Замена чугуна на сталь
Замена чугуна и стали литейными алюминиевыми сплавами позволяет получать значительный технико-экономический эффект за счет снижения массы ( металлоемкости) конструкций; повышения эксплуатационной надежности и долговечности; уменьшения трудоемкости благодаря применению более точных литых заготовок, а также более легкой обрабатываемости резанием. [2]
Возможна замена чугуна капроном. Вес детали уменьшится в 6 2 раза, что приведет к снижению вредного влияния биений винта; к уменьшению износа вала, сальника и других деталей. Винт мешалки, изготовленный из капрона, стоек в щелочах, маслах и абразивных средах. Замена чугуна капроном почти не требует изменения конструкции этой детали. [3]
Характерными примерами успешной замены чугуна с пластинчатым графитом чугуном с шаровидным графитом являются прокатные валки, изложницы и трубы. [4]
Таким образом, при замене чугуна пластической массой, при условии сохранения внутренней температуры, поверхность корпуса должна быть увеличена на 25 %, если коэффициенты теплоотдачи у наружной и внутренней стенок равны, и на 40 % - при анар С авнутр. [5]
В связи с этим возникла необходимость в замене чугуна в тенлооб. В качестве такого был применен внтегмнт ATM-I. [6]
За последние десять лет в СССР проведены научно-исследовательские работы по замене чугуна в содовой промышленности более коррозионно-стойкими материалами. Однако высокая стоимость титана и легированных материалов ограничивает оснащение содовой промышленности этими конструкционными материалами. Поэтому для производства кальцинированной соды использование диффузионно-легированных металлов является весьма перспективным. [7]
Снижению веса машин способствует в ряде случаев и применение в конструкциях легких металлов, в частности замена чугуна алюминиевыми сплавами. [8]
Для экономии металла в Германии в военное время применялись железобетонные противовесы, которые потребовали увеличения габаритов шахты за счет сокращения полезных площадей здания, стоимость которых превышает обычно экономию от замены чугуна бетоном. [9]
Дополнительный экономический эффект Э является важной составной частью - применения плазменных технологий как мате-риалосберегающих. Замена чугуна и стали алюминием в деталях станков с применением упрочняющих покрытий, получаемых плазменным напылением, снижает массу этих станков, а соответственно уменьшает требования к жесткости и прочности конструкций фундаментных оснований под них. Последний фактор служит предпосылкой формирования менее материалоемких и соответственно дорогостоящих основных фондов, что является причиной снижения фондоемкости продукции, снижения эксплуатационных расходов на содержание основных фондов. [10]
Замена чугуна жаростойкой сталью может повысить срок службы в 2 - 3 раза. [11]
Узел водяной насос-вентилятор заслуживает большого внимания с точки зрения перспективы применения пластмасс. Замена подшипников качения в узле водяной насос-вентилятор полиамидными подшипниками с водяной смазкой, замена чугуна в быстро корродирующей крыльчатке водяного насоса декорозитом или во-локнитом значительно упрощает конструкцию этого узла. [12]
В работе [60] приводится подсчет экономической эффективности замены стального коленчатого вала дизеля 6ДР чугунным. Общая стоимость стального коленчатого вала составляет 41 029 руб., а чугунного - И 875 руб. Экономический эффект на одном коленчатом валу 2Д100 при замене хромоникельмолибде-нового чугуна высокопрочным чугуном с шаровидным графитом, по данным Коломенского тепловозостроительного завода, составляет 2926 руб. ( тезисы доклада инж. [13]
Весьма прогрессивным способом получения заготовок для корпусов из цветных металлов сложной конфигурации является литье под давлением. В последнее время наблюдается тенденция к переводу на литье под давлением не только небольших, но и крупных размеров корпусов, как, например перевод на литье под давлением ( с соответствующей модернизацией конструкции и заменой чугуна цинком) корпуса пишущей машинки на заводе САМ. Это мероприятие позволило резко снизить трудоемкость ( за счет сокращения механической обработки), сократить производственный цикл, уменьшить расход металла и снизить себестоимость. [14]
В машинах малой мощности очень часто заменяют чугунное литье алюминиевым. Из алюминия и его сплавов отливают станины, подшипниковые щиты, крышки, вентиляторы и другие детали. Замена чугуна алюминием позволяет снизить вес ручных электроинструментов и применять литье под давлением. Для повышения износоустойчивости алюминиевых деталей применяют стальную арматуру. [15]
Какой чугун лучше серый или черный
Чугун — это сплав железа и углерода, в котором процентное содержание углерода составляет не менее 2,14%, но не более 4,5%. Углерод входит в состав чугуна в форме цементита либо графита. Если процент содержания углерода составляет меньше 2,14%, такой сплав именуется сталью.
Известно, что чугунный сплав впервые был произведен в Китае в VI веке. В Европу секрет его производства пришел в XIV веке, а в России его состав был доведен до совершенства лишь в XVII. За все это долгое время формула чугуна не изменилась.
Самый качественный материал производился на литейном заводе братьев Демидовых, расположенном на Урале.
По прошествии веков он не только не утратил своей актуальности, но и приобрел еще более обширный спектр применения.
Разновидности материала
Существуют такие виды чугуна, как предельный и литейный. Первый используют при производстве стали по кислородно-конвертерному пути. Кремний и марганец в таком сплаве содержится в очень малом количестве. Литейный вид материала более широко используется в промышленности и производстве. Он, в свою очередь, подразделяется на следующие виды:
- Белый чугун — в нем углерод представляет собой карбид железа. При этом на его разломе видно белый отлив, откуда и пошло его название. В чистом виде он не используется. Применяется в процессе производства ковкого чугуна.
- Для серого чугуна характерен серебристый отлив на изломе. Он имеет широкую сферу применения и отлично обрабатывается при помощи резцов.
- Высокопрочный сплав используется для повышения прочностных характеристик изготавливаемого материала. Его получают из серого чугуна путем добавления к его массе примеси магния.
- Ковкий чугун также является одной из разновидностей серого чугуна. Его название говорит о том, что он обладает повышенной пластичностью, а получают его из белого чугуна при помощи отжига.
- Половинчатый — обладает специальными свойствами. Часть углерода в его составе находится в виде графита, остальная часть — в виде цементита.
Особенности сплава
Главная особенность чугуна скрыта в процессе его изготовления. Дело в том, что у разных видов этого сплава температура плавления достигает 1200ºС, в то время как у стали она составляет 1500 ºС. На этот фактор влияет слишком высокое содержание углерода. Атомы железа и углерода между собой имеют не очень тесные связи.
Когда происходит выплавка, атомы углерода не могут целиком внедриться в молекулярную решетку железа, из-за чего чугунный сплав приобретает хрупкость. В связи с этим его не используют в производстве деталей, которые будут постоянно подвергаться нагрузке.
Этот материал относится к отрасли черной металлургии и по своим характеристикам схож со сталью. Изделия из чугуна и стали нашли широкое применение в повседневной жизни, и оно является целиком оправданным.
Если сравнивать характеристики этих металлов, можно сделать следующие заключения:
- Стоимость стальных изделий выше стоимости чугунных.
- Различия в цвете: чугун темный и матовый, а сталь — светлая и блестящая.
- Сталь хуже поддается литью, но, в отличие от чугуна, легче поддается ковке и сварке.
- Сталь обладает большей прочностью, нежели чугунный сплав.
- Сталь тяжелее по весу.
- В ней содержание углерода ниже, чем в чугуне.
Виды чугунных сковородок
Такие сковородки постоянно усовершенствуют. Помимо традиционных изделий из чугуна, похожих на те, что использовали наши бабушки, есть сковороды с современными покрытиями. В зависимости от обработки поверхности отличаются свойства и характеристики посуды.
Без покрытия
Простые чугунные сковородки — недорогой вид утвари. Пищу в них можно мешать ложкой, не боясь поцарапать поверхность. Отсутствие защитного слоя говорит еще и о безопасности посуды: она не выделяет вредных веществ во время готовки.
Внешний вид таких сковородок не слишком привлекательный: они черного цвета с толстыми стенками и значительным весом.
Современные чугунные изделия без покрытия изготавливаются не по старинным технологиям. Базовое отличие в методах производства состоит в том, что сейчас утварь проходит тщательную спецобработку. В результате создается естественное масляное покрытие на дне предмета.
В момент нагревания сковороды до высокой температуры слой полимеризованного жира распадается и образует специальное вещество, похожее на полимер. Соединение проникает в поры чугуна, поэтому к посуде ничего не пригорает.
С покрытием
Чтобы улучшить свойства чугунных сковородок, их покрывают специальными составами. По виду покрытия бывают эмалированными и с антипригарными свойствами.
Первый вид устойчив к коррозии и жестким чистящим средствам. Такую утварь можно мыть в посудомоечной машине, в ней дольше хранится пища. Сковороды покрывают эмалью в несколько слоев, в результате создается привлекательный белый или кремовый цвет. Недостатки посуды — пища в ней пригорает, поверхность не устойчива к сколам и трещинам.
Антипригарное покрытие представляет собой химическое напыление, которое не позволяет еде пригорать. Основной минус таких сковородок заключается в их непродолжительном сроке службы. Такую посуду сложно назвать безопасной: во время жарки напыленный слой отдает пище содержащиеся в нем вредные вещества.
Достоинства и недостатки
Этот материал, как и любой другой, имеет свои сильные и слабые стороны.
К достоинствам чугуна относятся такие факторы:
- Иногда его даже сравнивают по характеристикам со сталью, ведь определенные его виды отличаются повышенной прочностью.
- Длительное время сохраняет температуру: при нагревании тепло по нему распределяется равномерно и долгое время остается неизменным.
- Является экологически чистым материалом, благодаря чему нередко используется при изготовлении посуды, в которой непосредственно будет готовиться пища.
- Не реагирует на кислотно-щелочную среду.
- Является долговечным материалом.
- Чем дольше используется изделие из этого материала, тем лучше становится его качество.
- Этот материал является абсолютно безвредным для организма человека.
К недостаткам можно отнести следующие факторы:
- Может покрываться ржавчиной даже при непродолжительном нахождении в нем воды.
- Является весьма дорогостоящим материалом, но несмотря на это, целиком оправдывает себя. Качество, практичность и надежность — вот основные признаки изделий, изготовленных из этого сплава.
- Серый чугун характеризуется маленькой пластичностью.
- Белый — весьма хрупок и идет чаще всего на переплавку.
Определиться с металлом
В первую очередь не следует путать мангал с барбекю или грилем. Мангал представляет собой обычный металлический ящик без крышки, особых приспособлений и хитрых электрических устройств.
Конечно, качество мангала напрямую зависит от металла. Мангал, который прослужит вам вечно, будет сделан из нержавейки, но при этом и заплатить за него придётся не меньше 8 тысяч рублей. Чугунный мангал, хоть и может прослужить долго, при неправильной эксплуатации начнёт ржаветь, а ещё он тяжелее аналогов и стоит дороже — от 5 тысяч рублей.
«Я бы советовал выбирать либо сталь 45 (марка стали, используемая для инструментов, — прим. ред.), либо чёрный металл. Как правило, мангалы из этого материала окрашиваются специальной жаростойкой краской, которая выдерживает более 600 градусов, — говорит Дмитрий Алексеев, директор магазина по продаже мангалов собственного производства, — И, главное, качественный мангал будет стоить не меньше 3 тысяч рублей».
Характерные черты и свойства чугуна
Этот металлический сплав обладает такими свойствами:
- Физические свойства: удельный вес, действительная усадка, коэффициент линейного расширения. Например, содержание углерода в чугуне напрямую влияет на его удельный вес.
- Тепловые свойства. Теплопроводность обычно рассчитывают по правилу смещения. Для твердого состояния металла объемная теплоемкость составляет 1 кал/см3*оС. Если металл находится в жидком состоянии, то она примерно равна 1,5 кал/см3*оС.
- Механические свойства. Примечательно, что на эти свойства влияет как сама основа, так и форма и размеры графита. Серый чугун с перлитной основой является наиболее прочным, а с ферритной — самым пластичным. Пластинчатая форма графита характеризуется максимальным снижением прочности, в то время как у шаровидной формы это снижение минимально.
- Гидродинамические свойства. Наличие в составе марганца и серы влияет на вязкость материала. Также она имеет свойство увеличиваться, когда температура сплава переходит точку начала затвердевания.
- Технологические свойства. Этому металлу характерны отличные литейные качества, а также стойкость к износу и вибрации.
- Химические свойства. По мере убывания электродного потенциала структурные составляющие сплава располагаются в следующем порядке: цементит — фосфидная эвтектика — феррит.
На свойства сплава также оказывают влияние специальные примеси:
- Добавление серы значительно уменьшает текучесть и снижает тугоплавкость.
- Фосфор позволяет изготовить изделия разнообразной формы, но при этом уменьшает его прочность.
- Добавление кремния уменьшает температуру плавления материала, а также заметно улучшает литейные свойства. Содержание кремния в различном процентном соотношении дает возможность получить сплавы разного цвета: от ферритного до чисто белого.
- Присутствие в сплаве марганца значительно повышает твердость и прочность материала, но при этом ухудшаются его литейные и технологические качества.
- Кроме этих примесей в состав сплава могут также входить иные компоненты. В таком случае материалы называют легированными. Чаще всего к чугуну примешиваются титан, алюминий, хром, медь и никель.
Свойства и характеристики
Чугун обладает следующими свойствами:
- Физическими. К этим характеристикам относятся: удельный вес, коэффициент линейного расширения, действительная усадка. Удельный вес меняется в зависимости от содержания в материале углерода.
- Тепловыми. Теплопроводность материала принята рассчитывать по правилу смещения. Для твердого чугуна объемная теплоемкость равна 1 кал/см3*оС. Если чугун жидкий, то она равна примерно 1,5 кал/см3*оС.
- Механическими. Эти свойства зависят от самой основы, а так же от размеров и формы графита. Самым прочным считается серый чугун с перлитной основой, а самым пластичным — с ферритной основой. Максимальное снижение прочности наблюдается при форме графита «пластинка», а минимальное – при форме «шар».
- Гидродинамическими. Вязкость в чугуне меняется в зависимости от наличия марганца и серы. Так же она резко возрастает когда температура чугуна переходит точку начала затвердевания.
- Технологическими. Чугун обладает отличными литейными свойствами, стойкости к износу и вибрации.
- Химическими. По электродному потенциалу (по мере убывания) структурные составляющие чугуна располагаются в следующем виде: цементит — фосфидная эвтектика — феррит.
Отличия чугуна от стали по химическому составу и свойствам
На свойства чугуна влияют специальные примеси.
- Так добавление серы позволяет существенно уменьшить жидкотекучесть и снизить тугоплавкость.
- Добавление фосфора одновременно дает возможность создать изделие сложной формы, но не дает ему повышенной прочности.
- Примесь в виде кремния делает температуру плавления не такой высокой и значительно улучшает свойства литья. Различное процентное содержания кремния позволяет создать разный чугун: от чисто-белого до ферритного.
- Марганец ухудшает литейные и технологические свойства, но повышает прочность и твердость.
Помимо названных примесей в состав чугуна могут входить и другие компоненты. Тогда такие материалы будут называться легированными. Наиболее часто в чугун примешивают титан, хром, алюминий, никель и медь.
Далее вы узнаете, какие элементы входят в хим.состав чугуна.
О том, как сварить чугун электросваркой, расскажет видеоролик ниже:
Состав и структура металла
Чугун в качестве структурного материала представлен металлической полостью с графитными включениями. Основными его компонентами выступают перлит, ледебурит и пластичный графит. Интересно, что в различных видах сплавов эти элементы присутствуют в неодинаковых пропорциях либо могут совсем отсутствовать.
По своей структуре чугунный сплав разделяется на следующие разновидности:
- Перлитный.
- Ферритный.
- Ферритно-перлитный.
При этом графит может присутствовать в нем в одной из таких форм:
- Шаровидной: графит принимает эту форму при добавлении присадки магния. Обычно она свойственна высокопрочным чугунным изделиям.
- Пластичной: графит напоминает форму лепестков (именно в такой форме он присутствует в обычном чугуне). Такой материал характеризуется повышенной пластичностью.
- Хлопьевидной: такая форма получается в процессе отжига белого чугуна. Графит в хлопьевидной форме встречается в составе ковкого чугуна.
- Вермикулярной: графит в этой форме присутствует в сером чугуне. Она разрабатывалась специально для повышения его пластичных свойств.
Производственные технологии
Как известно, чугун производится в специальных доменных печах. Основным сырьем для его получения служит железная руда. Технологический процесс изготовления состоит в восстановлении оксидов железной руды и получении в результате этого иного материала — чугуна. Для его изготовления используются такие виды топлива, как кокс, термоантрацит, природный газ.
Для производства одной тонны чугуна требуется около 550 килограмм кокса и приблизительно тонна воды. Объемы загружаемой в печь руды будут зависеть от содержания в ней железа. Как правило используют руду, в составе которой содержится железа не менее 70%. Все дело в том, что экономически нецелесообразно использовать меньшую его концентрацию.
Первым этапом производства чугуна является его выплавка. В доменную печь засыпается руда, а затем — коксующийся уголь, который необходим для нагнетания и поддержания требуемой температуры внутри шахты печи. Эти составляющие во время горения принимают активное участие в протекающих химических реакциях в качестве восстановителей железа.
Тем временем в печь погружается флюс, который выступает в роли катализатора. Ускоряя плавку пород, он тем самым поддерживает скорейшее высвобождение железа. Немаловажно знать, что перед загрузкой в печь руда проходит необходимую предварительную обработку. Она измельчается на дробильной установке, поскольку более мелкие частицы плавятся быстрее. Затем ее промывают, чтобы удалить частицы, не содержащие металл. Далее сырье подвергается обжигу, вследствие чего из него извлекается сера и другие инородные компоненты.
На втором этапе производства в заполненную и готовую к эксплуатации печь подается через специальные горелки природный газ. Кокс участвует в разогреве сырья. Происходит выделение углерода, который, соединяясь с кислородом, образует оксид. Он, в свою очередь, способствует восстановлению железа из руды.
При увеличении объема газа в печи снижается скорость протекания химической реакции. Она может и совсем остановиться при достижении определённого соотношения газа. Углерод проникает в сплав и соединяется с железом, при этом образуя чугун. Нерасплавленные элементы остаются на поверхности и вскоре удаляются. Такие отходы называются шлаком. Его используют для изготовления других материалов.
Причины появления ржавчины
Чугун, несмотря на высокую прочность, тоже может ржаветь, ведь этот материал относится к черным металлам, значит, подвержен коррозии. Ржавчиной называется продукт окисления металлов, который появляется при реакции последних с кислородом при участии воды или агрессивных химических веществ. Легко ржавеет только обычная углеродистая сталь, остальные металлы меньше страдают от коррозии.
Если на чугуне обнаружены пятна ржавчины, причины этого явления могут быть следующими:
Переработка чугуна на сталь в конвертерах
По химическому составу различают углеродистые и легированные стали. Основным элементом, определяющим свойства углеродистых сталей, является углерод. По его содержанию различают стали низкоуглеродистые с 0,25 % С и менее, среднеуглеродистые с 0,25-0,60 % С и высокоуглеродистые с 0,60-2,0 % С. Легированными сталями называют стали, в состав которых для получения требуемых свойств вводят один или несколько легирующих компонентов. К легирующим компонентам относят Cr, Ni, Mo, V, W, Со, Ti и др. Кроме того, к легирующим элементам относятся также Мn и Si, если они содержатся в большем количестве, чем в обыкновенных сталях. Стали различают в зависимости от суммарного содержания легирующих компонентов: низколегированные (менее 2,5 %); среднелегированные (от 2,5 до 10 %); высоколегированные (более 10%).
Марки сталей имеют условные обозначения, выраженные буквами и цифрами, отображающими химический состав стали: хром – X, никель – Н, кобальт – К, кремний – С, вольфрам – В, ванадий – Ф, молибден – М, марганец – Г, медь – Д, фосфор – П, титан – Т, алюминий – Ю, селен – Е, бор – Р, азот – А, ниобий – Б. Цифры, следующие за буквами, указывают среднее содержание данного элемента в процентах, если за буквой отсутствует цифра, значит, содержание данного элемента около 1%.
По назначению прокатываемые стали разделяют на конструкционные, инструментальные и специальные. К наиболее распространенным сталям относятся конструкционные углеродистые и легированные стали.
Качественная конструкционная углеродистая сталь обозначается так: 05, 08, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65. Двузначные цифры означают среднее содержание углерода в сотых долях процента с нормальным содержанием марганца, а стали марок 15Г, 20Г, З0Г, 40Г, 50Г, 60Г, 70Г – с повышенным содержанием марганца.
К прокатываемым углеродистым инструментальным качественным сталям относят стали марок У7, У8, У9, У10, У11, У12, У13. Буква У обозначает: сталь углеродистая инструментальная, а цифра показывает среднее содержание углерода в десятых долях процента.
К конструкционным легированным сталям относят стали:
К прокатываемым легированным инструментальным сталям относят:
- сталь для режущего и мерительного инструмента (7ХФ-11ХФ, 13Х, ХВ4, 9X1, X, 12X1, ХГС, ХВГ и др.);
- сталь для штампового инструмента (Х6ВФ, Х12, Х12ВМ, ЗХ2ВФ, 7X3, 5ХНМ, 5ХНВ, 5ХГМ и др.);
- сталь для ударного инструмента (4ХС, 6ХС, 4ХВ2С и др.).
Для режущего инструмента, который работает со снятием стружки при высоких скоростях резания, широко используют быстрорежущую сталь. Её отличает высокая красностойкость, т.е. способность сохранять высокую твёрдость, прочность и износостойкость при температуре до 600 °С. Эти стали обозначают буквой Р, следующая цифра означает среднее содержание W в процентах. Буквы Ф и К и цифры после них обозначают среднее содержание V и Со соответственно. Основными легирующими компонентами быстрорежущей стали Р9 и Р18 являются Cr, W, V. Высокая красностойкость быстрорежущих сталей обеспечивается за счёт добавки W.
Также существуют легированные стали с особыми свойствами:
Легирующие элементы вносятся в жидку сталь в составе ферросплавов – сплавов на основе железа с высоким (десятки процентов) содержанием вносимого элемента. Ферросплавы, за редким исключением, производят в электропечах специальной конструкции на ферросплавных заводах.
Чугун может как транспортироваться непосредственно в печь для выплавки стали, так и накапливаться в промежуточной ёмкости – миксере, где происходит его усреднение по химсоставу. Кроме того, чугун предварительно может подвергаться обработке с целью удаления вредных примесей – серы и фосфора, а также части кремния, что положительно влияет на технологию выплавки стали.
В случае, если сталь выплавляется в конвертере, в него сначала загружается лом, затем заливается чугун. После этого конвертер приводят в вертикальное положение, опускают фурму и начинают продувку кислородом. Также в конвертер добавляют (присаживают) шлакообразующие материалы, чаще всего – известь. Шлак предохраняет поверхность металла от окисления, снижает вероятность выплёскивания металла, а также очищает (рафинирует) металл от некоторых примесей. Кроме того, в шлак переходят образующиеся при продувке оксиды окисляющихся при этом элементов – кремния, марганца и железа.
По ходу продувки регулярно проводятся анализы металла и газа с целью определения момента окончания продувки. После окончания из повёрнутого (поваленного) конвертера через горловину скачивают шлак, а затем через выпускное отверстие сливают металл.
Помимо наиболее распространённого конвертера с верхней продувкой также существуют конвертеры с продувкой через дно, снизу, а также комбинированные конструкции.
Большая часть легирующих элементов в ходе продувки окисляется, кроме того, в металле остаётся растворённый кислород, поэтому после окончания продувки в металл добавляют ферросплавы. Крмний- и марганецсодержащие ферросплавы взаимодействуют с растворённым кислородом, связывая его в оксиды, поэтому их применяют для операции «раскисления» металла. Для более полного раскисления используют алюминиевую проволоку.
Часть ферросплавов подают в ковш, в который выпускается металл из конвертера, однако окончательная обработка и легирование стали производят в так называемых установках доводки металла (УДМ). Они вошли в металлургическую практику не так давно – в конце XX века, в связи с более жёсткими требованиями, предъявляемыми потребителями к свойствам стали. Эти требования связаны, прежде всего, с содержанием в стали таких элементов как азот и водород, ухудшающих механические свойства стали и приводящих к образованию дефектов.
Для удаления из металла растворённых газов используются два способа: продувка аргоном и вакуумирование. В первом случае металл снизу через пористую пробку продувается аргоном, в пузырьки которого переходят растворённые в металле газы. При вакуумировании металл постепенно просасывается через камеру (не входит в состав УДМ), из которой откачан воздух. Поскольку давление в камере чрезвычайно низко, создаётся градиент давлений, увлекающий газы из металла в камеру.
Для того, чтобы металл не остыл в процессе обработки, в установке доводки металла его подогревают электрической дугой. Также в УДМ добавляют в необходимом количестве ферросплавы для получения стали заданного состава.
В случае использования вместо конвертера электропечи технология плавки зависит от исходного сырья. Если используется чугун, то для его окисления в жидкий металл добавляется оксидный материал – агломерат или окатыши. При этом оксид железа, взаимодействую с углеродом чугуна, восстанавливается до железа, а сам углерод окисляется и удаляется в виде газа. Для нагрева используют тепло электрической дуги. Иногда для окисления углерода используют кислород, который вводят сбоку печи через фурму.
Если же печь переплавляет лом, без использования чугуна, то он расплавляется с помощью электрической дуги, а затем его состав корректируют присадкой ферросплавов. В обоих случаях также используют шлакообразующие материалы для наводки шлака. После выпуска металл также подвергается доводке на УДМ.
Ковш с выплавленным в конвертере или электропечи и доведённым на УДМ металлом направляется на установку непрерывной разливки (УНРС или МНЛЗ). Главная её часть – медный водоохлаждаемый кристаллизатор. Жидкий металл, контактирующий со стенками кристаллизатора, быстро образует тонкую корочку, за которую он вытягивается из кристаллизатора. На выходе его захватывают тянущие ролики, которые медленно тянут слиток дальше.
Поскольку кристаллизатор соединён с промежуточным ковшом, в котором постоянно находится жидкий металл, при вытягивании слитка в кристаллизатор тут же поступает новая порция металла, то есть внутри кристаллизатора также всегда есть металл и процесс идёт непрерывно, то есть образуется как бы бесконечный слиток.
На выходе из кристаллизатора слиток имеет жидкую середину и постепенно охлаждается, застывая во всём объёме. Вместе с тем тянущие ролики изгибают его, меняя траекторию его движения от вертикальной к горизонтальной (менее распространены горизонтальные и вертикальные прямолинейные установки). При выходе на горизонтальную плоскость непрерывный слиток режется газовыми резаками на мерные длины – таким образом получаются слябы или квадратная заготовка, которая затем направляется на прокатку.
Схема производства от железорудного сырья до непрерывнолитой заготовки на металлургическом комбинате «Северсталь»
1 – производство агломерата, 2 – коксохимическое производство, 3 – доменное производство, 4 – конвертерный цех, 5 – электросталеплавильный цех
Непрерывная разливка также может осуществляться с помощью литейно-прокатных комплексов (ЛПК). Кристаллизатор ЛПК имеет подвижные стенки, образованные поверхностью вращающихся водоохлаждаемых роликов. Благодаря этому можно получить не сляб, а сразу лист, который, после обжатия в валках, является конечной продукцией. Такая схема исключает ряд операций нагрева и прокатки и существенно снижает затраты ресурсов на эти операции
ПОДЕЛИСЬ ИНТЕРЕСНОЙ ИНФОРМАЦИЕЙ
Первый этап
Весь процесс плавки разделяется на несколько этапов, связанных между собой.
Процедура начинается с того, что в топку печи загружают руду, в составе которой есть магнитный железняк. Кроме того, можно использовать руду, в составе которой имеется водная окись железа или его соль. Вместе с загрузкой рабочего минерала в печь загружаются и коксующиеся угли. Их основная задача — это поддержание высоких показателей температуры. Для того чтобы быстрее расплавить руду и получить доступ к железу, в топку отправляется флюс. Вещество, являющееся катализатором, способствует более быстрому распаду руды.
Здесь важно отметить, что перед загрузкой в печь руда обычно проходит процесс дробления, промывки, сушки. Все эти этапы способствуют удалению лишних примесей, а также увеличению скорости плавки.
Приемка и контроль качества
В документе также установлены правила приемки товара и операции по контролю качества.
Прием этого материала разрешается осуществлять только партиями. Партией считается чугун, принадлежащий к одной марке, группе, типу и виду, а также имеющий документ, который подтверждает качество продукции. Чаще всего в таких бумагах указывают: товарный знак предприятия, которое изготавливало продукт; наименование предприятия, выступающего в роли потребителя; марку, группу, класс и категорию чугуна, штамп контроля и еще несколько пунктов.
Если говорить о методах контроля, то здесь необходимо проверять качество чешуек. Для этого использовать увеличительные приборы необязательно. Для того чтобы провести контроль качества, касающийся чешуек, используется тот метод, который был оговорен между потребителем изделия и производителем. Если масса партии до 20 тонн, то отбирают 10 проб чешуек с разных мест. Если масса превышает 20 тонн, то необходимо отобрать 20 проб с поверхности чугуна.
Требования потребителя
ГОСТ 805 для передельного чугуна также регламентирует несколько технических требований, которые потребитель вправе установить при заказе у производителя. К ним относятся следующие пункты:
- Марки передельного чугуна, относящиеся к ПЛ1 и ПЛ2, должны изготавливаться с массовой долей углерода в составе от 4 до 4,5 % включительно.
- Если рассматривать эти же марки ПЛ1 и ПЛ2, которые впоследствии будут использоваться для изготовления отливок из чугуна с шаровидным графитом, то массовая доля хрома в таком веществе не должна превышать 0,04 %. Также при изготовлении высококачественного передельного чугуна по ГОСТ, для дальнейшего производства поршневых колец, следует ограничить содержание марганца до 0,3 %, а хрома до 0,2 %.
- Если нет специальных заявок, то обычный передельный и высококачественный материал должен изготавливаться с содержанием марганца более 1,5 %. Если производится передельный чугун фосфористой группы, то содержание фосфора более 2 %.
- Массовая доля кремния в таких марках, как ПЛ1, ПФ1 и ПВК1, должна быть более 1,2 %.
- Очень важный пункт — это содержание серы, которое допускается не более 0,06 % в типах чугуна П1, П2 и ПЛ1, ПЛ2.
Второй этап
Ко второму этапу плавки передельного чугуна приступают тогда, когда в доменную печь были загружены все необходимые материалы. Запускаются горелки, которые подогревают кокс, а тот разогревает руду. Важно знать, что при разогреве кокс начинает выбрасывать в воздух углерод, который проходит по нему, вступает в реакцию с кислородом и образует оксид. Данное летучее вещество принимает активное участие в восстановительных процессах. Однако этот процесс протекает лишь до тех пор, пока в печи остается воздух. Чем больше газа внутри домны, тем слабее этот эффект, а с течением времени он и вовсе прекращается. Когда этот момент наступает, то весь газ, имеющийся внутри печи, уходит, чтобы поддерживать высокую температуру внутри агрегата.
Весь избыток углерода смешивается с расплавленным веществом, поглощается железом, что и образует чугун. Все элементы, которые не расплавились в процессе плавки, всплывают на поверхность, откуда они удаляются. После завершения этого процесса очистки наступает момент, когда в расплавленное сырье добавляют различные присадки. Какой именно в итоге получится чугун зависит от того, какой вид присадок будет применяться.
Характеристика видов углеродистого металла
Диаграмма железо-углерод показывает, из чего состоит чугун. Кроме железа, присутствует углерод в виде графита и цементита.
Свариваем чугун со сталью
Итак…
Проблема заключалась в том, что на левом поворотном кулаке постоянно откручивались болты крепления тормозного суппорта.
Владелец уже замаялся постоянно их подтягивать, подкладывать "шаёлбочки" и творить прочие танцы с бубном.
К гадалке не ходи, там сорвана резьба. Вот на сколько — вопрос разрешим только после разборки агрегата.
Ну, порядок разборки ступицы и прочего описывать не буду. Если кому надо, напишите в комментариях, я тогда изменю текст и добавлю фотки поэтапного разбора-сбора.
В общем, корпус поворотного кулака снят, отмыт и на верстаке.
После дефектовки, отверстий видим на одном полностью слизанную резьбу, а на втором сохранились крайние четыре витка.
Методика ремонта
Вариантов решения проблемы на самом деле не мало.
1) рассверлить отверстие, нарезать резьбу под больший размер. Использовать болт большего диаметра.
2) завтулить и нарезать во втулке резьбу под родной болт.
3) использовать специальные футорки для восстановления резьбы.
Первый вариант, отпал, потому как владелец хочет использовать стандартные болты. Прав на 100%.
Тритий вариант накрылся из-а того, что в нашей деревне не нашлось футорки М12х1,25 Только с интернета, или на заказ через неделю…
Поэтому был выбран второй вариант. Изготовить стальную втулку. Чугуния у меня нет, да и подозреваю, что обработка чугуния на токарке, тот ещё гиморой. Поэтому стальная втулка. Вытекает несколько нюансов:
— припуски на посадку что бы не расколость чугунное ухо, но и так что бы не проворачивалось при нарезке резьбы
— провар одного торца с целью окончательной фиксации втулки
Если с припусками более менее понятно и на практике все делается без труда, то вот со сваркой чугуна и металла — проблемка. Причём методом холодной сварки…
В общем… Пять часов в первый день ушли на изготовление нескольких втулок и попытки провара кромки. Хрена. Тот электрод, который был по чугунию в наличии — отказался делать нормально и по границе материалов, предательски образовывалась трещина. Естественно, меня такой вариант совсем не устраивал.
Второй день ушёл на поиски в нашей деревне специального электрода ЦЧ-4. Позволяет методом холодной сварки наплавлять на чугуний ремонтные валики и сваривать чугуний с железом. Правда необходимо соблюдать некоторые нюансы. В результате кое-как этот электрод был найден в продаже поштучно. Бог — есть!
Остаток дня в количестве двух часов ушёл на изготовление бобышки-затычки, кондукторов для сверления ентой самой бобышки, свар её по периметру с чугуном, сверление и нарезку резьбы.
Собственно результат ремонта первого уха:
Пораскинув остатками мозга, прикинув трудоёмкость процесса и его окупаемость, решил. Второе ухо буду ремонтировать футоркой. Которую, один фиг, на всякий случай, заказал в интернете. Завтра по идее придёт в ТК.
Так что, скоро добавлю для сравнения, процесс ремонта по методу намба три ;)
p/s: совсем забыл упомянуть, что после свара таким электродом, материал крайне тяжело обрабатывается механически. Сверление и нарез резьбы — тяжело…
Читайте также: