никелевой или фторидной стали, при котором сварочная ванна и шов защищены от окисления слоем флюса в виде порошка или гранул.
Процесс формирования шва протекает в газовой полости под слоем непрерывно подаваемого флюса. Кроме функции защиты от окисления, флюс также легирует формируемый шов марганцем и кремнием, повышая его прочность и формируя соединение с высокой степенью однородности.
ГОСТ на сварку флюсом 8713-79 устанавливает размеры и типы сварных соединений, а также способы наложения шва под флюсом.
Виды флюсов и их особенности
По способу изготовления флюсы бывают:
Плавленые флюсы изготавливают из шлакообразующих марганцевых руд и кварцевого песка путем размалывания, смешивания и расплавления с последующим гранулированием. Такие флюсы экономичны и хорошо подходят для сварки деталей из низколегированной стали.
Керамические (неплавленные) флюсы изготавливают из окислителей и солей амфотерных металлов, которые измельчают, смешивают с жидким стеклом до однородного состояния, после чего гранулируют и прокаливают.
Примерная стоимость керамических флюсов на Яндекс.маркет
Керамические флюсы имеют мелкодисперсную порошкообразную структуру, они применяются для сваривания сложных высоколегированных стальных сплавов, при этом состав флюса подбирается под конкретную марку свариваемой стали.
По химическому составу флюсы бывают:
Солевые флюсы содержат соли фторидов и хлоридов, применяются для электросварки титана и стали, легированной никелем и хромом. Оксидные флюсы содержат оксиды активных металлов и кремния, применяются для сварки низкоуглеродистой стали. Смешанные флюсы содержат оксиды и соли металлов в различных пропорциях, применяются для сваривания многокомпонентных сплавов или деталей из разных металлов.
Описание технологии процесса
Существует три основных способа сварки под флюсом:
При автоматической сварке траектория и скорость движения электрода, а также скорость подачи проволоки регулируется управляющим процессором, рабочие участвуют только в качестве контролеров процесса для экстренного отключения сварочного агрегата.
Полуавтоматическая сварка под флюсом предполагает, что скорость подачи проволоки, сила тока сварки и угол наклона электрода к линии сварки регулируются автоматически, а ведение дуги осуществляется сварщиком вручную – через рукоятку или дистанционное управление. Полуавтоматический сварочный агрегат позволяет вручную изменять отдельные параметры тока непосредственно во время процесса сварки.
Сварка под флюсом вручную применяется в небольших агрегатах, где система подачи флюса встроена в неплавящийся электрод, при этом сварщик регулирует направление движения, угол наклона и скорость хода электрода в ручном режиме, специальными кнопками управляя подачей флюса и силой тока сварки.
Общий порядок действий при сварке под флюсом:
- С поверхностей деталей снимается оксидная пленка.
- Детали закрепляются на сварочной плите.
- Выбираются настройки и режим сварочного аппарата.
- Заполняется резервуар для флюса.
- Устанавливается бухта наплавной проволоки, конец которой заправляется в электрод.
- Происходит процесс сваривания.
- После остывания деталей собирается неизрасходованный флюс, и шов очищается от шлака.
Важно следить за расходованием проволоки и флюса, чтобы не допустить работы электрода вхолостую и повреждения деталей.
Оборудование для сварки
Для сварки флюсом потребуются стационарные условия и оборудование:
Сварочные плиты выполняются на бетонном основании из жаростойких материалов с возможностью закрепления деталей. Проволока берется из материала свариваемых деталей, толщина от 0,3 до 12 мм. Электрод изготавливается из вольфрамового сплава с керамической оплеткой.
Система подачи флюса представляет собой резервуар и шланг, конец которого отстоит от электрода на 10-30 см. Диаметр шланга подачи флюса должен позволять гранулам свободно сыпаться перед электродом.
Схема процесса автоматической сварки под слоем флюса
Автоматическая и полуавтоматическая сварка под флюсом контролируется программным обеспечением, регулирующим направление и скорость движения электрода вдоль линии сваривания.
Выбор режима сварки
В зависимости от толщины и металла свариваемых деталей выбирается режим сварки под флюсом. Для каждого режима существует свой диапазон напряжения, силы тока сварки и диаметр проволоки. Скорость формирования шва колеблется в пределах от 6 до 100 метров в час.
Если толщина свариваемых деталей от 2 до 10 мм, то выбирается режим сварки на стальной подкладке под стыком деталей. Режим на флюсовой подушке подходит для сварки деталей толщиной 10-25 мм, а сварка деталей толщиной 16-70 мм выполняется в режиме предварительной ручной проварки нижней части шва.
С увеличением толщины свариваемых деталей растет диаметр проволочного электрода и сварочный ток, но уменьшается скорость формирования сварного шва.
Сила тока сварки (А) зависит от толщины проволоки (мм) следующим образом:
Напряжение сварки существенно увеличивается только при толщине деталей свыше 25 мм.
Достоинства и недостатки
К преимуществам сварки под флюсом относятся:
- высокая степень автоматизации процесса;
- возможность проведения сварки под большой силой тока;
- высокая скорость сварки;
- качественный шов без окислов и раковин;
- возможность увеличения сварной ванны для более качественного провара.
Системы автоподачи флюса и сохранение постоянного расстояния от электрода до шва позволяет сваривать сложные детали с минимальным участием рабочих. Защитный слой флюса не дает расплавленному металлу разбрызгиваться, что позволяет производить сварку под высокими токами, многократно увеличивая скорость формирования и качество шва.
Однородность шва достигается за счет изоляции сварной ванны от кислорода воздуха, а также из-за легирования шва компонентами флюса, которые можно подобрать специально для материала свариваемых деталей. Также сварка под флюсом дает возможность использования одновременно двух электродов, расположенных на расстоянии 10-20 мм друг от друга и питаемых от одного источника тока – это позволяет сделать больше сварную ванну под флюсом, увеличив таким образом скорость сварки и степень однородности готового изделия.
К недостаткам сварки под флюсом относят трудности контроля процесса и технологическую сложность. Агрегаты для сварки под флюсом занимают большие площади и требуют обслуживания квалифицированными кадрами. Сварной шов формируется под слоем флюса и у сварщика нет возможности контролировать качество шва в режиме реального времени. Избежать брака можно путем дополнения агрегата ультразвуковыми или лазерными системами контроля наличия дефектов.
Автоматическая и полуавтоматическая сварка
Автоматическая и полуавтоматическая сварка – чем отличаются данные технологии? Обычный человек, скорее всего, затруднится дать ответ на этот вопрос, да ему и не нужно. Но в некоторых ситуациях выбор между тем или иным методом может сыграть существенную роль.
К примеру, автоматическая сварка – это высокая скорость работы и отменное качество шва. Для использования полуавтоматического оборудования не требуется каких-то особых условий, оно более экономичное. И на этом отличия между технологиями не заканчиваются. Так на каком же методе остановиться? Давайте разбираться.
Чем автоматическая сварка отличается от полуавтоматической
Различия в первую очередь проявляются в особенностях используемой аппаратуры. Однако для начала остановимся на сложности последней. Оборудование для автоматической и полуавтоматической сварки может работать с флюсом, защитным газом, также возможно применения порошковой проволоки. Основное отличие агрегатов для автоматической и полуавтоматической сварки заключается в том, насколько работник задействован в производственном процессе.
Автоматическая и полуавтоматическая сварка имеют свои достоинства и возможности, которые и рассматриваются при выборе метода. Существует несколько типов автоматов:
- с одним или несколькими электродами, которые одновременно выполняют соединения;
- подвесные системы со смещающейся сварочной головкой и стационарным расположением остальных частей, их используют для фигурных швов;
- самоходные, которые перемещаются на тележке, у них подвижна не только головка, но и весь механизм, применяются они при конвейерной системе производства;
- тракторы сварочные – устройства, двигающиеся по заготовке или направляющим и выполняющие длинный шов, примером может служить производство сварочной трубы.
Еще одной классификацией автоматического оборудования является разделение по разновидностям сварочного процесса:
- работа ведется снизу (нижнее положение);
- горизонтальное соединение на вертикальных поверхностях;
- сваривание с принудительным формированием шва.
Оператор не принимает непосредственного участия в работе, не следит за расположением электрода и горелки. Основная функция работника – настройка аппаратуры и проверка ее работоспособности.
Автоматические установки – это сложное оборудование. Такие устройства имеют блок управления и электронные системы, большой срок окупаемости, стоят достаточно дорого. Поэтому покупка автоматов небольшими производствами, мастерскими – нерентабельна.
Рекомендуем статьи по металлообработке
Срок окупаемости полуавтоматов небольшой. Они часто используются для сварки высокой сложности вне производства, на выезде. В полуавтоматическом оборудовании механической является только подача присадочной проволоки. Она помещается на направляющие ролики и автоматически двигается. Скорость ее перемещения регулируется оператором.
Классифицируют полуавтоматическое оборудование по:
- числу электродов;
- назначению (они могут работать со сталью, чугуном, цветными металлами);
- функциональности: аппаратура может работать без газового оборудования и подходить для любого вида сварки.
С такими аппаратами работают опытные специалисты, поскольку одновременно происходит регулировка подачи газа, отслеживание и поддержка расстояния между металлом и аппаратом, удержание дуги.
Технологии автоматической и полуавтоматической сварки
Сварочная токопроводящая головка является основным узлом оборудования. На нее подается создающий дугу разряд и проволока.
Сварка в автоматическом режиме происходит чаще всего с применением присадки в виде проволоки. Она, как правило, закрепляется на катушке и специальной бобине. Скорость подачи и траектория движения проволоки задается с помощью системы роликов. Сначала проволока выпрямляется, а потом уже подается на мундштук, который направляет ее в рабочую зону. Располагается он обычно над местом работы.
VT-metall предлагает услуги:
Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы
Формирование дуги с помощью автоматического оборудования происходит так же, как и при ручной сварке, то есть пробой заряда идет в процессе смыкания поверхности заготовки и электрода. Присадка в данном случае является коротким плавящимся электродом, за счет расположения электродуги и контакта. При этом длина электрода в процессе работы не уменьшается, поскольку происходит непрерывная подача проволоки.
Марка оборудования влияет на размер сварочной зоны. Мундштук и металл не перегреваются, если правильно настроить аппаратуру. Зажигание дуги с помощью инверторного источника может происходить без непосредственного контакта детали и электрода. При фиксированной длине электродуги электрод редко залипает в процессе короткого залипания по капле. Происходит стабильная подача металла в сварную ванну. Если падает капля, то проволока начинает движение назад с холостым ходом. Тем самым происходит увеличение дистанции и поддержание электроразряда. При ручной сварке невозможно обеспечить столь высокую стабильность работы.
Специфика сварки имеет большое влияние на выбор технологии соединения. Наиболее популярна сварка:
- В защитной газовой среде. Качественный шов можно получить с использованием гелия, аргона и разных смесей.
- Электрошлаковая. Ток, проходя через жидкий шлак, способствует выделению тепла, расплавляющего как заготовку, так и присадочную проволоку. Такой вид сварки дает минимально возможное проникновение водорода в металл, создавая большую ударную вязкость шва.
- Под флюсом. Считается одной из самых производительных. Данная технология используется на металлургических предприятиях и в машиностроении. Присадочными материалами при таком виде сварки являются сыпучий флюс и проволока, имеющая сплошное сечение.
Подача присадочного материала в сварную ванну при автоматической сварке может быть любой, в том числе аппарат может переносить его струйным методом. В случае короткого замыкания восстановление сварочной дуги происходит автоматически, без оператора.
Выше уже указывалось, что на сегодняшний день одним из самых популярных методов сварки, создающим качественный шов, является автоматическое соединение с защитой флюсом. Таким способом происходит сварка сложных металлов: нержавейки, меди и алюминия. Соединение автоматом происходит с высокой скоростью, защиту же обеспечивает флюс.
Флюс является веществом, которое выпускают в виде гранул, жидкости, порошка. Он обладает рядом достоинств. Так, эти примеси поступают в сварочную ванну толстым слоем и обеспечивают ее защиту от атмосферного кислорода. Одновременно, флюс уменьшает возможность разбрызгивания жидкого металла, помогает поддерживать горение дуги, защищает сам металл, а в случае необходимости способен поменять химический состав соединения.
Существует разделение флюсов в зависимости от их назначения. Одни используются для работы с высоколегированными сталями, другие – с углеродистыми или легированными, третьи – с цветными. А также они могут быт керамическими или плавлеными. При этом отличаются своим составом.
В подавляющем большинстве работ используется плавленый флюс. Причина – его относительная дешевизна и универсальность. Он может эффективно осуществлять защиту сварочной ванны от воздуха. Впрочем, ждать от него проявления особых свойств не стоит. При высоких требованиях к качеству шва специалисты рекомендуют выбирать керамический флюс.
Флюсы также бывают химически пассивными и активными. Последние имеют в своем составе кислоты. Они способствуют хорошей защите металла, но приводят к его коррозии. Поэтому требуется тщательное удаление таких примесей после окончания работы. Применение пассивного флюса в автоматической сварке затруднено, поскольку он не имеет необходимых свойств. Чаще всего он встречается при пайке и представляет собой канифоль или воск.
Автоматическое соединение с использованием защиты флюсом применяется во многих областях промышленности. Например, для создания крупносерийного конвейерного производства. Именно поэтому данная технология используется при сборке судов, контейнеров для нефтепереработки, при изготовлении труб большого диаметра.
В настоящее время используется два стандарта, в которых описываются правила работы полуавтоматов: ГОСТ 14771-76 – сварка в среде защитных газов: автоматическая и полуавтоматическая сварка; ГОСТ 8713-79 – автоматическая и полуавтоматическая сварка под флюсом. Первая ведется с использованием углекислоты. А соединение под флюсом происходит с применением порошков и паст, которые при плавке обеспечивают надежную защиту от воздуха рабочей зоны.
Сварка с использованием полуавтоматического оборудования является достаточно производительным методом соединения. Сама аппаратура имеет ряд особенностей. В конструкции применяются катушки, обмотанные порошковой или омедненной проволокой для сварки. Электрический двигатель и ролики являются механизмом, с помощью которого происходит подача присадки через специальный шланг к месту соединения, где она плавится.
Оператору не приходится менять электрод, поскольку проволока непрерывно подается в рабочую зону. Деформация металла при работе с полуавтоматом под защитой газа немного меньше, поскольку происходит обдув углекислым газом.
Полуавтоматическое оборудование может применяться для работы с чугуном, низколегированными сталями, алюминием, нержавейкой. Нержавеющая сталь и алюминий требуют применения для защиты инертных газов, таких как гелий и аргон.
Соединение различных сплавов происходит в разных режимах, технологии применяются также различные. Например, к особенностям подготовки заготовок относят: прогрев перед работой, травление, применение флюсов.
Иногда используются специально созданные марки проволоки. Их применяют для наплавки с целью создания износостойкого покрытия, сварки заготовок из чугуна, легированных сталей, конструкционных материалов.
При этом применяют разные флюсы. Они используются как для защиты места соединения, так и для создания швов, имеющих особые характеристики. Корку из шлаков, образующуюся при применении флюсов и порошковой проволоки, обязательно убирают при остывании металла.
Существует ряд нюансов при полуавтоматическом соединении в защитной газовой среде. Так, углеродистые стали обычно варят с использованием защиты углекислотой. При сварке нержавейки и алюминия подключают гелий, аргон или различные смеси с CO2.
Аппаратура, применяемая для сварки, имеет отличия от инверторов, которые работают при соединении с помощью покрытого электрода. Передняя панель, помимо рукояток регулировки размера тока, снабжена колесиком, посредством которого меняется скорость подачи проволоки.
Параметры соединения выбираются в зависимости от материала заготовки, марки и толщины. Профессиональная аппаратура дает возможность настроить индуктивность, которая оказывает влияние на то, насколько сильно будут проплавляться края деталей, разбрызгиваться металл, насколько «мягкой» будет сварочная дуга. Ее параметры зависят от металла и прочих условий.
Плюсы и минусы автоматической сварки
При внимательном осмотре шва, сделанного с использованием автоматической технологии, заметно, что он значительно ровнее соединения, сделанного вручную. Однако это не единственное достоинство автоматической сварки:
- Применение электронных систем значительно ускоряет настройку, в отличие от оборудования для ручного дугового соединения, которое нужно настраивать долго, подбирать напряжение и ток.
- Производительность автоматов в несколько раз превышает скорость работы бригады сварщиков, такому оборудованию не надо отдыхать, оно не зависит от профессионализма работников.
- Уменьшается количество отходов. Брак зависит от того, насколько правильно было настроено оборудование, а не от квалификации работников.
- Стабильный шов. Чрезвычайно высоко оценивается качество и аккуратность места соединения металла. Они ровные и имеют одинаковую высоту. Нет наплывов и разрывов.
- Экономичность. Проволока расходуется медленнее, уменьшаются потери энергии, уходившей на угар и разбрызгивание.
- Есть возможность проводить соединение в замкнутых и труднодоступных местах, при вредных для человека условиях, таких как: высокая и низкая температура, загазованность и пр.
Однако, помимо достоинств, автоматическая сварка имеет и ряд недостатков:
- оборудование имеет небольшую маневренность;
- при изменении операции необходимо проводить перенастройку;
- высокая стоимость;
- вред для здоровья окружающих из-за выделения небезопасных газов при проведении автоматического соединения, несмотря на то, что нет необходимости применять средства индивидуальной защиты.
Именно поэтому такое оборудование не в состоянии полностью заменить сварщиков.
Преимущества и недостатки полуавтоматической сварки
Механизированная сварка завоевывает все большее число поклонников не только среди профессионалов, но и среди любителей.
Перед началом работы на полуавтоматическом оборудовании необходимо взвесить все его достоинства и недостатки. Преимуществами являются:
- Возможность без повреждения покрытия сделать неразъемный шов на оцинкованных деталях. При этом используют медную проволоку.
- Способность работать с чугуном, алюминием и конструкционной сталью.
- Возможность варить тонкие листы металла толщиной ≤ 0,5 мм.
- Малая чувствительность к коррозии заготовки и ее загрязнению.
- Удобство работы, когда сварщик сразу видит шов, шлак не закрывает его.
- Стоимость работ невысока, сравнивая ее с иными способами изготовления неразъемных соединений.
Но есть и недостатки работы с использованием полуавтоматического оборудования. Разлет брызг металла достаточно велик при работе без газа. Излучение дуги сильнее и появляется необходимость использовать защитную одежду и маску.
Несмотря на перечисленные неудобства, данный тип соединения используется в различных отраслях производства. Наиболее часто он применяется в ходе ремонта транспорта и в автомобилестроении, но всегда с защитным газом – аргоном, гелием, углекислотой.
Какой метод сварки выбрать – автоматический или полуавтоматический?
Выбрать, что именно требуется сейчас – автоматическая и полуавтоматическая дуговая сварка, поможет конкретная ситуация. Автомат необходим для изготовления швов повышенной сложности и для производства крупных партий изделий. Полуавтомат прекрасно подойдет для небольших партий продукции с качественным равномерным швом.
Настройка полуавтоматов не требует длительной подготовки, а их обслуживание экономично. Нет необходимости в создании специальных условий для соединения. Рабочие трудятся как в помещениях, так и на улице. Для размещения аппаратуры не нужна ровная поверхность с покрытием определенной плотности. И, пожалуй, самое важное свойство полуавтоматов – их мобильность.
Автоматическое же сварочное оборудование требуется при работе линии с общим управлением, в технологической цепочке, при выполнении одинаковых операций.
При смене работы автоматы требуют перенастройки и регулировки. Использовать их для выполнения разовых операций неоправданно дорого. Выбирая, как должна быть проведена сварка (на автоматических или полуавтоматических машинах), при ограниченном бюджете следует отдать предпочтение полуавтоматам. Но при выстраивании производственного цикла специалисты рекомендуют остановиться на автоматах.
Почему следует обращаться именно к нам
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.
Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.
Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.
Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.
Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.
Сварка под флюсом
Сварка под флюсом является технологией соединения металлических деталей/заготовок. Существуют различные способы сваривания: ручной, полуавтоматический, автоматический. Соответственно, используется различное оборудование, подбираются определенные режимы.
Благодаря своим неоспоримым преимуществам: точность, скорость, защита шва от коррозии, сварка под флюсом используется практически во всех сферах металлообработки: от машиностроения до изготовления труб большого диаметра и использования на мелких промышленных предприятиях. Как все происходит по технологии и какие проблемы часто возникают в ходе работы, подробно расписано в статье ниже.
Преимущества и недостатки сварки под флюсом
Сварщики знают о негативном воздействии кислорода при сварке и его воздействии на долговечность изделия и качество сварного соединения. Окислительные процессы являются причиной появления трещин на металлических сварных соединениях. Соблюдение технологичности процесса помогает избежать таких негативных моментов. Одной из них является сварка под флюсом. Это один из самых эффективных способов сварки металлов, обеспечивающий прочное и ровное сварное соединение. Но чтобы выполнить такой шов, необходимо наличие специального оборудования и соответствующий уровень квалификации сварщика.
Соединить детали из нержавейки, алюминия и меди зачастую просто невозможно без использования автоматической дуговой сварки под слоем флюса, который выполняет функцию защиты от воздействия кислорода. То же самое касается и классического метода с использованием ручной или полуавтоматической сварки. Плавление металла и соединение заготовок может происходить только при достижении высокой температуры электрической дуги.
Дуговая сварка зачастую сопровождается искрами и брызгами, а также повышенной задымленностью и интенсивным ультрафиолетовым излучением. При использовании технологии сварки под слоем флюса такие факторы исключаются, так как вся расплавленная ванна полностью находится под его толстым слоем, что делает этот процесс безопасным.
Помимо этого, нейтрализация дыма и излучения делает сварку под флюсом более безопасной относительно других способов сварных соединений. Операторам, осуществляющим контроль сварки, не нужно надевать защитную одежду, для этого подойдет и стандартная рабочая униформа.
Так как при дуговой сварке под флюсом используется электричество, то ее не нужно наносить под давлением. Помимо этого, повышенный уровень тепла, выделяемый в процессе сварки, позволяет соединять толстостенные заготовки.
Особенностью сварки под флюсом является ее высокая скорость осаждения металла. Именно это свойство может обеспечить глубокую сварную ванну. Сварка с применением порошковой проволоки под флюсом может ускорить осаждение по сравнению с использованием сплошной проволоки.
Помимо этого, большая концентрация тепла способствует ускорению сварки, скорость может достигать 5 м/мин. В результате структура выполненного шва становится более вязкой, долговечной, однородной и приобретает повышенную коррозионную стойкость. Кроме этого, сварное соединение выглядит более сглаженным и аккуратным.
Самой сложной задачей при сварочных работах является избежание деформаций сварного шва. Причиной служит расширение и сжатие металла, а также неоднородных цветных металлов. Так как при сварке под слоем флюса применяется ускоренное сваривание с повышенной тепловой концентрацией, то это позволяет избежать таких нарушений.
Такая технология сварки выполняется не только в помещении, но и на открытом пространстве. Даже при небольшом ветре дуговую сварку под флюсом можно выполнить без нарушений требований, предъявляемых к таким видам работ.
Имеется и ряд недостатков:
- Повышенная сложность настройки оборудования.
- Невозможность проведения сварочных работ в потолочном и вертикальном положениях.
- Неровные края поверхностей свариваемых деталей, которые не позволяют выполнять качественное сварное соединение.
Кроме того, проконтролировать качество сварки сложно, так как сварное соединение находится под слоем флюса.
Сферы применения сварки под флюсом
Однако такая технология в промышленных масштабах оправдывает себя, так как обеспечивает повышение производительности труда, улучшает качество сварного соединения и надежность металлоконструкции в целом.
Сварка под слоем флюса нашла широкое применение в следующих промышленных отраслях:
- Судостроение. Корпус судна состоит из предварительно сваренных секций, изготовленных с помощью автоматической или полуавтоматической сварки. С помощью технологии секционной сборки значительно сокращаются сроки изготовления. В промышленном масштабе проведение сварочных работ при соблюдении технологии обеспечивает высокое качество сварного соединения.
- Нефтедобывающая отрасль. Методика позволяет производить сборку резервуаров из заготовок на месте при помощи сваривания стальных листов в полотнища рулонного типа.
- Изготовление труб большого диаметра для водных коммуникаций, нефтяной и газовой отрасли.
- В машиностроительной индустрии при массовом производстве металлоконструкций: вагонеток, вагонов, автомобильных колес и подобных изделий.
Существуют технологии сваривания цветных металлов, алюминия, титана и его сплавов, что дает возможность использовать сварку под флюсом при производстве высоконадежных конструкций, летательных аппаратов, бытовой и промышленной аппаратуры.
Необходимое оборудование для сварки под флюсом
Для выполнения автоматической дуговой сварки под слоем флюса необходимо обеспечить рабочее место:
- Сварочной плитой. Ее следует устанавливать на бетонную платформу, потому что она изготавливается из материалов, которые устойчивы не только к высоким температурам, но к резким температурным перепадам.
- Наплавной проволокой. Ее толщина обычно составляет от 0,3 до 12 мм, состоит из такого же материала, что и свариваемое изделие.
- Неплавящимся электродом, который включает металлический сердечник и керамическую оболочку.
- Системой, выполняющей подачу флюсовых частиц, состоящую из шланга необходимого диаметра и резервуара.
- Системой контроля. У автоматических установок она более модернизирована, чем у полуавтоматических.
При крупносерийных масштабах производства обычно используют специальный сборочный автоматический стенд, который позволяет не только сваривать любые конструкции, но и обеспечивает надежную фиксацию заготовок в том положении, в котором они должны остаться в готовом изделии. Такое оборудование обеспечивает повышенную надежность закрепления заготовок и позволяет исключить любые отклонения формы и соединения всей конструкции, несмотря на то, что сварщик при работе не видит шов.
Такая технология является идеальной при нанесении угловых и стыковых сварных соединений, процесс происходит быстро, с обеспечением требуемых параметров качества и надежности соединения. Управление конструкцией происходит в автоматическом режиме, поэтому стоит довольно дорого. В некоторых случаях, в качестве альтернативного варианта, стенд может быть оснащен мобильными головками.
Цена на полуавтомат намного ниже, однако такое оборудование требует намного большего участия сварщика в процессе. Оператор должен постоянно следить за вылетом электрода и направлением проволоки, несмотря на то, что последняя подается в автоматическом режиме. Мастер самостоятельно подбирает угол наклона электрода, варьирует скорость при нанесении шва и мощность напряжения согласно специфике обрабатываемого изделия.
Ручным оборудованием чаще всего пользуются любители-сварщики в частных мастерских, хотя бывают и особые случаи применения, если оно наиболее удобно из всех вариантов для сварки изделий. Ручную сварку можно применять из любых положений и даже в неудобных труднодоступных местах.
Виды флюсов для сварки
По методу изготовления флюсы могут быть:
- плавлеными;
- неплавлеными (керамическими).
Первый тип флюсов (плавленые) изготавливается из смеси кварцевого песка и шлакообразующих марганцевых руд. Сначала их размалывают, перемешивают, а затем расплавляют и гранулируют. Такой вид флюсов является относительно экономичным и в основном применяется для сваривания заготовок из низколегированных сталей.
В состав неплавленого вида флюса входят соли амфотерных металлов и окислителей, которые сначала измельчаются, перемешиваются с жидким стеклом до образования однородной массы, а затем гранулируются и прокаливаются.
Керамический вид обладает мелкодисперсной порошкообразной структурой, используется для сварки под флюсом высоколегированных сталей и сплавов на их основе, причем для конкретной марки свариваемой стали подбирается определенный состав флюса.
По химическому составу флюсы подразделяют на:
- оксидные;
- солевые;
- смешанные.
В состав оксидных флюсов, используемых для сваривания низкоуглеродистых сталей, входят кремний и оксиды активных металлов. Солевой тип флюсов содержит соли хлоридов и фторидов, используется для электросварки стали, легированной хромом и никелем, а также титана. В смешанных флюсах, предназначенных для сварки деталей из разных металлов или многокомпонентных сплавов, используются различные пропорции сочетания солей и оксидов металлов.
Технология сварки под флюсом
При автоматической сварке под слоем флюса скорость перемещения и траектория электрода, как и подача проволоки, регулируется управляющим процессором, функция оператора заключается в отслеживании состояния контроллеров процесса на случай необходимости экстренного отключения сварочного оборудования.
При полуавтоматической сварке под слоем флюса происходит автоматическое регулирование силы тока сварки, угла наклона электрода относительно линии сварки и скорости подачи проволоки, а ведение дуги выполняет сам сварщик вручную при помощи дистанционного управления или рукоятки. При использовании сварочного полуавтомата появляется возможность изменять некоторые параметры тока вручную непосредственно во время выполнения сварного соединения.
Метод ручной сварки под слоем флюса используют при наличии небольших сварочных установок, в которых система подачи флюса встроена в неплавящийся электрод. На сварщика возлагается обязанность регулировать в ручном режиме при помощи специальных кнопок скорость движения электрода и угол его наклона, подачу флюса и силу сварочного тока, а также следить за правильной траекторией движения.
Существует общая последовательность операций при сварке под флюсом:
- Удаление с поверхности заготовок оксидной пленки.
- Закрепление детали на сварочной плите.
- Выбор режимов настройки сварочного оборудования.
- Заполнение резервуара флюсом.
- Установка бухты с наплавной проволокой, присоединение свободного конца к электроду.
- Непосредственно сваривание деталей.
- Сбор неизрасходованного флюса после остывания заготовок и зачистка сварочного шва от шлака.
Во избежание холостой работы электрода и повреждения деталей следует особенно обращать внимание на расход флюса и проволоки.
Выбор подходящего режима сварки под флюсом
Выбор режимов сварки под слоем флюса зависит от таких показателей, как выбор способа удерживания сварочной ванны, планируемое количество проходов при нанесении будущего шва, толщина кромочных поверхностей и метод их разделки. Помимо этого, выбор технологии сварки зависит от вылета электрода и положения самого изделия, скорости сварки, диаметра сечения проволоки, напряжения и силы тока. При расчете перед обработкой для каждой детали используются индивидуальные параметры.
К примеру, если толщина заготовки не больше 30 мм, то для сварки под слоем флюса стыкового шва, что бывает чаще всего, будет достаточно одного одностороннего прохода. При большей толщине шов следует проварить с обеих сторон и желательно ввести дополнительные проходы.
Смысл одностороннего сваривания может быть лишь в том случае, если используется материал, который не боится перегревания и на швах не образуются сварочные трещины.
Для каждого конкретного задания можно выделить несколько параметров, которые следует всегда учитывать при подборе режимов сварки под слоем флюса:
Толщина металла, мм | Диаметр проволоки, мм | Сварочный ток, А | Напряжение, В | Скорость сварки, м/ч |
---|---|---|---|---|
3 | 2 | 250–500 | 28–30 | 48–50 |
5 | 2 | 400–450 | 28–30 | 38–40 |
10 | 5 | 700–750 | 34–38 | 28–30 |
20 | 5 | 750–800 | 38–42 | 22–24 |
30 | 5 | 950–1000 | 40–44 | 16–18 |
Рекомендуемые табличные значения можно использовать для сварки под флюсом сталей с высоким, средним и низким содержанием углерода.
При сваривании тонколистового металла (до 6 мм) разделка кромочных поверхностей при подготовке изделия к обработке не производится. Для этого перед работой необходимо разместить свариваемые поверхности с минимальным зазором. При толщине стенки свариваемых деталей от 10 до 12 мм следует, наоборот, оставить зазор, благодаря этому сварное соединение будет более качественным, а также приведет к уменьшению лишнего объема расплавленного металла. В обоих случаях используются особые способы закрепления заготовок – или при помощи подкладки, или с добавлением подварочного шва либо методом предварительной сборки «в замок».
Для сваривания металлических листов толщиной до 10 мм лучше использовать подкладку. Обычно она представляет собой стальную пластину толщиной от 3 до 6 мм и шириной от 3 до 5 см.
Метод сварки «в замок» применяется для соединения ответственных конструкций, при которых прожог материала считается недопустимым. Также он является лучшим способом соединения тяжелых и объемных конструкций. Необходимо сказать, что подварочный шов редко используется при сварке, его применяют, только когда перекантовку изделия осуществить невозможно.
Проблемы, возникающие в процессе сварки под флюсом
Новичок-сварщик, неукоснительно соблюдающий инструкции, все равно может столкнуться с такими проблемами, которые ему непонятны. Самый образный пример – поры на сварном шве, которые говорят о том, что под слоем флюсом оказался газ. Чаще всего пористость появляется из-за наличия углекислого газа или водорода, в редких случаях из-за азота, поры которого появляются только при обработке микролегированных сталей, если такие материалы обладают нитридным упрочнением.
С такой же проблемой можно столкнуться, если металл разрезался плазменным резаком. Если сварочная ванна имеет малое процентное содержание раскислителей, то углекислый газ может проникать под слой флюса. Чтобы исключить образование пор, жидкую ванну обогащают как минимум 0,2 % кремния. Кроме того, раскисление может произойти при понижении температуры и, наоборот, концентрация углекислого газа будет расти с ее повышением.
Самой частой причиной появления пор при сварке под слоем флюса является наличие водорода, который появляется из-за недостаточной зачистки кромочных поверхностей от ржавчины и других загрязнений, а также из-за влажного флюса.
Рекомендуем статьи
Напоследок стоит сказать, что плавкий материал, который используется при сварке под слоем флюса, находится в твердом гранулированном состоянии в течение всего сварочного процесса, что позволяет на 50–90 % повторно его использовать при последующей сварке.
Читайте также: