Подвижный стол или портал

Обновлено: 23.01.2025

Поскольку я давно собрал для себя ЧПУ станок и давно и регулярно эксплуатирую его для хоббийных целей, то мой опыт, надеюсь, будет полезен, как и исходные коды контроллера.

Постарался написать только те моменты, которые лично мне показались важными.

Ссылка на исходники контроллера и настроенную оболочку Eclipse+gcc и пр. лежат там же, где ролик:

История создания

Регулярно сталкиваясь, с необходимостью сделать ту или иную мелкую «штучку» сложной формы, первоначально задумался о 3D принтере. И даже начал его делать. Но почитал форумы и оценив скорость работы 3D принтера, качество и точность результата, процент брака и конструкционные свойства термопластмассы, понял, то это не более чем игрушка.

Заказ на комплектующие из Китая пришел за месяц. И уже через 2 недели станок работал с управлением от LinuxCNC. Собирал из всякой фигни, что была под рукой, поскольку хотелось побыстрее (профиль + шпильки). Собирался потом переделать, но, как оказалось, станок получился достаточно жесткий, и гайки на шпильках не пришлось подтягивать ни разу. Так что конструкция осталась без изменений.

  1. Использовать в качестве шпинделя бормашинку “china noname” на 220V не лучшая идея. Перегревается и жутко громко работает. Боковой люфт фрезы (подшипников?) ощущается руками.
  2. Бормашинка Proxon работает тихо. Люфт не ощутим. Но перегревается и выключатся через 5 минут.
  3. Компьютер, взятый на время, с LPT двунаправленным портом — не удобен. Взят на время (найти PCI-LPT оказалось проблемой). Занимает место. И вообще..

Разработка контроллера

Программу создавал после вдумчивого просмотра исходников LinuxCNC и gbrl. Однако ни те, ни те исходники расчета траектории не взял. Захотелось попробовать написать модуль расчета без использования float. Исключительно на 32-х разрядной арифметике.
Результат меня устраивает для всех режимов эксплуатации и прошивку не трогал уже давно.
Скорость максимальная, подобранная экспериментально: X:2000мм/мин Y:1600 Z:700 (1600 step/mm. режим 1/8).
Но ограничена не ресурсами контроллера. Просто выше уже мерзкий звук пропуска шагов даже прямых участках по воздуху. Бюджетная китайская плата управления шаговиками на TB6560 не самый лучший вариант.
Фактически скорость по дереву (бук, 5мм заглубления,d=1мм фреза, шаг 0.15мм) больше 1200 мм не ставлю. Возрастает вероятность поломки фрезы.

  • Подключение к внешнему компу как стандартное usb mass storage device (FAT16 на SD карте). Работа с файлами стандартного формата G-code
  • Удаление файлов через пользовательский интерфейс контроллера.
  • Просмотр траектории по выбранному файлу (насколько позволяет экран 640x320) и расчет времени выполнения. Фактически эмуляция выполнения с суммированием времени.
  • Просмотр содержимого файлов в тестовом виде.
  • Режим ручного управления с клавиатуры (перемещение и выставления «0»).
  • Запуск выполнения задания по выбранному файлу (G-code).
  • Приостанов/продолжить выполнение. (иногда полезно).
  • Аварийный программный стоп.

После творческих экспериментов по вырезанию собственноручно нарисованных рельефов на дереве, и экспериментов с настройками ускорений в программе, захотел дополнительно еще и энкодеры на осях. Как раз на e-bay нашел относительно дешевые оптически экодеры (1/512), шаг деления которых для моих ШВП был 5/512= 0.0098мм.
Кстати, использование оптических энкодеров высокого разрешения, без аппаратной схемы работы с ними (в STM32 она есть) – бессмысленно. Ни обработка по прерыванию, ни, тем более, программный опрос никогда не справятся с «дребезгом» (это говорю для любителей ATMega).

  1. Ручное позиционирование на столе с высокой точностью.
  2. Контроль пропуска шагов с контролем отклонение траектории от расчетной.

Однако, нашел им еще одно применение, пусть и в довольно узкой задаче.

Использование энкодеров для коррекции траектории станка с шаговыми двигателями


Заметил, что при вырезании рельефа, при задании ускорения по Z больше определенной величины, ось Z начинает медленно, но уверенно ползти вниз. Но, время вырезания рельефа при этом ускорении на 20% меньше. По окончанию вырезания рельефа 17x20 см с шагом 0.1мм фреза может уйти вниз на 1-2 мм от расчетной траектории.
Анализ ситуации в динамике по энкодерам, показал, что при подъеме фрезы иногда теряется 1-2 шага.
Простой алгоритм коррекции шагов с использованием энкодера дает отклонение не более 0.03 мм и позволяет уменьшить время обработки на 20%. А даже 0.1 мм выступ на дереве заметить сложно.

Конструкция


Идеальным вариантом для хоббийных целей посчитал настольный вариант с полем чуть больше чем A4. И до сих пор мне этого хватает.

Подвижный стол

Для меня до сих пор остается загадкой, почему все выбирают для настольных станков конструкцию с подвижным порталом. Единственное её преимущество – возможность обработать по частям очень длинную доску или, если приходится регулярно обрабатывать материал вес которого больше веса портала.

За все время эксплуатации ни разу не было необходимость выпилить по частям рельеф на 3-х метровой доске или сделать гравировку на каменной плите.

Подвижный стол обладает следующими преимуществами для настольных станков:

  1. Конструкция проще и, в общем случае, конструкция более жесткая.
  2. На неподвижный портал навешиваются все потроха (блоки питания, платы и пр.) и станок получается компактнее и удобнее для переноски.
  3. Масса стола и куска типичного материала для обработки существенно ниже чем масса портала и шпинделя.
  4. Практически исчезает проблема с кабелями и шлангами водяного охлаждения шпинделя.

Шпиндель

Хотел бы заметить, что данный станок не для силовой обработки. ЧПУ станок для силовой обработки проще всего сделать на базе обычного фрезерного станка.

На мой взгляд, станок для силовой обработки металла и станок с высоко оборотистым шпинделем для обработки дерева/пластмасс — это совершенно разные типы оборудования.

Создать в домашних условия универсальный станок как минимум не имеет смысла.

Выбор шпинделя для станка с данным типом ШВП и направляющими с линейными подшипниками однозначен. Это высоко оборотистый шпиндель.

Для типичного высоко оборотистого шпинделя (20000 об/мин) фрезеровка цветных металлов (про сталь даже речи не идет) – это экстремальный режим для шпинделя. Ну, разве что очень надо и тогда съем по 0.3 мм за проход с поливом ОЖ.
Шпиндель для станка рекомендовал бы с водяным охлаждением. С ним слышно во время работы только «пение» шаговых двигателей и бульканье аквариумного насоса в контуре охлаждения.

Что можно сделать на таком станке


В первую очередь у меня ушла проблема корпусов. Любой формы корпус фрезеруется из «оргстекла» и по идеально по гладким срезам склеивается растворителем.

Стеклотекстолит отказался универсальным материалом. Точность станка позволяет вырезать посадочное место под подшипник, в которое он холодный зайдет, как положено с легким натягом, а после уже не вытащить. Шестерни из текстолита отлично вырезаются с честным эвольвентным профилем.

Обработка дерева (рельефы и пр.) – широкий простор для реализации своих творческих порывов или, как минимум, для реализации чужих порывов (готовые модели).

Вот только ювелирку не пробовал. Негде опоки прокаливать/плавить/лить. Хотя брусок ювелирного воска ждет своего часа.

подвижный стол или подвижный портал?

И встал принципиальный вопрос, сделать подвижный портал, или подвижный стол. Вопроса по месту нет, хоть станок будет занимать 4,5х2 м, хоть 2,5х2м.
Я вот все никак не могу раз и навсегда уяснить для себя, в чем плюсы и минусы каждого решения?

Заранее спасибо за ваши компетентные коментарии.

2 Ответ от cnc-master 2015-05-05 09:35:50

Конструкция станка с плавающим столом более габаритная и более затратная в плане проектирования. Мы делаем станки портального типа, они получаются менее затратными при очень хороших характеристиках.

3 Ответ от aleksic666 2015-05-22 17:50:02

Портального типа будет болие надежен и дешевле.

4 Ответ от nsnikan 2015-05-28 23:09:34

портал легче таскать. стол с двухметровым щитом тяжелый очень.

5 Ответ от s.spiridonov.o 2015-05-29 13:49:47

А как же более высокая точность подвижного стола?

6 Ответ от apocalypce 2015-07-17 09:08:32

я за подвижный портал. он удобнее.

7 Ответ от John 2015-07-26 20:10:16

День добрый.
Под ваш материал и под координату зет лучше будет портал. Затраты по материалу могут составить от 250 т.р. Если много места сделайте два станка. Подвижный стол необходим там где нужна большая точность - ювелирка, или та же точность и большая масса заготовки - обработка камня, металла.

согласен портал будет самое то для работы с деревом и другими магкими материалами

9 Ответ от FORSFORSFORS 2015-11-04 21:09:06

10 Ответ от anatoly 2015-11-04 22:49:57

В случае с подвижным столом, места для станка потребуется больше.

11 Ответ от alexow 2015-12-01 15:10:53

для такого подвижного стола много места нужно, и направляющие большие - сильно дорого ИМХО. Я за портал.

12 Ответ от Sw.Ioann 2016-01-27 21:01:53

https://777russia.ru/forum/uploads/1773/thumbnail/p1a9huclq41mrq1thgqrf1hrd17343.jpg

Недостатки передвижного портала довольно ощутимы, если не вопрос с местом то лучше делать передвижной стол. Это позволит без ущерба в качестве обработки поставить довольно приличную скорость. А также нагрузка на механику намного меньше, что продлит срок службы.
Вот личный опыт строительства станка с передвижным столом

Скорость обработки 1500-2000 мм/мин,

13 Ответ от movan 2016-02-10 20:15:39

если поставить станок с подвижным столом под углом, то не так много места будет занимать
но станет массивен и общая масса будет немаленькой, за то в эксплуатации скорее всего окажется удобен

14 Ответ от Sw.Ioann 2016-02-10 22:47:59

если поставить станок с подвижным столом под углом, то не так много места будет занимать
но станет массивен и общая масса будет немаленькой, за то в эксплуатации скорее всего окажется удобен

Маса станку не мешает, это уменьшает вибрацию. Единственный недостаток станка с подвижным столом это есть его габариты, поэтому его удобно делать сразу большим и на несколько рабочих шпинделей. К примеру размером 2×5 м, 4 шпиделя и обрабатыаемая поверхность 1×1 м.

15 Ответ от movan 2016-02-10 23:58:11

может делать сразу два стола в два этажа и портал двухуровневый,
при тех же габаритах в два раза больше изделий
только заготовки подсовывай и отходы производства убирай

16 Ответ от Zippy 2016-06-02 08:12:11

может делать сразу два стола в два этажа и портал двухуровневый,
при тех же габаритах в два раза больше изделий
только заготовки подсовывай и отходы производства убирай

Это уже что то фантастическое получится!

17 Ответ от andr70 2016-07-25 06:58:32

для маленького станка годится подвижный стол, сам такой собираю, а с большим рабочим полем только портал

Привет всем! Тоже интересует данный вопрос. Все пишут что подвижной портал лучше. Но как бы вы поступили в моем случае? Исходя из того что:

1. У меня нет возможности сделать портал легким из алюминия. Основная часть портала будет вырезаться на плазморезе из черняги по доступной цене.
2. Мне нужен достаточно большой ход по оси Z (минимум 500 мм), а это я так понимаю увеличивает вес и без того тяжелого портала из черняги.
3. Размер занимаемого места станком не важен.
4. Станок будет для обработки пенопласта. т.е. заготовка+стол будут явно меньше по весу чем мой портал.

Еще пару вопросов:
1. При постройке станка лучше оттолкнуться от размеров комплектующих или от размеров станины? Как бы правильно выразиться. У меня есть хорошая заводская чугунная станина, хотелось бы на ширину данной станины изготовить портал и к этой же станине прикрутить рельс для подвижного стола. Не возникнет ли у меня после всего этого трудностей с подбором комплектующих? Рабочее поле будет примерно 1000х500х500

Мне нужен достаточно большой ход по оси Z (минимум 500 мм)

Сделайте как у меня и будет Вам Z пол метра.

https://777russia.ru/forum/uploads/images/2018/01/fbc9a362939d6e5ec233820b8e602809.jpeg

А если убрать направляющие стола, и поставить длинную площадку под шпиндель, Z увеличится до 1м. 20см.
Но тогда линейный модуль нужно будет по мощней сделать.

Не возникнет ли у меня после всего этого трудностей с подбором комплектующих?

Возникнут - читайте ниже.

При постройке станка лучше оттолкнуться от размеров комплектующих или от размеров станины?

От размеров комплектующих отталкивайтесь, т.к. комплектуха в основном "типоразмером" идет, и потом сложно будет подобрать, придется на заказ, что гораздо дороже чем покупать "типоразмер". Покупайте механику и под неё собирайте каркас.

ЧПУ станок своими руками. Часть 2. Выбираем структуру и параметры станка

Существует множество причин, по которым разработать и создать ЧПУ станок своими руками, однако успех вовсе не гарантирован, если подойти к вопросу недостаточно ответственно.

Принципы проектирования портальных станков достаточно бесхитростны, однако на самом деле, конечно же, существует множество подводных камней и неочевидных на первый взгляд нюансов, которые могут разом лишить Вас энтузиазма. Данное руководство призвано вооружить вас минимумом необходимых знаний перед тем, чтобы Вы могли сэкономить ваши время и деньги. Описываемые вещи в основном относятся к ЧПУ-роутерам хоббийного класса, однако подавляющее большинство информации справедливо и для любых других систем линейного перемещения с числовым программным управлением. Изложенные принципы позволят применить их впоследствии, скажем, при проектировании плазмореза, лазерного станка или даже покрасочного робота. Однако, здесь изложены именно принципы, и нет конкретных рецептов - придется вырабатывать их самим В конце концов, это же Ваш станок.

Этап 1. Выбираем характеристики станка

Перед началом постройки необходимо прежде всего определиться с тем, что же вы хотите получить в конце концов. Для начала вам стоит ознакомиться с обзором конструктивных частей портальных станков с ЧПУ и их видами, а затем попробовать определить необходимые технические характеристики вашего будущего станка. Постановка задачи - это существенный этап, и ему посвящена отдельная статья.

Этап 2. Тип компоновки

Все настольные станки с ЧПУ, исходя из компоновки, можно условно поделить на 2 класса:

  1. Станки с подвижным порталом
  2. Станки с подвижным рабочим столом

Станки с подвижным рабочим столом


Станки этого типа составляют заметное меньшинство в семействе роутеров с ЧПУ - причиной является в основном то, что рабочее поле у таких станков существенно меньше, чем у такого же размеров станка с подвижным порталом. Однако, станки с подвижным столом имеют ряд собственных преимуществ. Станки с подвижным столом обычно малоформатные - небольшой размер станка позволяет получить от преимуществ такой компоновки максимальную отдачу.
Первое преимущество заключается в том, что на таком станке намного проще сделать тяжелый и жесткий портал, который сможет принять на себя гораздо большую нагрузку фрезерования и тяжелый шпиндель - неподвижный портал может быть сколь угодно тяжелым, и вам не надо заботиться о том, как его потом перемещать, тогда как при подвижном портале Вам постоянно надо держать в уме вес портала, чтобы соотносить его с мощностью двигателей, нагрузочной способностью направляющих во избежание их прогиба, и как следствие - потери точности.
Конструкция осей Y и X при этом мало зависит от того, движется ли портал или рабочий стол.
Отсюда вывод - компоновка с подвижным столом подойдет тогда, когда нужен небольшой станок, с малым рабочим полем и жестким порталом


mobile-bed.jpg

Подвижный портал

Станки с подвижным порталом - это подавляющее большинство всех ЧПУ роутеров. По сути станок ничем не отличается от предыдущего варианта, кроме того, что по оси Ч перемещается не стол, а сам портал целиком. Такая структура снимает ограничения на размер, и теортетически станок может быть любого размера. Однако, все усложняется тем, что зачастую весьма непросто спроектировать такой портал, который с одной стороны, был бы достаточно легким для перемещения с заданными ускорениями, а с другой - был бы достаточно жестким, чтобы не поддаваться под нагрузками. Однако, подвижный портал - более гибкое и универсальное решение, поэтому если вы строите станок с полем обработки больше, чем формат А4, скорее всего Вам лучше выбрать структуру с подвижным порталом.

mobile-gantry.jpg

Этап 3. Размер рабочего поля


Рабочее поле - пространство, заключенное между крайними положениями режущего инструмента по всем трем осям. Размер рабочего поля - крайне важно, определив его единожды, вы не сможете изменить его потом, разве что построив новый станок.
Естественно, каждый станкостроитель хочет сделать станок с рабочим полем как можно большим. Однако, ограничения не заставят себя долго ждать - и первыми напомнят о себе масса и жесткость станка. Для удержания их в нужных пределах вам потребуются средства - расходы на направляющие и передачи, словом, весь бюджет растет в геометрической прогрессии вместе с размером поля. Поэтому для начала надо определиться с максимальным размером заготовок, которые будут обрабатываться на этом станке. Затем стоит оценить примерно, какие линейные направляющие вы сможете себе позволить с изначальным бюджетом, и провести повторную проверку - смогут ли эти направляющие обеспечивать необходимую точность и жесткость(если они являются частью несущей конструкции, как валы) - возможно, по результатам второй проверки вам придется уменьшить рабочее поле станка. Проверку вы можете выполнить, смоделировав нагрузку в САПР типа Solidworks, КОМПАС, Autodesk Inventor и т.п. При составлении динамической модели для просчета обязательно надо учитывать вид и свойства материалов, которые будут обрабатываться.

Этап 4. Размер станка с ЧПУ

Конечно, чем станок больше, тем больше он предоставляет возможностей, однако, всегда есть сдерживающий фактор - место в мастерской. Оно, к сожалению, ограничено. Поэтому, если у вас нет запасных гектар производственных площадей, Вам стоит уделить некоторое внимание компоновке станка, чтобы его общие размеры в трех измерениях были минимальны, а размер рабочего поля при этом - максимальным. Недостижимым идеалом является случай, когда рабочее поле равно размеру станка.

Этап 5. Точность

Мы уже упоминали их в начале, при выборе характеристик станка. Однако, их важность настолько велика, что мы повторим здесь основные моменты. Точность, наряду с повторяемостью - ключевая характеристика станка с ЧПУ. Важно различать эти два понятия - повторяемость показывает, насколько сильно ошибка размера плавает относительно среднего значения, тогда как точность показывает, насколько размер плавает относительно заданного значения. Точность и повторяемость часто упоминаются без указания, к чему они относятся - к координатам осей после позиционирования или к размерам обработанных деталей. Здесь и далее мы всегда будем иметь виду второе.
Точность станка с ЧПУ - тема настолько обширная, что невозможно о ней рассказать даже вкратце в рамках данного руководства. Скажем только, что ориентироваться стоит на точность в 0.1-0.2 мм для станка с полем около 0.5-1 кв. м: меньшие значения(0.05 мм и меньше) обычно удел станков профессиональных и получить такие значения без значительного опыта невозможно. Также, надо учитывать, что с ростом рабочего поля точность падает, и если есть необходимость увеличить рабочее поле, Вам придется смириться либо с падением точности обработки, либо с резким увеличением бюджета.

Этап 6. Из чего делать станок с ЧПУ

Портальный станок с ЧПУ может быть сделан из огромного спектра материалов. Несмотря на то, что промышленные станки делаются из стали и чугуна, существуют самодельные станки из оргстекла, алюминия, фанеры, полимерных материалов. Материал станины определяется 4 факторами - материалами, которые будут обрабатываться, бюджетом, доступными материалами для постройки и доступными вам средствами обработки. Влияние первого фактора вполне естественно - некоторые материалы, такие как камень, сталь, цветные металлы - требуют особой жесткости станины, и делать для них станок из фанеры или пластика не очень хорошая идея, и стоит рассмотреть чугун или полимергранит. Остальные три фактора всегда связаны, и тут тоже нет сложностй: не каждому доступен шлифовальный станок для выравнивания стальной станины под направляющие, не всегда есть возможность заказать фрезерованные детали станины из Д16Т, а заливка полимергранитом может оказаться дороже, если у вас под боком литейных цех, где вам отольют чугунную станину. На самом деле, нет каких-то универсальных рекомендаций по выбору материала, исходить надо из реальных возможностей. Немало станков из оргстекла показывают лучшую точность, чем станки из алюминия, сделанные без должного навыка и кое-как отфрезерованных деталей, потому что в процессе постройки не удалось найти нормальный фрезерный станок. Перед началом постройки составьте список доступных материалов и средств обработки, и проверьте, достаточно ли их для выполнения всех операций при производстве деталей для станка. Не беритесь за работу, прежде чем дважды не проверите этот список - одна изготовленная "на коленке" деталь, которая должна быть изготовлена на заводском оборудовании, может свести качество вашего станка к нулю. Возможно, придется сделать сперва станок попроще, чтобы потом на нем изготовить детали для будущего, улучшенного, станка.

Этап 7. Бюджет - сколько стоит сделать станок с ЧПУ своими руками?

Неоднократно уже упомянутый фактор. При постройке станка для собственных нужд он зачастую же и основной. Смету расходов надо постараться составить заранее, не оставляя белых пятен ни на что - ни на материалы, ни на обработку на стороне. И всегда прибавляйте 30-60% сверху - непредвиденные расходы будут всегда.

Конструкция портала и вертикальной оси Z гравировально-фрезерного станка с ЧПУ

gantry.png

После рассмотрения вариантов конструкции длинной оси - X - можно перейти к рассмотрению оси Y. Ось Y в виде портала - наиболее популярное решение в сообществе хоббийных станкостроителей, и неспроста. Это простое и вполне рабочее, хорошо себя зарекомендовавшее, решение. Однако, и в нем есть подводные камни и моменты, которые надо уяснить перед проектированием. Для портала крайне важна устойчивость и правильный баланс - это снизит износ направляющих и передач, снизит прогиб балки под нагрузкой, уменьшит вероятность подклинивания при перемещении. Для определения правильной компоновки посмотрим на силы, приложенные к порталу во время работы станка.

gantry-forces.png

  • D1 - расстояние от области резания до цента расстояния между направляющими балки портала
  • D2 - расстояние между приводным винтом оси X до нижней направляющей балки
  • D3 - расстояние между направляющими оси Y
  • D4 - расстояние между линейными подшипниками оси X
  1. уменьшить силу A.
  2. уменьшить плечо D3

Задача - сделать силы D и C сделать как можно более равными. Эти силы складываются из пары сил момента B и веса портала. Для правильного распределения веса надо рассчитать центр масс портала и разместить его точно между линейными подшипниками. Именно этим объясняется распространенная зигзагообразная конструкция боковин портала - это сделано для того, чтобы сместить направляющие назад и приблизить тяжелый шпиндель к подшипникам оси X.

  • Старайтесь минимизировать расстояние от приводного винта/рельсов оси X до направляющих оси Y - т.е. минимизируйте D2.
  • Снижайте по возможности вылет шпинделя относительно балки, минимизируйте расстояние D1 от области реза до направляющих. Оптимальным ходом по Z обычно считается 80-150 мм.
  • Снижайте по возможности высоту всего портала - высокий портал склонен к резонансу.
  • Рассчитывайте заранее центр масс всего портала, включая шпиндель и разрабатывайте стойки портала таким образом, чтобы центр масс располагался точно между каретками направляющих оси X и как можно ближе к ходовому винту оси X.
  • Разносите направляющие балки портала подальше - максимизируйте D3 для снижения момента, приложенного к балке.

Следующим шагом является выбор структуры наиболее важной части станка - оси Z. Ниже приведены 2 примера конструктивного исполнения.

Z-samples.jpg

Как было уже упомянуто, при строительстве станка с ЧПУ необходимо учитывать силы, возникающие при работе. И первым шагом на этом пути является отчетливое понимание природа, величины и направления этих сил. Рассмотрим схему ниже:

z-axis.jpg

  • D1 = расстояние между направляющими оси Y
  • D2 = расстояние вдоль направляющих между линейными подшипниками оси Z
  • D3 = длина подвижной платформы(базовой пластины), на которую собственно монтируется шпиндель
  • D4 = ширина всей конструкции
  • D5 = расстояние между направляющими оси Z
  • D6 = толщина базовой пластины
  • D7 = вертикальное расстояние от точки приложение сил реза до середины между каретками по оси Z

Посмотрим на вид спереди и отметим, что все конструкция перемещается вправо по направляющим оси Y. Базовая пластина выдвинута максимально вниз, фреза заглублена в материал и и при фрезеровке возникает сила противодействия F, направленная, естественно, противоположно направлению движения. Величина этой силы зависит от оборотов шпинделя, числа заходов фрезы, скорости подачи, материала, остроты фрезы и т.п.(напоминаем, что некоторые предварительные расчеты того, какие материалы будут фрезероваться, а значит, и оценка сил реза, должна быть сделана перед началом проектирования станка). Как влияет данная сила на ось Z? Будучи приложена на расстоянии от места, где закреплена базовая пластина, эта сила создает крутящий момент А = D7 * F. Момент, приложенный к базовой пластине, через линейные подшипники оси Z передается в виде пар поперечных сил на направляющие. Силы, преобразованная из момента, обратно пропорциональная расстоянию между точками приложения - следовательно, для снижения усилий, изгибающих направляющие, необходимо увеличивать расстояния D5 и D2.

Расстояние D2 также участвует в случае фрезерования вдоль оси X - при этом возникает аналогичная картина, только возникающий момент приложен на заметно большем рычаге. Этот момент старается провернуть шпиндель и базовую пластину, а возникающие силы перпендикулярны плоскости пластины. При этом момент равен силе реза F, умноженной на расстояние от точки реза до первой каретки - т.е. чем больше D2, тем меньше момент(при неизменной длине оси Z).

Отсюда следует правило: при прочих равных надо стараться обязательно разнести каретки оси Z подальше друг от друга, особенно по вертикали - это значительно увеличит жесткость. Возьмите за правило никогда не делать расстояние D2 меньше 1/2 длины базовой пластины. Также убедитесь, что толщина платформы D6 достаточна, чтобы обеспечить желаемую жесткость - для этого необходимо рассчитать максимальные рабочие усилия на фрезе и смоделировать прогиб пластины в САПР.

Небольшой гайд по выбору 3D-принтера для начинающих


Поводом для написания данной статьи послужила статья “Я хотел купить недорогой 3D-принтер, но посмотрел YouTube и расхотел”, в конце которой автор просит ответить на несколько вопросов. Попробую ответить с точки зрения своего семилетнего опыта 3D-моделера и 3D-печатника. Для начала небольшие предостережения.

В данной статье не будет советов: “Покупайте принтер производителя Х - он хороший, а производителя Y - не берите ни в коем случае”, только общие рекомендации.

Классификация принтеров неформальная, принятая в отечественном сегменте печатников.

Все написанное основано на личном опыте автора и является его личным мнением.

Если данные предостережения вас не пугают - добро пожаловать под кат.

Для начала представлюсь: меня зовут Максим и первый принтер я купил в далеком 2013 году. Это был китайский клон Makerbot 2 с веселым названием "Migce Cuble".

Фотография из личного архива

Фотография из личного архива

В рунете информации по 3D-печати почти не было, только одна тема на “Робофоруме” и несколько разрозненных статей про то, какая это крутая штука - 3D печать, так что для освоения приходилось много гуглить на английском, придумывать свои костыли и глубоко вникать в физику и технологию работы принтера. Надо отдать должное, в англоязычном сегменте тогда шло активное освоение данной технологии и попадались интересные статьи типа “Подбор типа насечек подающей шестерни экструдера под конкретный тип пластика” или “Определение оптимальной температуры печати с помощью тензодатчика, установленного на экструдере”. С тех пор прошло 7 лет. Я успел освоить моделирование, собрать принтер с нуля, немного побыть модератором “3D Today”, поработать фриласером в области моделирования и печати, организовать кружок прототипирования для детей и вывести его на российский уровень. Из последних достижений: поволонтерствовал координатором по снабжению пластика в проекте “Мейкеры проти ковид”. Многое поменялось за это время, в том числе и принтеры в моем домашнем зоопарке. Одно осталось неизменным - вопрос: “Что мне купить в качестве первого принтера?”.

В настоящее время в домашних условиях в основном используются два типа принтеров: печатающих по технологии FDM (FFF) - послойного наплавления пластика, подающегося в виде прутка и SLA (LCD) - печать фотоотверждающим полимером. Технология FDM более распространена, из-за более низкой стоимости оборудования и расходников, но за последние годы цены на LCD принтеры и смолы для печати значительно снизились и фотополимерная печать по себестоимости и уровню вхождения почти сравнялась с FDM печатью.

SLA и FDM

SLA и FDM

Честно скажу, SLA-печатью я почти не занимался и LCD-принтера до сих пор нет в моем домашнем зоопарке (но скоро может появиться), поэтому речь пойдет в основном о FDM принтерах. Их можно разделить на 3 основных категории по типу механики:

Дрыгостолы - принтеры со столом, подвижным по горизонтали. Пожалуй самая распространенная модель принтера. Отличается низкой себестоимостью комплектующих, простотой сборки и настройки, за что любима китайцами и печатниками. К недостаткам относится сложность создания закрытого корпуса и печати тонких высоких деталей, которые начинает шатать по мере увеличения высоты, особенно если деталь печатается из гибкого пластика типа TPU.

Типичные дрыгостолы

Типичные дрыгостолы

Кубики - принтеры в которых стол ездит по вертикали. Себестоимость таких принтеров выше, также как и требования к прямоте рук при сборке и настройке. Но правильно сконструированный кубик обеспечивает более высокую скорость печати при сохранении ее качества. При этом конструкцию принтера очень легко сделать закрытой, что позволяет печатать инженерными пластиками типа ABS и Nylon. Этот тип конструкции часто применяется в принтерах полупромышленного и промышленного класса. Некоторые производители умудряются запихать дрыгостол в корпус кубика, но особых плюсов для печатников это не приносит.

Типичные кубики

Типичные кубики

Дельты - принтеры с, так называемой, дельта-кинематикой, когда печатающая головка, с помощью системы тяг крепится к кареткам, перемещающимся по вертикальным направляющим. Себестоимость механики таких принтеров сравнима с себестоимостью дрыгостолов. Могут печатать на очень высоких скоростях. Но очень требовательны к правильности выдерживания размеров, прямоте рук при сборке и настройке, и скорости работы “мозгов” из-за сложных математических расчетов траектории перемещения головки.

Категорически не рекомендуются в качестве первого принтера, хотя повсеместное применение датчика уровня стола несколько снижает требования к прямоте рук при настройке и работе.

Типичные дельты

Типичные дельты

По доступности на рынке тоже можно выделить 3 основных категории:

Китайцы (дешевые китайские принтеры) - почти всегда конструкторы, даже если приходят в собранном состоянии.

К плюсам можно отнести низкую стоимость, широкую распространенность и унифицированность, что позволяет докупать вышедшие из строя детали в ближайшей радиобулошной или на известных китайских сайтах. Популярные модели собирают вокруг относительно большое количество пользователей, которое активно делится наработками в области самостоятельного ремонта и доработки данного типа принтеров. Самые ходовые модели, скорее всего будут печатать прямо “из коробки”, но потребуют доработок при более-менее долговременной эксплуатации.

К минусам относятся качество комплектующих/сборки и необходимость доработки данных принтеров для получения приемлемого качества/скорости печати. Рекомендуется брать модели, уже сформировавшие вокруг себя большое сообщество. Это означает, что большинство недостатков уже выявлено и существуют типовые недорогие методы их решения.

КИТы (наборы для сборки в основном отечественного производства) - гуглятся по словам “ZAV”, “UlTi”, “Ультумбочка” и т.д. Обычно представляют собой набор для сборки фанерного кубика. В последнее время появляются варианты с металлическими корпусами. Поставляются в разных вариантах - начиная от комплекта для сборки корпуса с напечатанными деталями, заканчивая полностью готовыми собранными изделиями.

К плюсам можно отнести достаточно хорошую инженерную проработку, возможность самому подобрать комплектующие для механической и электронной частей и сделать принтер полностью под свои требования. При хороших комплектующих обеспечивают быструю, стабильную и качественную печать. По цене выходят несколько дороже китайских принтеров, но дешевле полупрофессиональных принтеров отечественных или европейских/американских производителей.

К минусам можно отнести приличные затраты времени на сборку и ожидание комплектующих, если вы решите сэкономить и самостоятельно заказать эти комплектующие у разных продавцов и собрать из них принтер. При сборке требуют прямых рук.

Заводские принтеры (полупрофессиональные принтеры отечественных или американских/европейских производителей). Моделей очень много, конструкции самые разные.

Плюсом данного класса принтеров является печать с приемлемым качеством “из коробки”. В довесок вы получаете надежность в эксплуатации и гарантийную поддержку от производителя.

Основной минус - цена. Часто непонятно от каких факторов зависит. Можно купить высококачественный принтер относительно занедорого, а можно задорого взять что-то непонятное. Второй минус - наличие специфических решений, несовместимых с популярными решениями на рынке: это могут быть сопла со своим шагом резьбы, особые вентиляторы, электроника, ремни и даже слайсеры. Некоторые требовательны к качеству пластика, встречаются модели, работающие только на чипированных катушках.

Теперь, когда мы определились с классификацией принтеров можно приступать к процедуре выбора принтера для себя, любимого. Если вы загорелись покупкой 3D-принтера - сначала определитесь для чего вы его собираетесь брать, от этого зависит тип и комплектация принтера. Разберем несколько типовых ситуаций:

Хочу что-нибудь для себя и семьи делать - если не планируете печать изделий из инженерных пластиков, выдерживающих приличные нагрузки и температуры - хватит китайского дрыгостола или кубика. При наличии бюджета и желании разобраться как работает принтер до начала, а не во время печати можно посмотреть в сторону отечественных наборов для сборки - с ними можно получить лучшее качество и безболезненно перейти на инженерные пластики.

Ничего не умею делать руками, но надо. Поэтому хочу принтер, который за меня все делать будет - в этом случае лучше смотреть на полупрофессиональные принтеры. Если бюджета не хватает - можно посмотреть бывшие в употреблении или заказать сборку отечественного набора - обычно производители предлагают такую услугу через посредников. При заказе сборки - смотрите на наличие опыта и положительных отзывов, бывают нюансы.

Хочу на продажу печатать - ферма из однотипных принтеров, в зависимости от бюджета. Если нет бюджета, но есть ресурсы на регулярную настройку/ремонт - можно даже из китайских дрыгостолов. Дополнительно - принтер с большой областью печати, принтер с закрытым корпусом и нагреваемыми столом для печати инженерными пластиками, SLA/LCD-принтер для печати изделий с высокой степенью детализации.

По работе или дома возникает необходимость разработки и печати корпусов и деталей. Если планируются только прототипы небольшого размера - LCD-принтер, если функциональные изделия - закрытый кубик с возможностью печати инженерными пластиками.

Дети подрастают, а это технология будущего, хочу, чтобы освоили - посмотрите, какие принтеры используются на соревнованиях по прототипированию в вашем регионе. Возьмите такой-же. Можно бывший в употреблении.

Хочу фигурки для настолок делать, мелочи красивые для дома - LCD-принтер.

Хочу разобраться, что за технология и как это вообще работает - набор для сборки отечественного производителя. Пока собирать будете - как раз разберетесь.

Денег вообще нет, но печатать хочется, буду сам с нуля собирать - получится лучше и дешевле китайцев. Как не странно нет. Стоимость комплектующих с али выйдет дороже принтера с али. Конечно если есть станочный парк, умение им пользоваться, набор железа, валов и электроники валяющийся в углу мастерской, то может выгореть. Есть варианты построения принтеров из досок и мебельных направляющих, но качество печати у них, мягко говоря, хромает. Например, постройка принтера, изображенного ниже, обошлась его автору по его словам в 80-90 долларов.


Если хотите полностью с нуля собрать свой принтер, то лучше отнеситесь к этому, как к отдельному хобби и смиритесь, что получится не сильно дешево. Ну или посмотрите в сторону бывших в употреблении принтеров.

Вообще не знаю зачем мне принтер, но попробовать хочется - китаец или отечественный набор для сборки. Можно бывшие в употреблении. Если не зайдет - всегда можно перепродать.

С типом принтера определились - на что смотреть в первую очередь при покупке?

Во первых - на жесткость конструкции - именно от нее зависят точность и скорость печати. Именно в направлении усиления жесткости будут направлены ваши первые доработки китайского принтера, так-как материал “сталь пластилин 3 (с)” для китайцев считается непозволительной роскошью. В случае покупки отечественных КИТов ситуация чуть получше.

Во вторых - если принтер будет стоять в квартире - “бесшумные” драйвера для шаговых двигателей. 3D-печать процесс не быстрый и наличие постоянной достаточно громкой жужжалки под ухом надоедает.

В третьих - наличие подогреваемого стола и простота доработки до корпуса закрытого типа. Со временем придет желание (необходимость) печатать ABS, а на открытом дрыгостоле это сделать проблематично.

В четвертых - наличие хорошей системы обдува пластика тоже немаловажно.

В пятых - при выборе принтеров с механикой CoreXY, H-Bot или Delta сильно желательно наличие 32-битной платы управления, или столкнетесь с замираниями (фризами) на высоких скоростях печати.

В шестых, седьмых, и т.д - в конструкциях принтеров много нюансов. Если что-то непонятно - не стесняйтесь спросить у сообщества.

Со временем его возможностей перестанет хватать - тогда можно перейти на более серьезные САПР. На мой взгляд печатник должен владеть двумя типами редакторов - твердотельником для моделирования технических изделий (САПР) и полигональником (Blender и т.д.) - для моделирования художественных, но многие печатники считают это избыточным и осваивают, только один.

На этом пожалуй закруглюсь - статья и так вышла достаточно объемной, если есть вопросы - с удовольствием отвечу на них в комментариях или в отдельной статье. Сразу говорю - на вопросы типа: “что лучше: летающий медведь 5 или ендер 3” отвечать не буду - на эту тему уже сломано немало копий на профильных ресурсах, смысла повторяться не вижу.

Читайте также: