Ar co2 сварочная смесь для чего используется

Обновлено: 24.01.2025

Исследования сварки в среде различных смесей на основе аргона (далее Ar) берут свое начало с 70-х годов прошлого столетия, однако наибольшее практическое распространение сварочные смеси получили в 90-х годах, особенно в европейских государствах, таких как Германия, Великобритания, Франция, Швеция. На сегодняшний день применение смесей Ar в вышеперечисленных государствах занимает не менее 95% рынка.

Многие отечественные предприятия, напротив, до сих пор применяют СО2 для низколегированных и углеродистых сталей, несмотря на неоспоримые преимущества использования смесей на основе Ar.

Атмосфера, защищающая ванну, играет важнейшую роль в MAG-процессе. Ее воздействие сказывается на свойствах сварного шва, скорости сварки, загрязнении атмосферы рабочего поста.

Переход на смеси на основе Ar вместо СО2 позволяет оптимизировать сварку, в том числе сделать ее более экономичной. Смеси Ar пришли на смену углекислому газу и теперь используются в Европе при работе с черными сталями ( или со сталями с небольшим количеством легирующих добавок). При сварке черных сталей в чистом Ar в шве образуются поры, поэтому используют смеси с добавочными газами — кислородом и/или углекислотой, нормализующие электродугу и улучшающие весь процесс в целом. Добавление к Ar кислорода практически не меняет поведение дуги и ее влияние на ванну и каплю. Также в качестве добавки может выступать гелий, особенно, когда требуется повышенная скорость сварки. Количество добавочного газа зависит от толщин, требуемой скорости, метода: ручной, автоматизированный либо роботизированный.

Выбор газа, прежде всего, оказывает воздействие на следующие ключевые параметры MAG-сварки:

  1. Поджиг дуги и ее управляемость.
  2. Производительность и, как следствие, затраты на производство.
  3. Вид металлопереноса и размер капли.
  4. Защита от газов, содержащихся в воздухе.
  5. Возникновение окалины и количество брызг.
  6. Мех.характеристики шва.
  7. Геометрия шва и глубина проплава.
  8. Количество и состав выделяющихся аэрозолей.

Преимущества смеси на основе Ar.

Помимо нарушений режимов сварки, состав защитной среды является наиболее важным фактором, влияющим на возникновение брызг. Использование чистого СО2 приводит к повышенному «брызгообразованию» , как результат к нестабильности электродуги. Чем больше СО2 в смеси с Ar, тем большее брызг образуется в процессе полуавтоматической сварки. Чем больше их размер, тем интенсивнее выделение теплоты. Опыты показали, что капли-брызги металла с диаметром более 0,8 мм содержат такое количество теплоты, что привариваются к рабочей плоскости. В большинстве случаев это влечет за собой последующую зачистку или подрезку резцом.

На рис. 1 проиллюстрировано, как доля брызг размером более 0,8 мм. увеличивается с ростом процента СО2 в смеси с Ar.

Диаграмма 1

Шлак, покрывающий шов, состоит из оксидов и выглядит как коричневые стеклообразные «островки». Чем больше окислительных элементов содержится в смеси (СО2 или О2), тем больше оксидов будет образовываться. Они должны быть удалены перед покраской или другой операцией.

Мех.свойства сварного соединения также очень подвержены влиянию состава защитного газа. Чем ниже содержание СО2, тем «чище» металл шва, тем меньше оксидных включений он содержит. Также микроструктура становится более мелкозернистой, что благоприятно сказывается на ударной вязкости металла шва (рис. 2).

диграмма1

Усталостная прочность шва также в некоторой степени зависит от защитного газа. Сварка в смесях на основе Ar позволяет получить более плавный переход между швом и основным металлом, чем при использовании чистого СО2 (рис. 3). К сварным соединениям, подвергающимся динамическим нагрузкам, предъявляются повышенные требования к усталостной прочности. Если переход недостаточно плавный, впоследствии потребуется дорогостоящая мех.обработка.

катет

подпись2

Скорость сварки. При ее увеличении в чистом СО2 профиль сварного шва становится более выпуклым, а также ухудшается перенос металла, что ограничивает скорость по сравнению со сваркой в смесях на основе Ar (рис. 3, 4). В данном примере были использованы три различных газа в процессе MAG-сварки стали с небольшим количеством легирующих добавок. Скорость подачи проволоки сохранялась неизменной, напряжение было установлено на наиболее подходящем уровне для каждого защитного газа. Скорость сварки увеличивалась до тех пор, пока шов не становился слишком выпуклым. В результате при снижении процента содержания СО2 в защитной смеси скорость могла быть увеличена (рис. 4).

Как уже упоминалось, различные защитные газы позволяют получить разнообразную геометрию сварного шва. При работе в смесях на основе Ar металл в сварочной ванне более жидкий, что делает профиль шва более сопряженным с основным металлом, невыпуклым. Сварка же в чистом СО2 делает его сильно выпуклым, переходы — неплавные. Кроме того, это приводит к низкой усталостной прочности, что также влечет за собой перерасход присадочной проволоки при сварке в СО2 для получения необходимого катета шва (рис.5).

Рис.5

Задание режимов. При использовании аргоновых смесей гораздо легче настроить наиболее подходящие сварочные режимы, чем при работе с чистым СО2. Диапазон токов, в которых дуга остается стабильной, гораздо шире в смесях Ar. Чтобы избежать дефектов в шве очень важно выполнить правильную настройку аппарата.

Риск прожога. Напряжение в составах на основе Ar на несколько вольт ниже, чем при сварке в СО2 при той же скорости движения сварочной проволоки. Это означает, что в сварочную ванну передается меньше тепловой энергии и риск прожога тонких пластин значительно снижается. Итак, выгоды, получаемые при переходе с чистого СО2 на смеси Ar и СО2, следующие:
● снижение потерь металла вследствие разбрызгивания;
● небольшое количество шлака, всплывающего на поверхность шва;
• улучшение мех. свойств шва (пластичные свойства, вязкость, усталостная прочность);
● меньшее выгорание легирующих добавок, что означает более высокое значение предела текучести и прочности при растяжении;
● плоский сварной шов с отсутствием резких «скачков» при переходе к основному металлу;
● более высокие скорость и эффективность.
● более простая установка оптимальных сварочных режимов , расширенный диапазон, в котором дуга стабильна — малый риск получения дефектов в шве;
● меньший риск проплавления, особенно, если речь идет о тонких листах за счет пониженного количества передаваемого тепла.

Виды некоторых смесей, которые можно найти сейчас на рынке сварочных материалов перечислены ниже.

● 92% Ar, 8% СО2. Используется в роли защитной атмосферы для различных сталей в режиме струйного переноса металла. Количество брызг, вылетающих из-под проволоки, минимизируется, что делает данную смесь идеальной для применения в цехе, где требуется экономия времени на зачистку (экономия средств).
Практически отсутствует окисление шва, что отлично для процессов с последующей окраской. Используется в различных отраслях производства, от выпуска грузовых автомобилей до судостроения. Очень хорошо подходит для тех.процессов, включающих порошковую покраску.

● 93% Ar, 5% СО2, 2% O2. Эта трехсоставная смесь приготовлена в основном для тонких сталей. Низкие уровни СО2 и О2 сильно снижают риск прожога и, как следствие, возникновения дефектов в виде пор и свищей. Обеспечивает устойчивость горения электрической дуги, что, в свою очередь, снижает уровень брызг, позволяет экономить проволочный материал и снижает затраты на мех.обработку.
Большая скорость выполнения проходов и небольшое тепловложение позволяют уменьшить температурные деформации.

● 82% Ar и 18%СО2. Здесь достигается хорошая глубина провара, особенно, если сталкиваться приходится с толстолистовым материалом. Позволяет избежать дефектов в шве. Достаточно высокое содержание СО2 делает возможным более продуктивную сварку стали, запачканной маслом, влагой, коррозией, снижая таким образом себестоимость изготовления. Самая популярная смесь, применяемая при сварке полуавтоматом. В сравнении с чистым СО2 позволяет увеличить скорость до 10% и достичь экономии сварочной проволоки до 15%.

● 86% Ar, 12% СО2, 2% О2. Предназначена для достижения maх производительности. Позволяет варить в большом диапазоне по току и напряжению, облегчая сварщику их выбор и достижение хороших результатов без дефектов. Отлично подходит как для полуавтоматической, так и для автоматической и роботизированной сварки. Обеспечивает низкий уровень образования брызг наряду с хорошей глубиной провара. Позволяет получить гладкие сварные швы, сократить расход проволоки. Обеспечивает плавный переход между основным металлом и швом, что позволяет избежать возникновения концентраторов напряжения. Высокая скорость сварки приводит к снижению термических деформаций в конструкциях.

● 60% Ar, 10% СО2, 30% Не. Данная смесь, содержащая гелий, была специально разработана для роботизированной сварки, где может быть полностью использован ее потенциал в части скорости. Значительно возрастает производительность, а также заметно снижаются температурные коробления.
Высокая устойчивость дуги наряду с увеличением теплопроводности, благодаря наличию Не создает жидкую, долго остывающую ванну, что позволяет избежать таких дефектов, как поры при остывании.

Введение в дуговую сварку в защитных газах (TIG, MIG/MAG)

Защитные газы и их влияние на технологические свойства дуги

В качестве защитных газов при дуговой сварке плавлением ТИГ и МИГ/МАГ применяют инертные газы, активные газы и их смеси. Защитный газ выбирают с учетом способа сварки, свойств свариваемого металла, а также требований, предъявляемых к сварным швам.

Инертными называют газы, не способные к химическим реакциям и практически не растворимые в металлах. Поэтому их целесообразно применять при сварке химически активных металлов и сплавов на их основе (алюминий, алюминиевые и магниевые сплавы, легированные стали различных марок). При сварке ТИГ и МИГ/МАГ используются такие инертные газы как аргон (Ar), гелий (He) и их смеси.

Активными защитными газами называют газы, способные защищать зону сварки от доступа воздуха и вместе с тем химически реагирующие со свариваемым металлом или физически растворяющиеся в нем. При дуговой сварке сталей в качестве защитной среды применяют углекислый газ (СО2). Ввиду химической активности углекислого газа по отношению к вольфраму этот защитный газ используют только при сварке МИГ/МАГ.

К активным газам применяемым при МИГ/МАГ также относятся газовые смеси в состав которых входят аргон (Ar), кислород (О2), азот (N2), водород (H2). Готовые газовые смеси поставляются в баллонах, также они могут быть получены путем смешивания газов составляющих смесь.

Классификация способов сварки в защитных газах приведена на схеме ниже.

Классификая способов сварки в защитных газах

Свойства защитных газов

В таблице ниже приведены физические свойства защитных газов.

Краткая характеристика защитных газов

Аргон - наиболее часто применяемый инертный газ. Он тяжелее воздуха и не образует с ним взрывчатых смесей. Благодаря низкому потенциалу ионизации этот газ обеспечивает высокую стабильность горения дуги. Однако, в тоже время, низкий потенциал ионизации является причиной и низкого напряжения на дуге, что снижает тепловую мощность дуги. Будучи тяжелее воздуха, аргон обеспечивает хорошую газовую защиту сварочной ванны (но только в нижнем положении сварки). Однако он может накапливаться в слабопроветриваемых помещениях у пола. При этом снижается содержание кислорода в воздухе, что может вызвать кислородную недостаточность и удушье у электросварщика. В местах возможного накопления аргона необходимо контролировать содержание кислорода в воздухе приборами автоматического или ручного действия с устройством для дистанционного отбора проб воздуха. Объемная доля кислорода в воздухе должна быть не менее 19%.

Аргон выпускается согласно ГОСТ 10157-79 двух сортов: высшего и первого. Высший сорт рекомендуется использовать при сварке ответственных металлоконструкций из активных и редких металлов и сплавов, цветных металлов. Аргон первого сорта применяют для сварки сталей и чистого алюминия.

Гелий - бесцветный, неядовитый, негорючий и невзрывоопасный газ. Значительно легче воздуха и аргона, что понижает эффективность защиту сварочной ванны при сварке в нижнем положении, но способствует лучшей защите при сварке в потолочном положении. Гелий используется реже, чем аргон, из-за дефицитности и высокой стоимости. Однако, из-за высокого потенциала ионизации, при одном и том же значении тока дуга в гелии выделяет в 1,5-2 раза больше энергии, чем в аргоне. Это способствует более глубокому проплавлению металла и значительно повышает скорость сварки. Для сварки используется гелий трех сортов: марок А, Б и В (по ТУ 51-689-75). Применяют его в основном при сварке химически чистых и активных материалов и сплавов, а также сплавов на основе алюминия и магния.

Часто используются смеси аргона и гелия, причем оптимальным составом считается смесь, содержащая 35-40% аргона и 60-65% гелия. В смеси в полной мере реализуются преимущества обоих газов: аргон обеспечивает стабильность горения дуги, гелий – высокую степень проплавления.

При сварке меди используется азот, так как он к ней химически нейтрален, т.е. не образует с ней никаких химических соединений и в ней не растворяется.

Активные газы

Углекислый газ (двуокись углерода) - бесцветен, не ядовит, тяжелее воздуха. При нормальных условиях (760 мм рт. ст. и 0°С) плотность углекислого газа в 1,5 раза выше плотности воздуха. Углекислый газ хорошо растворяется в воде. Жидкая углекислота - бесцветная жидкость, плотность которой сильно изменяется с изменением температуры. Вследствие этого она поставляется по массе, а не по объему. При испарении 1 кг жидкой углекислоты в нормальных условиях образуется 509 л углекислого газа.

Двуокись углерода нетоксична и невзрывоопасна. Однако при концентрациях более 5% (92 г/м 3 ) двуокись углерода оказывает вредное влияние на здоровье человека. Так как двуокись углерода в 1,5 раз тяжелее воздуха она может накапливаться в слабопроветриваемых помещениях у пола. При этом снижается объемная доля кислорода в воздухе, что может вызвать удушье. Помещения, где производится сварка с использованием двуокиси углерода, должны быть оборудованы общеобменной приточно-вытяжной вентиляцией.

Основными примесями углекислого газа, отрицательно влияющими на процесс сварки и свойства швов, являются воздух (азот воздуха) и вода. Воздух скапливается над жидкой углекислотой в верхней части баллона, а вода – под углекислотой в нижней части баллона. Повышенное содержание воздуха и водяных паров в углекислоте может при сварке привести к образованию пор в швах, которые чаще всего появляются в начале и конце отбора газа из баллона. Чтобы снизить содержание влаги в поступающем на сварку углекислом газе до безопасного уровня, на его пути устанавливают осушитель. Для улавливания влаги осушитель заполнен хлористым кальцием, силикагелем или другими поглотителями влаги.

При выпуске газа из баллона вследствие эффекта дросселирования и поглощения теплоты при испарении жидкой углекислоты газ значительно охлаждается. При интенсивном отборе газа возможна закупорка редуктора замерзшей влагой, содержащейся в углекислоте, а также сухим льдом. Во избежание этого рекомендуется подогревать выходящий из баллона углекислый газ. Для этого используют электрические подогреватели газа, которые устанавливаются перед редуктором.

Углекислый газ оказывает на металл сварочной ванны окисляющее, а также науглероживающее действие. Из легирующих элементов ванны наиболее сильно окисляются алюминий, титан и цирконий, менее интенсивно - кремний, марганец, хром, ванадий и др.

Кислород - это бесцветный нетоксичный газ без запаха. Является сильным окислителем. Накопление кислорода в воздухе помещений создает опасность возникновения пожаров. Поэтому объемная доля кислорода в рабочих помещениях не должна превышать 23 %. В зависимости от содержания кислорода и примесей технический газообразный кислород изготовляют трех сортов. Содержание кислорода в первом сорте должно быть не менее 99,7 об. %, во втором - не менее 99,5 об. % и в третьем - не менее 99,2 об. %.

В сварочном производстве кислород широко применяют для газовой сварки и резки, а также при дуговой сварке как составную часть защитной газовой смеси. Кислород уменьшает поверхностное натяжение металла, и поэтому с увеличением его содержания в смеси на основе аргона критический ток (перехода крупнокапельного переноса в мелкокапельный, см. Сварка плавящимся металлическим электродом в защитных газах (МIG/МАG)) уменьшается. Обычно содержание кислорода в смеси с аргоном не превышает 2-5%. В такой среде дуга горит стабильно. Перенос металла мелкокапельный с минимальным разбрызгиванием.

Азот - бесцветный газ, без запаха, не горит и не поддерживает горение. В сварочном производстве азот находит ограниченное применение. Азот не растворяется в расплавленной меди и не взаимодействует с ней, и поэтому может быть использован при сварке меди в качестве защитного газа. По отношению к большинству других металлов азот является активным газом, часто вредным, и его концентрацию в зоне плавления стремятся ограничить. Азот также применяется при плазменной резке и как компонент газовой смеси при сварке аустенитной нержавеющей стали.

Водород - не имеет цвета, запаха и является горючим газом. Водород редко используют в в качестве защитного газа. Так как смеси водорода с воздухом или кислородом взрывоопасны, при работе с ним необходимо соблюдать правила пожарной безопасности и специальные правила техники безопасности. При работе с водородом необходимо следить за герметичностью всех соединений, т.к. он образовывает с воздухом взрывчатые смеси в широких пределах.

Смеси защитных газов

Иногда является целесообразным употребление газовых смесей. За счет добавок активных газов к инертным удается повысить устойчивость дуги, увеличить глубину проплавления, улучшить формирование шва, уменьшить разбрызгивание, повысить плотность металла шва, улучшить перенос металла в дуге, повысить производительность сварки. Существенное значение при выборе состава защитного газа имеют экономические соображения.

Смесь аргона и гелия. Газовые смеси гелий-аргон применяются в основном для сварки цветных металлов: алюминий, медь, никелевых и магниевых сплавов, а также химически активных металлов. Оптимальным является соотношение 35 - 40% аргона и 60 - 65% гелия. Так в полной мере реализуются преимущества обоих газов: аргон обеспечивает стабильность дуги, гелий - высокую глубину проплавления.

Смеси аргона с кислородом или углекислым газом. Благодаря добавке окислительных газов обеспечивается существенное снижение поверхностного натяжения жидкого металла расплавляемой электродной проволоки, уменьшение размеров образующихся и отрывающихся от электрода капель. Расширяется диапазон токов при сохранении стабильного ведения процесса сварки. Обеспечивается лучшее формирование металла шва и меньшее разбрызгивание, лучшая форма провара и меньшее излучение дуги, по сравнению со сваркой в чистом аргоне, а также в чистом углекислом газе. При добавлении кислорода наблюдается снижение критического тока, при котором крупнокапельный перенос металла переходит в мелкокапельный.

В таблице ниже приводятся основные характеристики газовых смесей для сварки МИГ/МАГ.

Какая сварочная газовая смесь лучше?

Эффективность высокотемпературной обработки металлов повышают сварочные смеси защитных газов, используемых для создания защитного облака над расплавленным металлом. Специальные газосмеси использовать при сварке гораздо выгоднее, чем чистые газы. Разработано несколько стандартизированных составов, применяемых для углеродистых, низко- и высоколегированных сталей и цветных металлов.

Сварочные смеси

Экспериментально доказано, что смеси повышают качество расплава, снижают количество металлических брызг, увеличивают производительность работы сварщика. Сварочные швы становятся пластичными, заметно стабилизируется горение дуги. Влияние вредных факторов снижается за счет уменьшения задымленности, улучшаются условия труда.

Свойства и назначение

Сварочная смесь, создающая защитное облако над ванной расплава способна оказывать на процесс сварки как положительное, так и отрицательное воздействие. Инертные газы ведут себя по-разному:

  • Аргон за счет ионизации воздуха поддерживает дугу и обеспечивает качественный перенос металла. При работе с толстостенными заготовками, прокатом из металлов, имеющих высокую теплопроводность, аргон, характеризующийся слабой отдачей энергии, малоэффективен.
  • Гелий с этой точки зрения предпочтительнее, но меньше влияет на стабильность горения дуги и не улучшает перенос металла присадки на поверхность заготовок.
  • Углекислый газ обеспечивает хорошую защиту за счет высокой плотности, снижает разбрызгивание жидкого металла.

Каждый отдельный газ обладает уникальными свойствами, в смеси они нивелируют отрицательное воздействие отдельных компонентов, усиливают положительное влияние. Составы подбирались методом проб и ошибок с целью повышения качества швов и скорости сварки.

В смеси защитные газы намного эффективнее защищают ванну расплава, снижают вероятность образования дефектов.

Смеси газов

Для сварки используют 4 газообразных бесцветных вещества, вытесняющие из рабочей зоны:

  • водород, способствующий охрупчиванию металлов;
  • азот, образующий твердые шлаковые соединения;
  • кислород, активно окисляющий металлы.

Вытеснение газовоздушных компонентов происходит за счет высокой плотности защитных газов, они формируют малоподвижное облако. У всех сварочных смесей газов удельный вес больше, чем у воздуха. Концентрация компонентов подбиралась экспериментальным путем, учитывалось влияние газов на режим сварки. Смеси на основе аргона значительно расширяют возможности сварки, повышают эффективность работы сварщиков. Минимизируют риски образования дефектов в сварочных швах.

Аргон и углекислый газ

Для сваривания цветных металлов, профиля и проката из высоколегированных сталей используется сварочная смесь аргона и углекислоты. Аргон снижает активность углекислоты, а CO2 увеличивает теплопередачу аргона. Сварка углеродистых и низколегированных сталей в защитном облаке Ar+CO2 намного эффективнее, чем в каждом отдельном газе. При концентрации углекислоты в пределах 20% толстостенные металлические конструкции провариваются даже при сильной загрязненности поверхности.

Аргон и кислород

Состав применяют для сваривания низколегированных и легированных никелем сталей. При небольшой концентрации кислорода удается избежать пористости швов, аргон препятствует образованию окислов. Комбинация Ar+O2 применяется с различными видами сварочной проволоки, расширяет возможности сварочного процесса за счет повышения энергии дуги, стабильного горения. Металл быстрее проваривается. Формируются ровные шовные валики при равномерном прогреве присадочного прутка. Прочность соединения увеличивается за счет расширения диффузионного слоя.

Аргон и гелий

Инертные газы сочетают в разных пропорциях. Самые распространенные составы 7:3 и 1:1. Композиция Ar+He используется при работе с различными металлами:

  • чугуном различной плотности;
  • с низколегированными и легированными сталями с высоким содержанием никеля и хрома;
  • цветными сплавами на основе меди, алюминия;
  • тугоплавкими заготовками.

Смесь инертных газов исключает образование окалины, трещин, раковин. Часто применяется в наукоемких отраслях для автоматической сварки, где требуется высокое качество швов.

Аргон и водород

Комбинация Ar+H разрабатывалась для соединения сталей с аустенитной структурой, обладающих жаропрочностью. Смесь обеспечивает эластичность швов, процент водорода зависит от марки стали, львиную долю композиций составляет аргон, формирующий плотное защитное облако.

Аргон и активные газы

Концентрация углекислого газа в подобных газосмесях не превышает 20%, кислорода – 2%. При работе с тонкими видами проката и профиля снижают концентрацию углекислого газа, увеличивают содержание кислорода для быстрого прогрева заготовок в месте соединения. При работе с толстыми деталями повышают содержание углекислого газа. Для работы с медными сплавами в композицию вводят незначительное количество азота.

Что лучше: сварочная смесь или углекислота?

Чем лучше варить, специалисты решают самостоятельно, учитывая прочность соединений, затраты на расходные материалы. Для изоляции расплава, образуемого в процессе сварки, можно использовать инертные газы аргон и гелий, углекислоту или сварочную смесь. С введением инертных газов, которые не взаимодействуют с расплавом, в активные, снижается способность углерода растворяться в жидком металле. СО2 – активный газ, при использовании в чистом виде он насыщает стали и цветные металлы.

Преимущества применения газосмеси:

  • облегчается струйный перенос электродной наплавки;
  • швы получаются более пластичные;
  • снижается риск образования пористости;
  • ускоряется процесс расплавления металла;
  • увеличивается прочность соединений;
  • меньше дымление, выделяемые вещества удерживаются в зоне расплава;
  • при неравномерной подаче присадочной проволоки сохраняется ритмичность работы;
  • из-за минимизации разбрызгивания снижается расход электродов и проволоки.

Достоинства сварки в атмосфере углекислого газа:

  • низкая стоимость;
  • возможность варить в любом пространственном положении;
  • хорошая проварка стыков.

Производительность сварочных работ при использовании специальных смесей, защищающих ванну расплава от окисления, повышается на 50%, при этом потребление электроэнергии не увеличивается.

Подбор сварочной смеси для полуавтомата

Присадочная проволока выпускается без защитного покрытия, в полуавтоматах предусмотрена подача защитных газов. Их смешивают с расчетом, чтобы создавалась нужная температура горения, при которой металлические заготовки и проволока не слишком быстро расплавлялись. При рациональном подборе газосмеси для полуавтоматической сварки упрощается процесс формирования швов.

Таблица выбора газосмеси для различных сплавов:

При использовании вольфрамового электрода и проволочной присадки применяют составы из двух инертных газов:

  • НН-1 (полное название Helishield-Н3), в этой смеси концентрация гелия в пределах 30%, аргона не более 70%. газосмесь обеспечивает более эффективный нагрев, увеличивается скорость плавления металла, формируется ровная поверхность шва.
  • НН-2 (международная маркировка Helishield-H5) – это в равных пропорциях смешанные два инертных газа: аргон и гелий. Универсальная смесь применяется для соединения черных и цветных заготовок практически любой толщины.

Компонентный и количественный состав оказывает влияние практически на все параметры и режим сварки металлов.

Применение смесей

Бескислородные смеси выбирают при скоростной проходке и сварке цветных металлов. Они дают великолепные чистые швы с гладким профилем, окисление поверхности незначительное, обеспечивают низкий уровень армирования и обеспечивает высокую скорость проходки. Придают стабильность электрической дуге при соединении материалов толще 9 мм, снижают вероятность появления дефектов шва.

При подаче газовой смеси полуавтоматом снижается скорость подачи проволоки, быстрее нагревается горелка. Приходится корректировать режим работы, подбирать массивные головки. Для качественной работы со смесями необходимы профессиональные навыки.

При выборе готовых сварочных газовых смесей с кислородом учитывают особенности составов. К-2 считается идеальным для черных и низколегированных сталей. Другие разрабатывались для металла различной толщины, глубокого провара и сварки тонкостенного листа, профиля без деформации. Кислородосодержащие составы применяются для коротких и длинных швов, реставрационной наплавки изношенных деталей. Могут использоваться повсеместно: для роботов-автоматов, ручной, полуавтоматической сварки во всех пространственных положениях. Выбирают специальные составы для профилированного проката из сортовых сталей, для наплавки.

Для работы со сварочными смесями нужны профессиональные навыки

При ручной сварке важно соблюдать расстояние от заготовок до сопла. Необходимо постоянно поддерживать расстояние в пределах 15–20 мм от стыка, чтобы не допустить непроваров. Горелка размещается под прямым углом. Следует учитывать, что кислородные смеси увеличивают текучесть расплавленного металла, при работе в потолочном и вертикальном положении возможны проблемы.

Самостоятельное смешивание газов

Теоретически смесь можно приготовить непосредственно на рабочем месте, на сварочных участках предусмотрены специальные посты с установкой ротаметров – аппаратов, контролирующих расход компонентов за единицу времени из каждого баллона. По показателям ротаметров с помощью редукторов регулируют состав газовой смеси, подаваемой к рабочим местам сварщиков.

При работе с несколькими баллонами одновременно состав сварочной смеси не будет идеальным. Делая газосмеси самостоятельно невозможно добиться точного процентного содержания компонентов до десятых. Обязательно увеличится расход газов и, соответственно, присадки.

Защитный сварочный газ – оптимальная смесь, используемая при термической обработке металлов. Готовые составы заказывают у специализированных поставщиков или непосредственно на заводах-изготовителях.

ГОСТ Р ИСО 14175-2010 Материалы сварочные. Газы и газовые смеси для сварки плавлением и родственных процессов

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения»
Сведения о стандарте
1 ПОДГОТОВЛЕН Федеральным государственным учреждением «Научно-учебный центр «Сварка и контроль» при МГТУ им. Н.Э. Баумана (ФГУ НУЦСК при МГТУ им. Н.Э. Баумана), Национальным агентством контроля и сварки (НАКС), ООО Аттестационный центр «Сплав» на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 4
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 364 «Сварка и родственные процессы»
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 30 ноября 2010 г. № 607-ст
4 Настоящий стандарт идентичен международному стандарту ИСО 14175:2008 «Материалы сварочные. Газы и газовые смеси для сварки плавлением и родственных процессов» (ISO 14175:2008 «Welding consumables - Gases and gas mixtures for fusion welding and allied processes»)
При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации и межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА
5 ВВЕДЕН ВПЕРВЫЕ
Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок - в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

СОДЕРЖАНИЕ

1 Область применения
2 Нормативные ссылки
3 Термины и определения
4 Свойства газов
5 Классификация и классификационное обозначение
6 Допустимые отклонения содержания компонентов
7 Чистота и точка росы газов
8 Испытания
9 Повторные испытания
10 Маркировка
Приложение ДА (справочное) Сведения о соответствии ссылочных международных стандартов ссылочным национальным стандартам Российской Федерации (и действующим в этом качестве межгосударственным стандартам)
Библиография

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
Материалы сварочные
ГАЗЫ И ГАЗОВЫЕ СМЕСИ ДЛЯ СВАРКИ ПЛАВЛЕНИЕМ
И РОДСТВЕННЫХ ПРОЦЕССОВ
Welding consumables. Gases and gas mixtures for fusion welding and allied processes
Дата введения - 2012-01-01

1 Область применения

Настоящий стандарт устанавливает требования к классификации газов и газовых смесей, предназначенных для сварки плавлением и родственных процессов, включая следующие способы сварки:
- дуговая сварка вольфрамовым электродом (141);
- дуговая сварка в защитном газе плавящимся электродом (13);
- плазменная сварка (15);
- плазменная резка (83);
- лазерная сварка (52);
- лазерная резка (84);
- дуговая пайкосварка (972).
Примечание - В скобках указаны шифры способов сварки в соответствии с ИСО 4063.
Настоящий стандарт устанавливает классификацию и обозначение защитных газов и газовых смесей, предназначенных для сварки плавлением, в том числе для защиты обратной стороны шва и других вспомогательных целей, в соответствии с их химическими свойствами и металлургическим поведением. Стандарт могут использовать потребители данной продукции в целях правильного выбора по назначению перед выполнением сварочных работ, а также для целей проведения возможных квалификационных процедур.
Чистота газа и допустимые отклонения компонентов от номинального состава заранее (до поставки) оговариваются между поставщиком (производителем) и потребителем.
Газы и газовые смеси могут быть поставлены в жидком и газообразном состоянии, однако для сварки плавлением и родственных процессов газы и газовые смеси всегда используют только в газообразном состоянии.
Настоящий стандарт не распространяется на горючие газы, например ацетилен, природный газ, пропан и т.д., а также на газы, используемые в резонаторных камерах газовых лазеров.
Транспортирование и обращение с газами и транспортировочной тарой следует производить в соответствии с национальными и другими стандартами и правилами.

2 Нормативные ссылки

Следующая нормативная ссылка является обязательной для применения в настоящем стандарте:
ИСО 80000-1:20091) Величины и единицы. Часть 1. Общие положения (ISO 80000-1:2009, Quantities and units - Part 1: General)
____________
1) Взамен ИСО 31-0:1992.
Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:
3.1 основной газ (base gas): Газ, составляющий большую часть объема газовой смеси, или единственный компонент чистого газа.
3.2 классификация (classification): Обозначение газа или газовой смеси, включающее номер настоящего стандарта и группу индексов (основную группу и подгруппу), идентифицирующих газ или газовую смесь.
Примечание - Группы индексов приведены в 5.1 (см. таблицу 2).
3.3 компонент (component): Составная часть газовой смеси, оказывающая влияние на служебные свойства и характеристики газовой смеси (например, в смеси, содержащей 11 % СО2 в аргоне, СО2 считают компонентом, а аргон - основным газом).
3.4 емкость (container): Баллон, сосуд, цистерна или другая тара, используемая для транспортирования и/или хранения однокомпонентных или смешанных газов в газообразном или жидком состоянии.
3.5 классификационное обозначение (designation): Полное обозначение газа или газовой смеси, включающее номер настоящего стандарта и группу индексов (основную группу и подгруппу), идентифицирующих газ или газовую смесь, а также группу индексов, обозначающих все газы, входящие в смесь и объемную долю (в процентах) компонентов, входящих в смесь (например, газовая смесь, содержащая в качестве основного газа Ar, в качестве компонента СО2 с объемной долей 11 %, имеет следующее классификационное обозначение: ISO 14175-M20-ArC-11).
Примечание - Группы индексов для обозначения компонентов приведены в 5.2.
3.6 примесь (impurity): Вещество с химическим составом, отличным от основного газа и/или компонентов.
3.7 газовая смесь (mixture): Газ, состоящий из основного газа и одного или более компонентов.
3.8 номинальное значение (nominal value): Процентное содержание компонентов газовой смеси, назначаемое производителем или поставщиком и указываемое в классификационном обозначении.
3.9 группа индексов (symbol): Основная группа индексов и подгруппа в газовой смеси (например, М20 - группа индексов для обозначения газовой смеси, содержащей в качестве основного газа Аr, в качестве компонента СO2 с объемной долей 11 %).
Примечание - Группы индексов приведены в таблице 2 (см. также 5.1).

4 Свойства газов

4.1 Общие положения
Основные физические и химические свойства газов, на которые распространяется настоящий стандарт, указаны в таблице 1.
Таблица 1 - Свойства газов

Плотностьа) (плотность воздуха = 1,293), кг/м 3

Плотность относительно плотности воздухаа)

Точка кипения при 0,101 МПа, °С

Реакционная способность при сварке

Двуокись углерода (углекислый газ)

a) Характеристики газов при температуре 0 °С и давлении 0,101 МПа (1,013 бар).
b) Температура сублимации (температура перехода из твердого состояния в газообразное).
c) Поведение азота варьируется в зависимости от материалов, с которыми он взаимодействует, и области применения газа. Возможность и условия применения азота для сварки определяет потребитель.

4.2 Правила округления результатов испытаний
При определении соответствия контролируемых параметров требованиям настоящего стандарта фактические значения этих параметров округляют в соответствии с методиками, приведенными в ИСО 80000-1:2009 (приложение В, инструкция А). Если измеренные значения получены с помощью оборудования, использующего единицы измерения, отличные от тех, которые применены в настоящем стандарте, то измеренные значения перед округлением необходимо перевести в единицы измерения, приведенные в настоящем стандарте. Если контролируемым параметром является среднее значение, то округление делают только после расчета среднего значения. В случае если стандарты на методы испытаний, упомянутые в нормативных ссылках настоящего стандарта, содержат указания по округлению, которые противоречат настоящему стандарту, следует руководствоваться указаниями, приведенными в соответствующих стандартах на методы испытаний. По числу значащих цифр результаты округления должны соответствовать значениям, приведенным в соответствующих таблицах настоящего стандарта, содержащих данные о классификации.

5 Классификация и классификационное обозначение

5.1 Классификация
5.1.1 Общие положения
Газы и газовые смеси классифицируют посредством указания номера настоящего стандарта и группы индексов, соответствующей конкретному газу или газовой смеси, в соответствии с таблицей 2. Группу индексов подразделяют на основную группу (кроме Z) и подгруппу.
Примечание - Классификация основана на реакционной способности газа или газовой смеси.
5.1.2 Основная группа
Для основных групп используют следующие обозначения:
- I - инертные газы и инертные газовые смеси;
- М1, М2 и М3 - смеси, содержащие кислород и/или двуокись углерода, являющиеся окислителями;
- С - газ и газовые смеси, являющиеся сильными окислителями;
- R - газовые смеси, являющиеся восстановителями;
- N - малоактивный газ (азот) или газовые смеси, являющиеся восстановителями, содержащие азот;
- О - кислород;
- Z - газовые смеси, содержащие компоненты, не указанные в таблице 2, или имеющие химический состав, выходящий за пределы диапазонов, указанных в таблице 2.
5.1.3 Подгруппа
Деление на подгруппы производят с учетом процентного содержания основного газа и/или компонентов, влияющих на химическую активность газа или газовой смеси (см. таблицу 2). Значения, указанные в таблице 2, являются номинальными.
5.1.4 Примеры классификации
Пример 1 - Газовая смесь, содержащая в качестве основного газа Ar, в качестве компонентов 6 % СO2 и 4 % O2.
Классификация: ISO 14175-M25.
Пример 2 - Газовая смесь, содержащая в качестве основного газа Ar, в качестве компонента 30 % Не.
Классификация: ISO 14175-I3.
Пример 3 - Газовая смесь, содержащая в качестве основного газа Ar, в качестве компонента 5 % Н2.
Классификация: ISO 14175-R1.
Пример 4 - Газовая смесь, содержащая в качестве основного газа Ar, в качестве компонента 0,05 % O2.
Классификация: ISO 14175-Z.
5.2 Классификационное обозначение
5.2.1 Общие положения
Классификационное обозначение газов и газовых смесей включает классификацию (см. 5.1) и дополняется группами индексов, обозначающих газы, входящие в смесь и объемную долю компонентов (в процентах), входящих в газовую смесь.
В настоящем стандарте использованы следующие обозначения газов:
- Ar - аргон;
- С - двуокись углерода;
- Н - водород;
- N - азот;
- О - кислород;
- Не - гелий.
Группа индексов, обозначающих газы, строится таким образом, что после обозначения основного газа указывают компоненты в убывающем по процентному соотношению порядке, и соответственно строится группа индексов, обозначающих объемную долю компонентов (в процентах), входящих в газовую смесь. Группы индексов разделяются между собой через тире.
5.2.2 Примеры классификационного обозначения
Пример 1 - Газовая смесь, содержащая в качестве основного газа Ar, в качестве компонентов 6 % СO2 и 4 % O2.
Классификация: ISO 14175-M25.
Классификационное обозначение: ISO 14175-M25-ArCO-6/4.
Пример 2 - Газовая смесь, содержащая в качестве основного газа Ar, в качестве компонента 30 % Не.
Классификация: ISO 14175-I3.
Классификационное обозначение: ISO 14175-I3-ArНе-30.
Пример 3 - Газовая смесь, содержащая в качестве основного газа Ar, в качестве компонента 5 % Н2.
Классификация: ISO 14175-R1.
Классификационное обозначение: ISO 14175-R1-ArН-5.
Пример 4 - Газовая смесь, содержащая в качестве основного газа Не, в качестве компонентов 7,5 % Ar и 2,5 % СO2.
Классификация: ISO 14175-M12.
Классификационное обозначение: ISO 14175-M12-НеArС-7,5/2,5.
Для обозначения газовых смесей, содержащих компоненты, выходящие за пределы диапазонов, указанных в таблице 2, в основной группе индексов, идентифицирующих газ или газовую смесь, используют обозначение Z, которое указывают перед группами индексов, обозначающих газы, входящие в смесь и объемную долю компонентов (в процентах), входящих в газовую смесь. Группы индексов разделяются между собой через тире.
Пример 5 - Газовая смесь, содержащая в качестве основного газа Ar, в качестве компонента 0,05 % O2.
Классификация: ISO 14175-Z.
Классификационное обозначение: ISO 14175-Z-ArO-0,05.
Для обозначения газовых смесей, содержащих компоненты, не указанные в таблице 2, в основной группе индексов, идентифицирующих газ или газовую смесь, также используют обозначение Z, которое указывают перед группами индексов, обозначающих газы, входящие в смесь и объемную долю компонентов (в процентах), входящих в газовую смесь. При этом перед компонентом, который не указан в таблице, ставят знак «+», затем приводят объемные доли компонентов (в процентах), входящих в газовую смесь. Группы индексов разделяются между собой тире.
Пример 6 - Газовая смесь, содержащая в качестве основного газа Ar, в качестве компонента 0,05 % Хе (ксенон).
Классификация: ISO 14175-Z.
Классификационное обозначение: ISO 14175-Z-Ar+Хе-0,05.
Таблица 2 - Группы индексов, входящие в классификацию газов, предназначенных для сварки плавлением и других родственных процессов

Пара слов о сварочных смесях (Ar+CO2) + генератор углекислоты своими руками от сварщиков-экспериментаторов

smes-1

Про сварку в газовых смесях ходят легенды. Вот, например, если варить в смеси Ar-75%+CO2-25%, то и брызги исчезают совсем и электродного присадочного материала расходуется меньше: писаки на разношерстных сайтах о сварке утверждают со знанием дела о 3-5% экономии! Если варить много, приличная, однако, экономия получается. Плюс ко всему вместо мелкокапельного металлопереноса образуется фактически струйный перенос металла с электродной проволоки в сварочную ванну, что делает шов плотнее и, очевидно, прочнее. При больших объемах сварки с СО2 обмерзает редуктор и не работает, так что приходится использовать всякие дополнительные приспособления – подогреватели углекислого газа. Так же при сварке в углекислоте наблюдается сильно разбрызгивание. А со смесью этого не происходит. И баллон приходится менять реже.

В общем, смесь «рулит», не смотря на то, что СО2 дешевле и не так чувствительна к подготовке сварочных кромок.

В связи с чем вопрос: действительно ли использование сварочных смесей на основе Ar так эффективно или все-таки лучше варить СО2?

Лично мне очевидно, что процентное соотношение Ar + СО2 газовой смеси выбирают в зависимости от толщины металла, количества легирующих элементов в нем и с учетом требований по механической прочности шва. В целом, играясь этим соотношением можно улучшить или ухудшить свойства сварного соединения.

Конечно, сколько сварщиков, столько мнений, а истина находится где-то посередине. Первое, что, очевидно, нужно учитывать, это тип вашего полуавтомата. Если он рассчитан только на MAG –сварку в активном газе – углекислоте, то использование смеси с высоким содержанием в ней аргона приведет к возникновению проблем с клапаном. Поэтому для сварки в смесях логично выбирать инвертор MIG.

Теперь по сути проблемы…

Может показаться, что смесь применять вообще не стоит, так как есть здесь определенный маркетиноговый ход, позволяющий накрутить цену за счет манипуляций с процентным соотношением разностоимостных газов в баллоне. В итоге получается, что за суррогат аргона и углекислоты нужно платить так же, как за первосортный аргон. Здесь дело обстоит примерно как с бензином. Был 76-й и 92-й бензин. В итоге придумали нечто среднее между этими двумя марками 80-й. В итоге сами знаете, что получилось.

С другой стороны профессиональные сварщики знают, что действительно смесь эффективна при сварке коррозионостойких сталей, оцинкованного металла, хотя по всем теоретическим канонам сварка в чистом аргоне этих же марок и покрытий качество швов должна только улучшить. Но на практике все происходит иначе.. В промышленности готовят смесь Ar-95-98%+CO2-2-5%. Но очевидно, что на характер плавления влияют все факторы процесса:

  • марка стали ( сварка нержавеющей стали 20Х13 может отличаться от ст. 12Х18Н10Т и т.д.)
  • марка присадочной проволоки
  • режимы сварки.

Исходя из этого становится понятно, почему смесь, которая одному сварщику подходит идеально, для другого дает неудовлетворительный результат. С нашей точки зрения, однозначного ответа в какой пропорции лучше варить здесь нет. Ее надо подбирать индивидуально в каждом конкретном случае в зависимости от исходных данных.

Аргон применяют при сварке легированных/высоколегированных и жаропрочных сталей, алюминия, титана.

Если же вы занимаетесь кузовным ремонтом, другими словами сваркой низкоуглеродистых сталей, которые применяют в автопроме – здесь однозначно нужно применять углекислоту. Хотя, если будете варить «чернягу» аргоном разницы не почувствуете (разве что в цене за баллон?). Почему так, прояснит следующая статья.

Генератор углекислоты для сварки своими руками

Но немного отвлечемся от серьезной темы…

В каждой шутке есть доля шутки, а остальное правда…

cocacola5pb3

Оказывается, приличный шов, ничем не уступающий по качеству шву, сваренному в смеси аргона с углекислотой, можно получить при сварке на Кока-Коле (Coca Cola). Вспоминаем, что только не делали с этой самой Кока-Колой: и пили, и ели ее, и как средство от ржавчины использовали, ведь «богатый» состав этого чудо-напитка содержит много чего, даже немножко ортофосфорной кислоты. Ее добавляют как усилитель вкуса, или «Третий вкус», изобретенный японцами в «стране восходящего солнца» – этот самый «вкус» более интенсивно всасывается и ощущается вкусовыми рецепторами. Не забываем при этом, что ортофосфорная кислота применяется еще много где в химической промышленности и, в частности, в ваннах электрополировки вместе с хлористым ангидридом и прочими хим. веществами. Электрополировка, напомним, в промышленности служит для придания изделиям из нержавейки товарного вида .

Так вот, оказалось, что у Кока-Колы обнаружился еще один «талант»: ее можно применять в качестве защитной среды при сварке полуавтоматом низкоуглеродистых и низколегированных сталей проволокой св.08Г2С.

Рецепт приготовления защитной среды прост:

  • Кока-Кола – 0,5 л
  • Уксус -1,25 мл
  • Сода пищевая – 100 г
  • Лимонная кислота – 20г.

Получается вот такая смесь в предложенных пропорциях и генератор диоксида углерода по совместительству.

А далее, как в сказке: чем дальше, тем страшней…

Берем мерную кружку, засыпаем в нее лимонную кислоту, затем соду, перемешиваем. Предварительно подготавливаем два куска газетной бумаги и высыпаем содержимое нашей кружки аккуратной дорожкой на них. Аккуратно сворачиваем газеты в трубочки так, чтобы содержимое осталось внутри, и скручиваем торцы трубочек так, чтобы содержимое никуда не высыпалось.

Берем пластиковую бутылку и наливаем в нее 0,5 л Кока-Колы, добавляем уксус и пару подготовленных трубочек. Накручиваем трубку для подачи газа в сварочную горелку на бутылку – и вуаля, газовая защитная атмосфера своими руками готова к применению. Проверка шва, выполненного на кока-коле, дала положительный результат.

Вывод: если у вас кончился баллон с газом посреди ночи и варить все-равно надо, а в хозяйстве есть Кола и то, что на кухне у жены под рукой должно всегда найтись – вы будете спасены, сможете закончить работу до утра и при этом не оставите разочарованными ваших заказчиков.

Читайте также: