Схема двигателя от стиральной машины lg
Сейчас в продаже есть стиральные машины с тремя типами двигателей и важно понимать, основные моменты, чтобы, когда придет время покупать, сделать правильный выбор.
1. Обычный щеточный мотор , который еще называют коллекторным. Самый простой и дешевый вариант.
В красном пластмассовом щеткодержателе находятся щетки, которые скользят по медному коллектору, подавая через него напряжение на ротор
В красном пластмассовом щеткодержателе находятся щетки, которые скользят по медному коллектору, подавая через него напряжение на ротор
Недостатки , это громкая работа, особенно при отжиме, и необходимость замены щеток через несколько лет (около 5).
Преимущества , это низкая цена стиралки с таким мотором, при прочих равных, и отсутствие сложного электронного контроллера, как в бесщеточных моторах, который может выйти из строя. Простота конструкции - вот основное преимущество стиральной машины с щеточным мотором.
2. Инверторный мотор. И здесь возможно для некоторых мы откроем "Америку", но инверторный мотор, это не обязательно вот это:
Инверторный мотор может выглядеть вот так:
И такой мотор точно так же будет вращать барабан через ременной привод, как и обычный щеточный двигатель:
Можно сказать, что это некий промежуточный вариант, у которого недостатков больше чем преимуществ. Такой вариант не получит уникальной бесшумности прямого привода. Да, безщеточник тише, чем щеточник, но из-за ремня все равно будет определенный гул, особенно при отжиме. И к тому же здесь остаются все минусы ременной передачи - возможность соскальзывания, обрыва, худшая энергоэффективность, моральная устарелость в конце концов. И в нагрузку получаем все недостатки (кроме одного - о нем мы скажем позже) безщеточника - а именно сложный, а значит, более подверженный поломкам и дорогой, блок управления двигателем .
3. Инверторный мотор с прямым приводом. Собственно, то же самое фото:
Знаете, как в двух словах можно описать принцип работы этого мотора? Видите, круглую штуку с медными катушками, которая находится в железном тазике. На стенках тазика изнутри полосками приклеены обычные магниты.
Когда на медные катушки подается ток, они начинают создавать электромагнитное поле, которое пинает магниты на тазике, и он начинает вращаться. Вся проблема в том, что в то время, как одна катушка тянет к себе соответствующий ее местоположению магнит тазика, другая должна свой магнит толкать.
А теперь посмотрите, сколько там этих катушек - дофига. И за каждой нужно следить, вовремя переключая ее, (подавая на нее ток определенной полярности), чтобы она согласовано с другими катушками выполняла свою работу - либо тянула, либо толкала.
Вы представляете, каким виртуозом надо быть, чтобы играть на таком "рояле"? Именно эту работу и выполняет электронный контроллер. А еще вспомните " 6 движений заботы " LG, когда барабан выделывает всякие штуки: крутиться рывками, амплитудами, на четверть оборота, и бог знает как еще. Все эти чудеса прецизионного (очень точного) управления вращением мотора требуют серьезной микроэлектронной и программной основы. Это вам не 220 вольт на щетки лить.
Вот поэтому, такая стиралка в ремонте будет подороже. И мотор там не сломается - нечему там ломаться - думаете зря они дают на него 10 лет гарантии. Сломается управляющая электроника, а она к мотору, как бы не относится. Да, опять маркетологи всех надули.
Преимущества такого мотора и привода наверное все уже знают: тихая работа, возможность реализовать сложные алгоритмы вращения барабана для более эффективной стирки белья. Ну и как бы, надежность мотора, но здесь мы уже разобрались.
Недостатки , это отдельная сложная электроника для управления работой мотора, более высокая цена и. есть еще один момент.
Очень редко, но встречается у таких машин протечка воды прямо в мотор. Он же на одной оси болтается с барабаном. Ну а там в баке вода. Сальник прохудился и водичка побежала.
Износ крупной бытовой техники приводит к тому, что хозяева от неё избавляются, взамен приобретая новый агрегат. Домашние мастера не спешат списывать в утиль старую технику, не сняв с неё исправные электрические моторы. Подключение двигателя стиральной машины к различным самодельным устройствам позволяет существенно сэкономить финансовые средства.
Используя двигатель от стиральной машины, можно соорудить точилку для заточки инструментов, ножей, станки различного назначения, дисковые пилы, корморезки, бетономешалки и много разнообразных приспособлений и самодельных устройств.
Перед тем, как подключить двигатель, нужно узнать какого он типа и на что он способен. От этого зависит схема подсоединения моторчика к бытовой электрической сети.
После прочтении данной статьи, Вы узнаете о том, какие существуют виды электродвигателей от стиральных машин, как подключить мотор от стиральной машины к сети 220 вольт, если он асинхронного, коллекторного или инверторного типа. И главное вы узнаете, как произвести подключение своими руками.
Существующие типы электродвигателей
Современные стиральные машины оснащены, как правило, однофазными электродвигателями с тахогенераторами, регулирующими число оборотов. Электромоторы советских времён уже считаются редкостью, их отличает двухскоростной режим работы. Моторы, установленные в современных стиральных автоматах, можно разделить на три вида – это двигатели:
- асинхронные;
- коллекторные;
- инверторные.
Асинхронные
У двигателей такого типа частота вращения ротора отличается от частоты вращения магнитного поля обмотки статора. Это наиболее распространённый вид электрических моторов. В стиральных машинах устанавливают асинхронные конденсаторные движки, питаемые от однофазной бытовой электросети.
На статоре имеются две обмотки, одна из которых включается непосредственно в сеть, а вторая обмотка подключается с пусковым конденсатором, образуя стартовое вращающееся магнитное поле.
Плюсом асинхронных движков является простота конструкции и неприхотливость в обслуживании. Износостойкие электромоторы могут при правильном обслуживании проработать не одно десятилетие.
К минусам асинхронных моторов следует отнести чувствительность к колебаниям частоты сетевого тока и невозможность изменения скорости вращения вала в процессе работы, однако это не мешает применять их в различных самодельных устройствах.
Коллекторные
Многие стиральные машины на сегодня комплектуют коллекторными движками. Отличительной чертой, которых является наличие 2-х щёток. Щётки прилегают к коллектору ротора, сообщая ему электроэнергию, что заставляет вращаться ротор в магнитном поле обмотки статора. Коллекторные силовые блоки эксплуатируют с использованием ременной передачи крутящего момента.
К плюсам следует отнести наличие на валу мотора шкива, что облегчает задачу домашним мастерам в создании устройств с ременной передачей, возможность работы от постоянного тока. Как правило, двигатели обладают небольшими габаритами и управляются простой электросхемой.
Инверторные
Впервые инверторный двигатель был установлен в стиральную машину компанией LG 2005 году. С тех пор движки инверторного типа стали массово использовать ведущими фирмами в бытовых стиральных машинах. В отличие о своих аналогов, инвертор крепится непосредственно к барабану машинки и не нуждается в ременной передаче и подшипниках.
Плюсами инвертора с прямым приводом считается простота конструкции, компактность, возможность назначать различные режимы работы, низкая шумность и высокий КПД за счёт отсутствия нагрузок от трения ременной передачи.
Минусом считают нецелесообразность ремонта в случае поломки электродвигателя. Стоимость восстановления может оказаться большей, чем стоит сам движок. Также недостатком считают невозможность применения в различных самодельных станках и механических приспособлениях по причине конструктивных особенностей инверторов.
Как подключить электромотор от стиральной машины к сети 220 вольт
Прежде чем планировать подключение двигателя от стиральной машины, надо определить его тип. Затем нужно определить, от каких частей мотора выведены провода. Если сохранилась клеммная колодка, тогда это сделать легче, прозвонив контакты мультиметром.
Важно правильно разработать схему подключения к сети 220 вольт для того, чтобы полноценно использовать возможности электромотора в новом устройстве. Если движок нужен для привода с постоянной скоростью вращения шпинделя, то конденсатор не понадобится. В противном случае надо сохранить сложное подсоединение к электрической сети, чтобы работал регулятор оборотов. Ниже будут рассмотрены способы подключения асинхронных, коллекторных и инверторных двигателей, снятых со стиральных машин.
Подключение асинхронного двигателя
В старых советских агрегатах на стиральный бак устанавливали асинхронные электродвигатели, а центрифугами для отжима белья вращали коллекторные движки. Если есть уверенность, что силовые блоки сняты с такой машинки, то становится понятным к какому типу принадлежит каждый из них.
У асинхронного мотора две обмотки, одна из которых осуществляет пуск, а другая обеспечивает рабочий режим вращения шпинделя двигателя. Их выводы можно найти на раздаточной колодке. Чтобы определить, какая пара из них, принадлежит какой обмотке, используют тестер (мультиметр). Для начала прозванивают поочерёдно все провода.
В результате определяют две пары выводов обоих обмоток. Большее сопротивление одной из пар укажет на принадлежность к пусковой обмотке, соответственно меньшее сопротивление будет у вторичной рабочей обмотки.
Для работы движка будет достаточно подключить рабочую обмотку. Но сразу возникает проблема с пуском мотора. Потребуется каждый раз раскручивать шпиндель вручную. Однако, это далеко небезопасно, да и обременительно, особенно при больших нагрузках на вале двигателя.
Поэтому придётся использовать пусковую обмотку и конденсатор. Для понятия, как должен был подключён асинхронный электромотор, ниже приведена универсальная схема, где ОВ – обмотка возбуждения (рабочая), ПО – пусковая обмотка и SB – контактор (вместо него может быть установлен неполярный конденсатор небольшой ёмкости 2 – 4 мкФ).
Можно использовать старый конденсатор, который был снят вместе с движком. Его соединяют с одним из выводов ПО. На фото ниже видно предварительное подключение мотора для проверки его работоспособности.
При первом запуске надо попробовать включить мотор без пусковой обмотки. Если моторчик начинает вращать шпиндель, а рабочая нагрузка небольшая, то можно обойтись без пускового устройства. В противном случае ПО в схеме будет просто необходима.
Так, как доставшийся двигатель от старой стиральной машины сам является старым силовым блоком, то при первом запуске может наблюдаться перегрев мотора. Это может происходить из-за изношенности подшипников или конденсатора с излишне большой ёмкостью.
Проверить это несложно. Если работа с отключённым конденсатором не вызывает перегрев мотора, то конденсатор меняют на другой с меньшей ёмкостью. Если причиной явился изношенный подшипник, то встанет вопрос о его замене или целесообразности ремонта.
Можно обойтись без конденсатора. Вместо него к одному из выводов ПО производят подключение контактора без фиксации. Чаще всего для этого используют простую кнопку от дверного звонка.
В момент запуска кнопку зажимают и фиксируют до раскрутки шпинделя. После этого кнопку отпускают, чем отключают ПО. Если нужно изменить направление вращения ротора, то для реверса меняют сторонами выводы пусковой обмотки. Как устроить реверс асинхронного двигателя, видно на схеме ниже.
Если, например пусковая обмотка не используется, то направление вращения ротора можно изменить толчком руки.
Как подключить коллекторный мотор
Такие движки устанавливались в стиральных машинах с вертикальной загрузкой бака. Коллекторные двигатели не нуждаются в принудительном запуске, поэтому пусковая обмотка у них отсутствует.
Определить принадлежность электромотора к данному типу движков можно по клеммной коробке. Как правило, в ней можно найти от 5 до 8 выводов. Большинство из них предназначены для управления режимами стирки и впоследствии не понадобятся. Также коллекторные движки отличаются наличием щёток, их гнёзда крепления видны на корпусе двигателя.
Если разобрать двигатель, то можно увидеть якорь (ротор) с обмоткой со стальными рамками, концы которых сведены в коллекторное кольцо. Коллектор, соприкасаясь с графитовыми щётками под напряжением, возбуждает обмотку. В электромагнитном поле статора в якоре возникает электродвижущая сила (ЭДС), которая заставляет вращаться якорь.
Чтобы уяснить устройство коллекторного электромотора, надо рассмотреть стандартную схему расположения всех частей коллекторного моторчика.
Подключают двигатель такого типа таким образом:
- Необходимо находить один из выводов обмотки статора и подключить его напрямую к фазовому проводу электросети;
- Второй вывод обмотки статора будет подключаться к одной из щёток ротора;
- В тоже время другую щётку соединяют с нулевым проводом электросети;
- Чтобы осуществлять корректное включение/выключение, в цепь ветки 1 или 2 впаивают бытовой выключатель света (см. схему ниже).
Чтобы изменить направление вращения шпинделя электромотора, достаточно поменять места подключения щёток.
Для этого можно собрать простейшую схему с одним проходным выключателем. Так, как двигатель запускается с рывком, его корпус следует жёстко закрепить на столешнице, верстаке либо другом основании. Для этого используют монтажные отверстия на отливах корпуса мотора.
Домашние мастера в своих самоделках нередко устанавливают движки с регулятором скорости вращения шпинделя. Для управления оборотами в цепь питания между розеткой и одной из щёток коллектора впаивают диммер. Это обыкновенный бытовой регулятор световых приборов. Необходимым условием является то, что диммер должен быть несколько мощней электродвигателя.
Прежде чем запускать коллекторный движок от старой стиральной машины, нужно разобрать его и проверить состояние двух опорных подшипников ротора, заменить изношенные щётки, очистить нулевой наждачной бумагой медную поверхность коллектора.
Подсоединение инверторного двигателя
Движки такого типа – это электромоторы нового поколения. Поэтому силовые блоки не могут быть сильно изношенными, а стало быть, все их части вполне пригодны для дальнейшей эксплуатации.
В отличие от асинхронных и коллекторных движков, использующих ременную передачу, инверторные двигатели прямого действия в ней не нуждаются. Их устанавливают прямо на вал барабана стиральной машины, что позволяет исключить применение таких передаточных элементов, как ручейковые ремни, ролики и шкивы.
В инверторе барабан, подшипники и ротор закреплены на общем валу, что позволяет избежать наличие трущихся частей движка. Отличительной особенностью является использование электромагнитной индукции для преобразования из переменного в постоянный ток.
Инверторный двигатель состоит из двух основных частей – это статор, который крепится непосредственно к баку стиралки и подвижный диск. Неподвижная часть имеет 36 катушек-обмоток, которые располагаются по ободу статора, там же находятся колодки с проводами, идущими в блок управления машинки.
На него надевается подвижный диск-маховик. В его корпусе с внутренней стороны вклеены 12 магнитов. Маховик своей пластиковой вставкой насаживается на вал барабана. На фото видны просечные отверстия с бортиками, которые обеспечивают эффективную вентиляцию и охлаждение движка во время его работы.
Принцип работы инвертора заключается в том, что в катушках возбуждается перемещающее электромагнитное поле, которое через магниты вызывает ЭДС, заставляет ротор вместе с барабаном вращаться.
Правильно подключить инверторный двигатель могут только профильные специалисты или очень сведущие в электронике домашние мастера. Такой тип двигателя может найти применение, например, в качестве сепаратора для производства сливочного масла, бетономешалки, даже газонокосилки и т.п.
Для того, чтобы узнать, как включить и совершить первый запуск, а также регулировать реверс и количество оборотов инвертора, рекомендуется воспользоваться нижеследующей ссылкой для просмотра соответствующего видеоролика.
CM "LG WD 80160" имеет в своем составе два электронных модуля - плату управления и индикации, а также основной модуль. Основной модуль имеет разновидности, например 6871EN1032D и ELAN-PJT6870EC9090-1. Эти модули в основном различаются компоновкой и обозначением электронных компонентов, также имеются небольшие отличия. На примере модуля ELAN-PJT6870EC9090-1 рассмотрим его схемотехнические особенности и характерные неисправности.
По своему назначению модуль ELAN-PJT6870EC9090-1 функционально ничем не отличается от подобных устройств других производителей. Но у него есть и свои особенности, на которых мы остановимся ниже.
Внешний вид электронного модуля ELAN-PJT6870EC9090-1 приведен на рис. 1.
Схема внешних соединений модуля показана на рис. 2. Необходимо отметить, что на этом рисунке приведена схема соединений, относящаяся к другой версии модуля.
Рис. 2. Схема соединений CM "LQ WD 80160" с электронным модулем 6871EN1032D
Одно из отличий заключаются в назначении контактов соединителя NA (NA6), оно приведено в таблице.
Рис. 3. Расположение элементов на плате модуля ELAN-PJT6870EC9090-1 (верхняя сторона)
Расположение и обозначение основных элементов на плате модуля ELAN-PJT6870EC9090-1 приведено на рис. 3 (верхняя сторона) и 4 (обратная сторона).
Рис. 4. Расположение элементов на плате модуля ELAN-PJT6870EC9090-1 (нижняя сторона)
Отметим, что назначение внешних соединителей модуля отдельно рассматриваться не будет, так как эта информация наглядно проиллюстрирована на рис. 2 и 3.
Основные функции электронного модуля
Рассматриваемый электронный модуль выполняет следующие основные функции:
- обмен информацией с платой индикации и управления;
- управление уровнем воды в баке (исполнительными устройствами являются клапаны залива воды и сливной насос, а функцию контроля выполняет датчик уровня);
Назначение контактов соединителя NA(NA6) для разных исполнений основного модуля CM "LG WD 80160"
- управление устройством блокировки люка (УБЛ);
- управление нагревом воды в баке до заданной температуры (исполнительным элементом служит ТЭН, функцию контроля выполняет датчик температуры);
- управление приводным мотором во всех режимах его работы (реверсивный режим - при стирке, с регулированием оборотов - при отжиме). Регулировка оборотов мотора производится на основе ШИМ, оконечным регулирующим элементом которого является рости вращения мотора обеспечивается с помощью таходатчика.
Состав и основные цепи
Перечислим входящие в состав модуля основные элементы и узлы, рассмотрим их назначение и цепи прохождения основных сигналов. Принципиальные электрические Схемы основных узлов модуля приведены на рис. 5-7 и рис. 10-14.
Рис. 5. Принципиальная электрическая схема. Микропроцессор, ЭСППЗУ, схема сброса, формирователь сигнала тактовой частоты 100 Гц
Рис. 6. Принципиальная электрическая схема. Источник питания, реле ТЭНа и коммутации фазы
стабилизатор и фильтр 12 В (IC7 7812 и С82);
стабилизатор и фильтр 5 В (IC6 7805, С81,СЕ81).
Рис. 7. Принципиальная электрическая схема. Плата управления и индикации, цепи управления от микропроцессора IC1
Рис. 8. Блок-схема интегральной сборки ULN2004A
Рис. 9. Принципиальная электрическая схема одного канала интегральной сборки ULN2004A
Рис. 10. Принципиальная электрическая схема соединений между микропроцессором IC1 и интегральными транзисторными ключами IC2, IC3
Рис. 11. Принципиальная электрическая схема. Управляемый генератор датчика уровня воды, усилитель сигналов таходатчика
На рис. 10 показана схема соединений между микропроцессором IC1 и сборками IC2, IC3.
- Управляемый генератор датчика уровня воды. Генератор (рис. 11) выполнен на основе трех вентилей, входящих в состав сборки триггеров Шмидта IC4 (4069UBF). Датчик уровня состоит из катушки и сердечника, который перемещается вдоль оси катушки при деформации диафрагмы, воспринимающей изменение прилагаемого к ней давления. В свою очередь, это давление зависит от уровня воды в баке. Собственно, получается система, преобразующая значение уровня воды в баке в частоту. Сигнал с управляемого генератора датчика уровня поступает на выв. 43 микропроцессора IC1. Подробнее о датчиках такого типа можно почитать в [4].
- Цепь сигналов с тахогенера тора. Тахогенератор представляв! собой катушку, на которую воздействует кольцевой постоянный магнит, закрепленный на валу приводного мотора. Он служит для формирования сигналов, частота следования которых пропорциональна скорости вращения вала мотора. Сигнал с тахогенератора поступает по цепи: выв. 4 соединителя NA6 - выв. 2 и 1 усилителя в составе микросхемы IC9 (KIA538) - R71 - выв. 44 IC1 (рис.11).
- Цепи устройства блокировки люка (УБЛ) и питания ТЭНа. Микропроцессор с выв. 5 формирует сигнал блокировки люка, который далее поступает по цепи: выв. 5 и 12 сборки IC2 - реле Х111 - УБЛ (см. рис. 3, 12). Для контроля срабатывания УБЛ служит следующее цепь: контакт D/S соединителя NA3 (рис. 3, 12) - формирователь (R102, R103, SD101.C101, SE101) - выв. 52IC1.
Питание на ТЭН подается через контактные группы реле Х144 и Х145. Реле Х144 управляется по цепи: выв. 12 IC1 - выв. 2 и 15 IC3 - реле Х144, а Х145 - по цепи: выв. 10 IC1 - выв. 4 и 13 IC3 - реле Х145 (рис. 6).
Реле Х111 - типа NAIS AQ1В-12V(UHOM=12B,UKOMM MaKC = 250B, Iк0ММмакс = 1 А), а Х144, Х145 - типа NAIS ALE16B12 (UHOM = 12 В,
Ukomm макс = 250 В, I,комммакс = 16 А)
- Узел управления приводным мотором. Фрагмент принципиальной схемы модуля с элементами цепей управления приводным мотором показан на рис. 13.
Рис. 12. Принципиальная электрическая схема. Цепи управления сливным насосом иУБЛ
Рис. 13. Принципиальная электрическая схема. Цепи управления коллекторным приводным мотором
Рассматриваемый электронный модуль предназначен для работы с коллекторным приводным мотором постоянного тока. Мотор питается через отдельный выпрямитель, обмотки статора и ротора включены последовательно. Режим реверсивного вращения в данном случае достигается изменением фазиров-ки включения обмотки статора с помощью реле. Плавное управление вращением мотора обеспечивает ШИМ с регулирующим элементом на симисторе. Контроль скорости вращения мотора обеспечивает микропроцессор с помощью тахогенератора.
В состав узла управления приводным мотором входят следующие элементы:
реле реверса приводного мотора XI31, XI33. Они служат для изменения фазы включения статорной обмотки мотора (для обеспечения реверсивного вращения барабана СМ в режиме стирки). Реле управляются от микропроцессора по следующей цепи (в скобках для цепи реле Х133): выв. 3 (6) IC1 - выв. 7 (4) и 10 (13) IC2 - обмотка реле Х131 (Х133). Оба реле - типа OMI-SH-112L(UHOM=12B,
Ukomm макс = 250 В Iкомммакс= 12 A
реле переключения обмоток статора приводного мотора
XI32. Так как статор имеет две обмотки, данное реле обеспечивает их коммутацию в режимах стирки и отжима. Обмотка реле управляется микропроцессором по цепи, аналогичной реле Х133 (см. выше). Тип реле Х132 - OMI-SH-112L;
выпрямитель приводного мотора. Он выполнен на диодном мосте типа GSIB15A60 (Iмакс = 15 А, Uмакс= 600 В) и элементах фильтра С131.С133, R131; • управляющий симистор приводного мотора. Симистор TR116 типа BCR16PM включен последовательно в цепь питания мотора и обеспечивает плавное регулирование его оборотов. Симистор управляется сигналом от микропроцессора через ключ в составе IC2 и резистор R123. Для контроля работоспособности си-мистора служит следующая цепь: выв. А2 симистора TR116 - выпрямитель-формирователь (R162, R163, SD161, SD162, C161.SE161) - выв. 53IC1. В цепи питания приводного мотора также включено тепловое реле - оно размещено на корпусе мотора и разрывает электрическую цепь при достижении заданной критической температуры.
- Цепь управления сливным насосом. Фрагмент принципиальной схемы электронного модуля, на котором показана цепь управления сливным насосом, приведен на рис. 12.
Сливной насос управляется по цепи: выв. 7IC1 - выв. 3 и 14 IC2 - R21 - симистор TR115 (BCR8P) - контакт DP соединителя NA3 - сливной насос.
Рис. 14. Принципиальная электрическая схема. Цепи управления клапанами залива воды
- Цепи управления клапанами залива воды. Фрагмент принципиальной схемы электронного модуля, на котором показаны цепи управления клапанами залива воды, приведен на рис. 14. Клапаны управляются по следующим цепям:
• клапан отделения основной стирки: выв. 8, 9IC1 - выв. 1, 2 и 15, 16 IC2, R120 - симистор TR114 (BCR1AM12) - контакт MV соединителя BL1 - обмотка клапана залива воды; • клапан отделения предварительной стирки: выв. 12 IC1 - выв. 3 и 14IC3 - R1119 - симистор TR113 (BCR1AM12) - контакт PV соединителя BL1 - обмотка клапана залива воды. - Цепь датчика температуры. Датчик температуры (термистор NTC) служит для контроля температуры воды в баке СМ. Сигнал с него в виде постоянного напряжения поступает по цепи: контакт 1 соединителя NA6 - фильтр (СЕ61, R61, С61) - выв. 50IC1 (вход АЦП).
Особенности ремонта электронного модуля
Как известно, большинство электронных модулей CM LG (за исключением плат управления и индикации) размещены в пластмассовом кожухе и залиты специальным силиконовым герметиком. Естественно, когда возникает необходимость в ремонте модуля, герметик затрудняет доступ к электронным компонентам.
Эту проблему можно решить путем извлечения модуля из кожуха и последующим удалением герметика с внешней или обратной сторон платы.
Упрощенно подобный процесс можно разбить на следующие этапы:
- по внутреннему периметру кожуха небольшой плоской отверткой очищают по краям плату модуля от герметика;
- углубляют тонкой отверткой канавку по периметру платы в промежутке между ней и кожухом;
- вставляют тонкую плоскую отвертку между платой и кожухом в одном из углов рядом с сетевым трансформатором. Аккуратно приподнимают угол и постепенно извлекают всю плату из кожуха в направлении от трансформатора до противоположной узкой стороны. Главное - это соблюдать осторожность, чтобы не повредить плату и электронные компоненты на ней;
- после извлечения платы из кожуха удаляют с нее герметик в местах, где это необходимо. С целью предотвращения повреждения компонентов на плате лучше удалять герметик деревянной лопаткой или просто пальцами;
- после ремонта участки платы, с которой был удален герметик, необходимо покрыть защитным лаком, например PLASIK 70 (для монтажных работ). Кстати, этот лак удаляется с платы при помощи паяльной станции.
Примечание. Опытные ремонтники уже по внешним признакам проявления неисправности знают элементы на модуле, которые необходимо проверить в первую очередь. Они не извлекают целиком модуль из кожуха, а вырезают в пластмассовом кожухе (с обратной стороны платы) участки, которые открывают доступ к печатному монтажу интересующих их компонентов. Один из подобных примеров рассмотрен в [3].
Рис. 15. Качество пайки контактов реле в старых (а) и новых (6) версиях электронных модулей
В большинстве электронных модулей CM LG чаще всего выходят из строя реле по причине плохих паяных соединений их силовых цепей (так называемая "холодная пайка" контактов). Необходимо заметить, что компания-производитель учла нарекания ремонтных организаций по данному вопросу. Например, сравнительно недавно появились доработанные версии модулей для CM "LGWD-10160(N/S)" и "LGWD-10180(N/S)" с усиленными паяными соединениями силовых компонентов. Эти платы имеют желтую наклейку с надписью "IMPROVED". На рис. 15 показано качество пайки контактов реле старых (фрагмент а) и новых (фрагмент б) версий электронных модулей.
Характерные неисправности модуля и способы их устранения
На передней панели СМ отображается код ошибки dE (не закрыта дверца люка)
При возникновении подобной ошибки в первую очередь проверяют реле Х144, Х145 и их пайку, а также УБЛ, его соединители и реле Х111. Для проверки указанных реле и качества пайки их выводов необходимо извлечь плату модуля из пластмассового кожуха (см. выше) или вырезать в кожухе отверстие, чтобы были доступны печатные площадки контактов реле. На передней панели СМ отображается код ошибки tE
Данная ошибка означает, что значение сопротивления датчика температуры вышло за допустимые пределы или температура воды не соответствует заданной. Обычно в подобных случаях проверяют датчик температуры (его сопротивление при 20°С должно составлять около 15 кОм) и его цепи, а также ТЭН (25. 28 Ом).
Если датчик температуры исправен, необходимо проверить на модуле номиналы элементов в его цепи (от контакта 1 соединителя NA6 до выв. 50 IC1): R61, R62, СЕ61 и С61. Также проверяют исправность элементов в цепи питания ТЭНа (см. описание).
Подводя итог сказанному, отметим, что основной причиной отказов подобных электронных модулей является "холодная пайка" контактов реле в цепях питания ТЭНа и УБЛ, сами реле также часто выходят из строя. Это, можно сказать, своеобразная "визитная карточка" в статистике неисправностей большинства модулей CM LG.
При попытках восстановления подобных модулей данную проблему усугубляют сложности с доступом к электронным компонентам платы из-за нанесенного на них слоя герметика.
Что же касается общей статистики неисправностей подобных СМ, то она мало отличается от продукции аналогичного класса и ценового диапазона других производителей. Отметим лишь, что в CM LG часто выходят из строя ТЭНы, а в машинах с прямым приводом - тахогенератор на основе датчиков Холла.
Выявить неисправные элементы и узлы CM LG с электронным управлением для опытных ремонтников, как правило, не представляет труда, так как эти машины имеют развитую систему внутренней диагностики - тестовый режим и индикацию кодов ошибок.
1. Особенности сервисного обслуживания стиральных машин "LG Intellowasher". "Ремонт & Сервис", № 6, 2004.
2. Стиральные машины LG: диагностический режим и коды ошибок. "Ремонт & Сервис", № 4, 2007.
3. Из опыта ремонта стиральных машин. "Ремонт & Сервис", № 5, 2008.
4. Индуктивные датчики уровня воды стиральных машин. "Ремонт & Сервис", № 6, 2008.
Хорошие моторы стоят в стиральных машинах, даже когда последняя выходит из строя и выбрасывается – двигатели оставляют и позже используют в хозяйстве (например для мини-станка). Здесь будет рассмотрен типичный двигатель от стиральной машины автомат (нового и старого типа) и схема его отдельного подключения к 220 В. Но вначале позвольте выложить немного скучной теории, которую можно и пропустить перейдя ко второй, практической, части статьи.
Теория работы электромотора на 220 В
Асинхронные двигатели для однофазной сети, представляют собой в основном двигатели с двухфазными обмотками и с вспомогательной фазой, берущейся от конденсатора. Такие моторы используются в бытовой технике. Подобный двигатель используется, в частности, в приводе стиральной машины. В дополнение к моторам с двухфазной обмоткой моторы с трехфазной обмоткой иногда используются в некоторых других бытовых приборах.
Двигатель во время прямого запуска может получить из сети ток, значительно превышающий его номинальное значение. Этот ток называется пусковым током двигателя, и его значение изменяется в районе Ir = 5-7In.
Одним из способов уменьшения пускового тока является использование переключателя звезда-треугольник. Двигатель, предназначенный для работы статора в треугольном включении при заданном сетевом напряжении, включается в систему звезда в момент запуска:
Ввиду пониженного напряжения поступающего на фазу обмотки статора и изменения соединений от треугольника к звезде ток, взятый из сети, будет уменьшаться в три раза по сравнению с пусковым током в треугольной схеме. Однако при подключении в звезду двигатель имеет в три раза меньше пускового момента, что делает невозможным использование этого метода во время тяжелого пуска (с большой нагрузкой).
Конденсатор для электромотора
Для небольших двигателей ( 1 кВт) предполагается ёмкость около 70 мкФ / 1 кВт. Необходимо использовать пусковые конденсаторы с рабочими напряжениями 400..630 В переменного тока.
Вы можете опустить расчёты и просто подключить стандартный двигатель от стиралки к 1 фазе 220 В через 7 микрофарадный конденсатор, включенный между нужными клеммами. К середине подключите первый провод электросети, а второй в зависимости от направления вращения к одному из конденсаторных. Падение мощности составит 30% – это в теории.
Вопрос о выборе конденсатора решается легко. Вот примеры значений емкости для разных мощностей двигателя.
Pn [Вт] 90 120 180 250 370 550 750 1100
С [мкФ] 4 5 6 8 12 16 20 30
Мощность вращения в стиральной машине в обоих направлениях одинакова. Это моторы с типичным соединением для однофазного двигателя. Основная обмотка подключена непосредственно к 220 В и параллельно ей подключена фазовая обмотка вместе с последовательно соединенным конденсатором. Если вы перевернете провода фазовой обмотки, двигатель перейдет на вращение в другую сторону, но мощность будет немного меньше. Эта схема работает во время отжима. То же самое для медленных и быстрых вращений – ёмкость переключается внутри стиралки с 7 мкФ на 16 мкФ. Более подробно про конденсатор читайте тут
Подключение мотора от СМА
Этот двигатель содержит две независимые обмотки:
для синхронной скорости 3000 об / мин – двухфазная обмотка.
для синхронной скорости 500 об / мин – симметричная трехфазная обмотка. Трехфазная система подключения позволяет изменять скорость вращения путем переключения питания обмотки.
Двигатель старого типа имеет обычно 5 проводов черного, синего, белого, красного и зеленого цвета. Была проведена серия измерений для определения обмоток и сопротивления между ними вышло таким:
- Сине-черным 85 Ом
- Сине-зеленый 85 Ом
- Черно-зеленый 80 Ом
- Бело-синий 15 Ом
- Белый-красный 30 Ом
Подключение старого электродвигателя требует поиска обмотки запуска с помощью мультиметра.
- ПО – начальная обмотка. Он предназначен только для запуска двигателя и запускается в самом начале, пока двигатель не начнет вращаться.
- OB – обмотка возбуждения. Это рабочая обмотка, которая работает постоянно и постоянно поворачивает двигатель.
- SB – кнопка, с которой напряжение подается на пусковую катушку и выключается при запуске двигателя.
Подключение электродвигателя от новой стиралки
Если вы посмотрите на клеммную колодку с проводами спереди, то обычно первые два левых провода являются проводами таходатчика, благодаря которым измеряется и регулируется скорость вращения мотора стиральной машины. Они нам не нужны – перечеркнуты крестом.
В разных моделях стиральных машин провода различаются по цвету, но принцип соединения остается неизменным. Вам просто нужно найти необходимые провода, прозванивая их мультиметром.
Рабочий тахогенератор в спокойном состоянии обычно имеет сопротивление 50-100 Ом. Вы сразу найдете эти провода и отключите их.
Если надо изменить частоту вращения двигателя в противоположном направлении, просто перетащите перемычку на другие контакты. Посмотрите на схемы, как это выглядит.
Два контакта проходят через щетки к обмоткам ротора, а два другие контакта идут к обмотке статора. Остальные контакты – датчик для измерения скорости вращения мотора. Обмотки ротора и статора соединены последовательно и меняя концы одной из обмоток, вы меняете направление вращения. Без электронного регулятора двигатель будет разгоняться до нескольких тысяч оборотов в минуту (как при максимальном отжиме).
Неисправность двигателя приводит к полной остановке бытового прибора, потому очень важно при малейших намеках на поломку вовремя диагностировать и устранить проблему.
Как снять, заменить и подключить двигатель стиральной машины LG, расскажем далее.
Устройство мотора стиралки ЛДжи
Большинство стиральных машин LG оборудованы моторами коллекторного типа. Это однофазные двигатели с последовательным возбуждением обмоток.
В корпусе коллекторного мотора заключены:
- статор (стальные пластины, между которыми расположена медная обмотка);
- ротор (состоит из сердечника, обмотки и коллектора);
- таходатчик (зафиксирован на корпусе, передает данные на модуль управления о скорости оборотов мотора);
- две графитные щетки (обеспечивают контакт между статором и ротором).
Ток через обмотку недвижимого элемента статора передается на ротор. На вал ротора запрессован шкив, который через ремень привода заставляет вращаться барабан стиральной машины (скорость вращения зависит от напряжения в сети). Частоту вращения регулирует тахогенератор, две графитовые щетки обеспечивают максимальный контакт двух элементов: статора и ротора.
Выдерживая колоссальные нагрузки, графитовые щетки и ремень привода со временем истираются, что нарушает бесперебойную работу электродвигателя.
Последние модели современных моделей стиральных машин LG оснащены электродвигателями инверторного типа. Именно компания LG первая оборудовала стиралки электродвигателями данного типа, обеспечив тем самым себе лидерство на рынке.
В сравнении с коллекторными, инверторные моторы отличает:
- максимальная скорость набора оборотов,
- бесшумное функционирование,
- возможность настройки режимом вращения барабана,
- простая и компактная конструкция.
Инверторный двигатель представляет собой диск с валом, расположенный на центральной оси.
Принцип функционирования инверторного двигателя основан на использовании электромагнитной индукции. Вместо графитовых щеток, током обмотки управляет инвертор. Ротор функционирует на очень высокой скорости, без скидывания оборотов. Благодаря такой особенности, получается, достичь наилучшего отжима белья после стирки.
Отсутствие угольных щеток и приводного резинового ремня (именно эти детали быстро изнашиваются под действием трения) обеспечивает максимальный период бесперебойной работы инверторного мотора (производитель дает гарантию минимум 15 лет).
Замена
Счастливые обладатели стиральных машин LG с инверторным мотором крайне редко интересуются вопросом замены или ремонта двигателя. В основном проблемой восстановления работоспособности бытовой техники обеспокоены владельцы стиральных машин с коллекторным двигателем.
О проблемах с обмоткой сигнализируют:
- при запуске стиралки срабатывает предохранитель в распределительном щитке;
- двигатель постоянно отключается по причине перегрева;
- стиралка не реагирует на команду запуска стирки.
Нарушения целостности обмотки устранить самостоятельно дома нельзя. Выход из ситуации — покупка и установка нового двигателя.
Об износе щеток можно понять по неприятному звуку скрежета, появляющемуся в процессе стирки. Также обратить внимание на щетки двигателя необходимо в ситуации, когда барабан стиральной машины вращается только на низких оборотах.
При подозрении на неисправность двигателя стиральной машины LG, его необходимо извлечь и протестировать более детально.
Как снять?
Демонтаж электродвигателя проходит по следующему алгоритму:
-
Готовимся к процессу. Для этого отключаем стиральную машину от электропитания, перекрываем кран подачи воды, выкручиваем заливной шланг.
Как только электродвигатель будет извлечен из корпуса стиральной машины, его можно будет более детально рассмотреть и протестировать на предмет неисправностей.
Итак, чтобы проверить сгорел электродвигатель или нет, необходимо поочередно подсоединить обмотку статора и ротора (оставшиеся концы) к источнику напряжения. Если вращение отсутствует — двигатель подлежит замене.
Чтобы проверить щетки двигателя, их достаточно хорошенько рассмотреть (элементы расположены по бокам корпуса). Стертые щетки в разы меньше по размеру, чем оригинальные новые детали. Даже если стерлась только одна щетка, замене подлежать обе детали.
Протестировать обмотку двигателя поможет мультиметр. Для этого тестер настраивают на режим измерения сопротивления, после чего приклеивают один щуп к обмотке ротора, другой к ламели. Расхождения в показаниях сопротивления не должны превышать 0,5 Ом.
После этого один щуп тестера прикладывают к корпусу, второй — к обмотке. Звуковой сигнал укажет на то, что существует проблема обрыва обмотки (стиралка может биться током).
Ремонт двигателя в домашних условиях (особенно если вопрос касается обмотки) нецелесообразен экономически. По трудозатратам и материально выгоднее заменить вышедший из строя электродвигатель.
Как снять и отремонтировать двигатель стиральной машины LG, подскажет видео:
Как подключить новый?
После того как откручены крепежные элементы и неисправный мотор извлечен из корпуса стиральной машины, на его место можно установить новый двигатель. Замена проводится на новый механизм точно соответствующий демонтированной детали по форме крепления, мощности и другим техническим параметрам.
Алгоритм действий:
- новый двигатель вставляем втулками в посадочные отверстия, зажимаем крепежные болты;
- ориентируясь на ранее сделанные фотопометки, подключаем проводку;
- не спеша прокручивая шкив, натягиваем на него ремень привода;
- фиксируем на прежнее место заднюю панель.
После того, как процесс обратной сборки окончен, стиральную машину подключают к канализации, водоснабжению и электрике, вкручивают сливной фильтр, запускают тестовую стирку.
Где и по какой цене приобрести деталь?
Для того, чтобы не ошибиться с выбором нового двигателя, необходимо точно знать название и номер модель стиральной машины LG.
Необходимую информацию можно найти на специальной табличке, расположенной на передней панели под дверцею люка или на задней стенке.
Если табличка затерлась, и значки на ней распознать невозможно, модель и номер стиральной машины всегда можно посмотреть в паспорте бытовой техники.
Покупать двигатель лучше на специализированных сайтах по продаже запчастей к бытовой технике (минимальны риски покупки низкокачественных подделок).
Стоимость нового мотора на стиральную машину LG варьируется от 3000 руб. до 5000 руб.
Вызов мастера
Отсутствует опыта ремонтных работ и знания внутреннего устройства стиральной машины LG — повод для того, чтобы заменой двигателя занимался мастер-профессионал сервисного центра. Контакты можно найти в сети Интернет или воспользоваться отзывами знакомых, друзей.
Специалист быстро определит и устранит неполадки, главное при поде заявки сообщить точную информацию о модели стиральной машины, все видимые признаки неисправности.
Стоимость работ по замене двигателя стиральной машины LG стартует от 1750 руб. В смету входят: диагностика неисправности, демонтаж старого и установка нового двигателя. Непосредственно новый электродвигатель оплачивается отдельно.
Мастер никогда не озвучивает (а тем более не требует оплатить) стоимость услуг заранее. При подаче заявки озвучивается только предварительная сумма, которая может измениться в зависимости от срочности и сложности заказа.
Заключение
В большинстве случаев, неисправный двигатель стиралки подлежит замене (ремонт не выгоден экономически). Решение о замене мотора стиральной машины LG можно только по результатам тестирования демонтированного элемента и определения истинной причины неисправности.
Читайте также: