Закалка на мартенсит сталей

Обновлено: 07.01.2025

Цель проведения закалки и отпуска (двухэтапной термообработки) состоит в обеспечении комплекса необходимых механических свойств, в частности повышенной прочности по сравнению с отжигом и нормализацией.

Закалку с отпуском используют для широкой номенклатуры углеродистых и легированных машиностроительных и инструментальных сталей. Фазовые превращения в этих сталях соответствуют диаграммам состояния железо — цементит или железо — углерод — легирующий элемент.

Закалка сталей (сплавов на основе полиморфного металла) — это операция термической обработки, которая заключается в нагреве в однофазную аустенитную область (иногда в двухфазные области) и быстром охлаждении со скоростью, предотвращающей равновесный распад аустенита (эвтектоидное превращение).

Проводят закалку для получения мартенсита как самостоятельной фазы, так и в сочетании с аустенитом, трооститом или цементитом. Такое структурно-фазовое состояние рассматривают в качестве подготовительного этапа для последующего отпуска.

Технологическими параметрами при закалке на мартенсит являются температура нагрева и скорость охлаждения. Температуру закалки выбирают по отношению к критическим точкам (линиям) на диаграмме состояния — Ac1, Ас3, Aст. Закалка от температур выше Ас3 и Aст называется полной закалкой, а закалка от температур в интервале Ac1—Ас3 или Ac1—Aст называется неполной закалкой. Охлаждение при закалке должно быть непрерывным, интенсивным, со скоростью выше критической (рис. 13.9).

Критическая скорость охлаждения сталей (Vкр) — минимальная скорость охлаждения, при которой аустенит превращается в мартенсит.

К доэвтектоидным сталям применяют полную закалку, т. е. из аустенитной области, от температур выше Ас3 на 30. 50 °С. К заэвтектоидным сталям применяют неполную закалку, т. е. из области аустенит + цементит, от температур на 30. 50 °C выше Ac1 (рис. 13.10).

В углеродистых сталях полученная в результате закалки неравновесная фаза мартенсит является:

- твердым раствором внедрения;

- твердым раствором внедрения, пересыщенным по отношению к равновесному содержанию углерода (0,006 %) в феррите при комнатной температуре.

Углеродистый мартенсит имеет объемно-центрированную тетрагональную (ОЦТ) решетку, которая существенно отличается от исходной ГЦК-решетки аустенита. Тетрагональность решетки (отношение осей с/а) увеличивается с повышением содержания углерода.

Микроструктура мартенсита является сложной: это мартенсит либо пакетный, либо реечный. Морфология кристаллов зависит от интервалов превращения. Если интервал превращения выше комнатной температуры (до 100 °С), то кристаллы мартенсита приобретают форму реек (рис. 13.11, б). В высокоуглеродистых сталях с пониженным интервалом превращения кристаллы представляют собой пластины (рис. 13.11, а; 13.12).

Значительная разница в удельных объемах аустенита и мартенсита углеродистых сталей (около 3 %) обусловливает не только пластическую деформацию внутри зерен твердого раствора, но и упругую деформацию в объеме изделия. К этому добавляются термические напряжения. В результате резкого охлаждения при закалке заготовки с мартенситной структурой склонны к короблению («поводке») — неравномерному изменению формы и размеров, которое тем больше, чем сложнее форма детали. Это является главным недостатком закалки углеродистых сталей.

В ряде углеродистых и легированных сталей при закалке из аустенитной области возможно протекание бейнитного превращения (см. рис. 13.8, область А —> Б). Полученную в результате такого превращения двухфазную структуру феррит + цементит (а + Ц) не называют перлитом, потому что она сформировалась не при эвтектоидном превращении. Кроме того, форма частиц карбида не пластинчатая, сами частицы сильно дисперсны.

По дисперсности, расположению карбидов и структуре а-фазы различают верхний и нижний бежит. Наилучшими свойствами обладает нижний бейнит: он образуется при температурах ниже 350 °С; дисперсные частицы карбида расположены внутри зерен феррита. Такая структура обеспечивает сочетание высокой прочности, пластичности и ударной вязкости.

Изотермическую закалку на основе бейнитного превращения широко применяют для изделий из легированных сталей, обеспечивая им высокую конструкционную прочность.

Одним из основных технологических свойств стали при закалке является прокаливаемость — способность стали приобретать в результате закалки мартенситную или мартенситно-трооститную структуру с высокой твердостью в слое определенного размера. Количественно прокаливаемость характеризуется критическим диаметром dкр.

Критический диаметр — максимальный диаметр заготовки, при котором в результате закалки получается мартенситная или полумартенситная (50 % мартенсита + 50 % троостита) структура.

Критический диаметр обратно пропорционален критической скорости охлаждения:

Прокаливаемость определяется темпом, с которым температура во время быстрого охлаждения распространяется по сечению заготовки конкретного размера с определенной теплопроводностью. При высокой скорости охлаждения обеспечить мартенситное превращение в заготовке можно только при небольших ее размерах. Охлаждение с критической скоростью крупных изделий успевает пройти только в приповерхностных слоях. В глубинных слоях охлаждение происходит со скоростью меньше критической, что приводит к равновесному распаду аустенита с образованием перлита. Ввиду различия скоростей охлаждения по сечению изделия наблюдается различие и в фазовом составе: в приповерхностном слое — мартенсит, а в центре — феррит + цементит (рис. 13.13).

Для того чтобы насквозь прокалить заготовки крупного сечения, их изготовляют из легированных сталей, так как все легирующие элементы (кроме кобальта) снижают критическую скорость закалки.

Выбор той или иной среды охлаждения (вода, масло, воздух, полимерные среды) при объемной закалке определяется критической скоростью охлаждения. Если применяют легированные стали с пониженной критической скоростью закалки, то можно использовать более «мягкие» среды — масло или воздух вместо воды.

По объему изделия, к которому применяют закалку, различают объемную и поверхностную закалки. Большинство изделий подвергают объемной закалке, когда мартенситную (мартенситно-трооститную) структуру получают по всему сечению.

Поверхностную закалку применяют для деталей, в которых по условиям работы требуется высокая поверхностная твердость, износостойкость, а также высокий предел выносливости.

Для снижения высокого уровня остаточных упругих напряжений, которые характерны для закаленных стальных деталей, проводят также ступенчатое охлаждение при объемной закалке (рис. 13.14, а).

Термические напряжения уменьшаются при условии равномерности прогрева перед мартенситным превращением, чего достигают с помощью ступенчатой закалки: заготовку, нагретую до температуры закалки, переносят в жидкую среду с температурой на 50. 100 °C выше температуры начала мартенситного превращения, делают выдержку для выравнивания температуры по сечению и охлаждают на воздухе.

При изотермической закалке сталь не испытывает мартенситного превращения. Выдержку проводят при температуре, когда протекает не мартенситное, а бейнитное фазовое превращение (рис. 13.14, б). В процессе изотермической закалки почти полностью устраняются структурные напряжения. Однако бейнитное превращение протекает не во всех сталях.

Поверхностную закалку стали выполняют в целях повышения твердости, износостойкости поверхности и предела выносливости деталей (зубьев шестерен, шеек валов, направляющих станин металлорежущих станков и др.). Сердцевина детали остается вязкой и хорошо воспринимает ударные и другие нагрузки. Для поверхностной закалки могут применять различные способы нагрева поверхности: газопламенный, токами высокой частоты, электроконтактный, лазерный, электронно-лучевой, плазменный и т. д.

Для изделий несложной формы наиболее часто применяют индукционную закалку с нагревом токами высокой частоты (ТВЧ). При этом способе изделие помещают в переменное электромагнитное поле, создаваемое индуктором — одно- или многовитковым контуром медной трубы, через который пропускают переменный электрический ток. Нагрев осуществляется в результате того, что вблизи поверхности изделия индуктируются вихревые токи (токи Фуко). Охлаждение при закалке проводят через отверстия индуктора (после выключения тока) водным спрейерным или водовоздушным способом.

Преимущества закалки ТВЧ по сравнению с объемной закалкой:

• формирование более мелкого зерна;

• повышение в 2-3 раза предела выносливости;

• сокращение времени термообработки, а следовательно, повышение производительности;

• получение изделий без окалины;

• уменьшение коробления (непроизвольного изменения формы) при закалке;

• возможность полной механизации и автоматизации процесса (включения его в поточную линию обработки без разрыва технологического цикла).

Аустенит — это что такое?

Основным отличием, которое приводит к изменению физических и механических характеристик стали является изменение внутренней структуры. Её называют мартенситная структура. В этом случае кристаллическая решётка претерпевает следующие изменения. Под воздействием внешних факторов происходит изменение направления движения атомов по сравнению с их стандартным, упорядоченным движением в рамках установленной решётки. Увеличиваются межатомные расстояния, что приводит к возникновению деформации, примерно на 10% относительно нормальных размеров. Величина изменений не приводит к переходу через энергетический барьер межатомных связей. Такой кристаллический эффект приводит к образованию специфической формы взаимных связей. Она носит так называемый игольчатый характер.


Изменения структуры стали происходит в процессе нагрева. Повышение температуры вызывает диффузионное перераспределение атомов углерода в рамках кристаллической решётки. Этот процесс вызывает образование нескольких фаз металла.

  1. При повышении содержания углерода до 6,7% возникает материал называемый цементит. Он имеет решётку в форме ромба.
  2. При низком содержании углерода (не более 0,02%) формируется феррит. Его решётка приобретает объёмно-центрированную форму.
  3. Аустенит. Структура железоуглеродистых сплавов, представляющих смесь углерода в количестве около 2% различных легирующих добавок. Кристаллическая решётка этого материала имеет форму куба со строго центрированными гранями. Отличительной особенностью аустенита является его высокая плотность по сравнению с другими структурами стали. Он образуется при температуре нагрева от 910 до 1401 °С и сохраняет свою устойчивость до температуры 723 °С. При дальнейшем охлаждении превращается в другие более устойчивые структуры. При добавлении никеля, марганца или хрома аустенит сохраняет свою структуру вплоть до комнатной температуры. К сталям, имеющим аустенитную структуру, относятся почти все хромоникелевые стали.
  4. Перлит является механической смесью цементита и феррита. В этой смеси присутствие углерода составляет 0,8%. Он образуется из аустенита в процессе охлаждения. Он является эвтектоидом и может обладать пластичной или зернистой структурой. От этого состояния зависят его физические и особенно механические свойства.
  5. При повышении содержания углерода до 4,3% из смеси аустенита и цементита образуется материал, называемый ледебурит. Его формирование происходит при температуре расплава в 1147 °С.
  6. Мартенсит – это перенасыщенный раствор железа и углерода. Его обычно получают при закалке аустенита. В результате температурного воздействия мартенситный материал приобретает из кубической тетрагональную решётку, которая придаёт ему твердость до 1000 HV.


В результате обработки полученная мартенситная сталь приобретает игольчатую структуру, которая формирует более высокие прочностные характеристики, становится устойчивее к воздействию коррозии

Общие сведения о мартенсите

Структура на основе перенасыщенного твердого раствора углерода в железе называется мартенсит. Получается он методом переохлаждения аустенитной фазы. Другими словами, мартенсит – результат проведения закаливания сталей с содержанием углерода выше 0,3%. Кристаллы мартенсита имеют тетрагональную структуру, где атомы железа занимают место в узлах решетки.

На вид мартенсит представляет собой множественные темные иглы железа на светлом фоне. Угол наклона данных игл в среднем составляет 60 градусов относительно друг друга. Обнаружить следы углерода на поверхности мартенсита невозможно, т. к. он полностью находится в растворенном состоянии.

структура мартенсита

Мартенсит выделяется прочностью по сравнению с остальными фазами. Механические свойства до определенного момента в прямой зависимости от количества углерода в стали. Но стоит заметить, что после прохождения определенной отметки прочность падает, и начинает повышаться хрупкость.

Согласно исследованиям, проводимым в 30-х годах прошлого столетия советскими учеными, причины высоких механических характеристик мартенсита кроются в следующем:

  • Структура мартенсита имеет блочный характер, при том что сами блоки обладают достаточно малыми размерами.
  • Сопротивление статическим искажениям, что означает устойчивость положения атомов при их смещении от идеального размещения атомов в кристаллической решетке.
  • В случае воздействия механических нагрузок, и как следствие пластической деформации, выделяются мельчайшие твердые частицы, блокирующие скольжение слоев относительно друг друга и повышающие твердость сплава.

Твердость мартенсита имеет валатильный характер и зависит от температуры нагрева, охлаждения и времени выдержки стали. В среднем ее значение колеблется в пределах 35 — 70 единиц по шкале Роквелла. Также мартенсит выделяется большим удельным объемом. Его значение выше по сравнению с другими фазовыми структурами такими как аустенит, перлит и т. д.

Как следствие от всего вышесказанного, образование мартенсита сопровождается значительными изменениями стали в объеме. Это, в свою очередь, приводит к нежелательному повышению внутренней напряженности в структуре, которая в будущем может стать причиной появления трещин.

Свойства мартенсита

В зависимости от методов обработки мартенсит подразделяется на несколько категорий:

Все эти разновидности – это сталь мартенситного класса, обладающая своими специфическими свойствами. Во всех случаях мартенсит представляет собой определённую марку стали. Например: 20Х13, 10Х12НДЛ, Х5ВФ, Х5М и многие другие.


К основным свойствам мартенситных сталей относится:

  • повышенная устойчивость к воздействию агрессивных растворов (кислотных или щелочных);
  • антикоррозийная стойкость к повышенному содержанию влаги;
  • высокая жаропрочность (особенно после проведения процедуры закалки);
  • способность к так называемому самозакаливанию;
  • повышенные показатели прочности (твёрдость мартенсита превосходит многие марки сталей);
  • устойчивость к вредному воздействию водорода;
  • невысокая пластичность;
  • трудности в обработке.

Два основных свойства твердость и антикоррозийная стойкость достигаются за счёт специальной обработки и добавлением соответствующих химических элементов. Мартенситная твёрдость в зависимости от содержания углерода может достигать достаточно высоких значений по основным шкалам оценки.

Особенности образования

Аустенит – это структура, которая формируется в процессе нагревания стали. При достижении критической температуры перлит и феррит образуют целостное вещество.

  1. Равномерное, до достижения необходимого значения, непродолжительная выдержка, охлаждение. В зависимости от характеристик сплава, аустенит может быть как полностью сформирован, так и частично.
  2. Медленное повышение температуры, длительный период поддержания достигнутого уровня теплоты с целью получения чистого аустенита.

Свойства полученного разогретого материала, а также того, который будет иметь место в результате охлаждения. Очень многое зависит от уровня достигнутого тепла. Важно не допустить перегрев или перепал.

Мартенситное превращение

Данный процесс протекает в стали при высоких скоростях охлаждения. Оно должно быть непрерывным в течение всей процедуры. Мартенситное превращение в стали основано на полиморфном превращении двух аллотропических модификациях железа (альфа-железа Fea и гамма-железа Feg). Обладая температурным полиморфизмом, оба эти вида железа имеют свои кристаллические решётки. Первое формируется в объёмно-центрированную кубическую решётку. Второе в гранецентрированную кубическую решётку. При нагреве стали до 911 °С вплоть до температуры плавления 1593 °С наблюдается устойчивость альфа-железа. При охлаждении со скоростью, превышающей критическую, проявляется эффект преобразования. В этот период аустенит превращается в мартенсит. Механизм этого процесса обладает следующими особенностями:

  1. Бездиффузионный характер проявляется благодаря существующему сдвиговому механизму. Благодаря ему атомы кристаллической решётки смещаются на небольшое расстояние, которое по величине меньше межатомных связей. Происходит изменение формы кристаллической решётки. Самодиффузии атомов железа не происходит.
  2. Образовавшиеся кристаллы мартенсита приобретают геометрическую форму пластин. К краю пластины наблюдается уменьшение линейного размера. Поэтому мартенситная структура кристаллов называется игольчатая. Процесс образования пластины заканчивается в двух случаях: на границе зерна аустенита, или при её изломе. Последующие пластины будут образовываться под углом 60° или 120°. Такое образование называется когерентный рост, который протекает при минимальной поверхностной энергии. Однако из-за различия структуры и объёма аустенита и мартенсита в стали наблюдается возникновение больших напряжений. Они достигают величины предела текучести аустенита. Это приводит к отрыву решётки мартенсита от решётки аустенита и когерентность нарушается, что приводит к остановке роста кристаллов.
  3. Абсолютные смещения атомов при мартенситном превращении могут достигать относительно больших размеров в межатомных связях (по сравнению с макроскопическими размерами). Это является следствием действия сдвигового механизма. Происходит изменение формы аустенита и образования на поверхности характерной игольчатой структуры.
  4. Несмотря на разницу кристаллических решёток мартенсита и аустенита, между ними существует некоторое кристаллическое соответствие. Оно выражается в ориентационном сходстве.
  5. Наиболее часто встречающейся формой кристалла после мартенситного преобразования является пластина или так называемая линза. Толщина каждой из них сравнима с остальными геометрическими размерами, сохраняя сложное внутреннее строение. Полученная форма мартенситного кристалла при превращении сохраняет минимум упругой энергии.
  6. Процесс образования кристаллов протекает при очень высоких скоростях. Она может достигать 1000 м/с. По результатам проведенных оценок время формирования кристаллов при мартенситном превращении не превышает 10-7 секунды. Это усложняет процесс контроля над образованием мартенсита.
  7. Сам процесс мартенситного превращения протекает только при быстром непрерывном охлаждении. Температура мартенситного превращения зависит от марки стали (то есть её состава). Температуру начала образования мартенсита обозначают индексом Мн, а температуру конца Мк. Этот температурный интервал в основном зависит от количества, содержащегося в стали углерода. Он не зависит от скорости процесса охлаждения.

Процесс мартенситного превращения не заканчивается полным образованием мартенсита. В стали остаётся остаточный аустенит. Его количество повышается при снижении точки начала превращения.

Влияние закалки на особенности распада аустенита. Мартенсит

Закалка – это вид термической обработки, суть которого заключается в быстром нагревании до высоких температур выше критических точек Ac3 и Acm, после чего следует быстрое охлаждение. Если снижение температуры происходит с помощью воды со скоростью больше 200˚С за секунду, то образуется твердая игольчатая фаза, имеющая название мартенсит.

Он являет собой пересыщенный твердый раствор проникновения карбона в железо с кристаллической решеткой типа α. Вследствие мощных перемещений атомов она искажается и формирует тетрагональную решетку, что и выступает причиной упрочнения. Сформированная структура имеет больший объем. В результате этого кристаллы, ограниченные плоскостью, сжимаются, зарождаются игольчатые пластины.

Мартенсит – прочный и очень твердый (700-750 НВ). Образуется исключительно в результате высокоскоростной закалки.

Область применения

Обладая специфическими, а в некоторых случаях уникальными свойствами стали мартенситной группы применяются для изготовления деталей, работающих в сложных технических и химических условиях. Из них изготавливают:

  • элементы газовых и паровых турбин (в частности роторы, диафрагмы, лопатки и корпуса);
  • детали сварочных аппаратов;
  • сосуды высокого давления, которые должны выдерживать 16 МПа;
  • комплектующие насосов высоко давления;
  • пружины способные выдерживать большие нагрузки;
  • отдельные детали котлов, трубопроводов, коллекторов по которым проходит жидкость с высокой температурой или пар;
  • инструменты различного назначения (режущие, измерительные, обрабатывающие);
  • медицинские инструменты и отдельные части оборудования.


Основными недостатками таких сталей являются: трудности, возникающие при механической обработке и сварке отдельных деталей. Для решения второй задачи необходимо создавать специальные условия для сварки.

Закалка. Диффузионные структуры

Аустенит – это формирование, из которого могут быть искусственно произведены бейнит, троостит, сорбит и перлит. Если охлаждение закалки происходит на меньших скоростях, осуществляются диффузионные превращения, их механизм описан выше.

Троостит – это перлит, для которого характерна высокая степень дисперсности. Формируется при уменьшении тепла 100˚С за секунду. Большое количество мелких зерен феррита и цементита распределяется по всей плоскости. «Закаленному» свойственен цементит пластинчатой формы, а троостит, полученный в результате последующего отпуска, имеет зернистую визуализацию. Твердость – 600-650 НВ.

Бейнит – это промежуточная фаза, которая являет собой еще более дисперсную смесь кристаллов высокоуглеродистого феррита и цементита. По механическим и технологическим свойствам уступает мартенситу, но превышает троостит. Образуется в температурных интервалах, когда диффузия невозможна, а силы сжатия и перемещения кристаллической структуры для превращения в мартенситную – недостаточно.

Сорбит – крупнодисперсная иглообразная разновидность перлитных фаз при охлаждении со скоростью 10˚С за секунду. Механичесие свойства занимают промежуточное положение между перлитом и трооститом.

Перлит – это совокупность зерен феррита и цементита, которые могут быть зернистой или пластинчатой формы. Формируется в результате плавного распада аустенита со скоростью охлаждения 1˚С за секунду.

Бейтит и троостит – более относятся к закалочным структурам, тогда как сорбит и перлит могут формироваться и при отпуске, отжиге и нормализации, особенности которых определяют форму зерен и их размер.

Физический механизм образования мартенсита принципиально отличается от механизма других процессов, происходящих в стали при нагреве и охлаждении. Другие процессы диффузионны, то есть атомы перемещаются с малой скоростью, например, при медленном охлаждении аустенита создаются зародыши кристаллов феррита и цементита, к ним в результате диффузии пристраиваются дополнительные атомы и, наконец, весь объём приобретает перлитную или феррито-перлитную структуру. Мартенситное превращение бездиффузионно (сдвиговое превращение), атомы перемещаются с большой скоростью по сдвиговому механизму, скорость распространения порядка тысячи метров в секунду.

Мартенситное превращение[ | ]

Основная статья: Мартенситное превращение

Мартенситное превращение при охлаждении происходит не при постоянной температуре, а в определённом интервале температур, при этом превращение начинается не при температуре распада аустенита в равновесных условиях, а несколькими сотнями градусов ниже. Оканчивается превращение при температуре значительно ниже комнатной. Таким образом, в интервале температур мартенситного превращения в структуре стали, наряду с мартенситом, есть и остаточный аустенит. Температуры как начала, так и окончания мартенситного превращения могут сильно зависеть от концентраций легирующих элементов.

При пластической деформации стали при температурах мартенситного превращения количество мартенсита увеличивается. В некоторых случаях также влияет упругая деформация. Возможно превращение аустенита в мартенсит при комнатных температурах под действием пластической деформации.

Кроме железоуглеродистых сплавов, мартенситное превращение наблюдается и в некоторых других материалах, например, сплавах на основе титана (сплавы типа ВТ6, ВТ8, ВТ14), меди (бронзы типа БрАМц 9-3), материалах с памятью формы, оксидных материалах (ZrO2).

Мартенсит и мартенситные трансформации в полиморфных материалах

В 1902 году структуру кристаллов стали, полученную после закалки, назвали «мартенсит» в честь немецкого металлографа Адольфа Мартенса (1850 – 1914). Она имела специфический иглообразный вид.

мартенситное превращение

В результате нагревания углеродистой стали до состояния аустенита и последующего быстрого охлаждения, в кристаллической решетке углеродистой стали совершаются структурные изменения: кубическая решетка аустенита превращается в тетрагональную. Это происходит потому, что углерод не успевает выделиться из аустенита и задерживается в структуре феррита, искажая ее форму.

Легирующие элементы, растворенные в аустените, производят сходственный эффект. Вновь образованная фаза имеет игольчатую или пластинчатую структуру и называется мартенситом, а процесс перестройки кристаллической решетки мартенситным превращением. Для мартенситных структур характерны прочность и твердость.

Мартенситное превращение изучалось при термообработке стали, и вначале этот термин использовался для процесса образования мартенсита в стали, но затем было установлено, что аналогичные превращения можно распространить и на другие полиморфные материалы.

Мартенситные превращения в сталях

Теория получения мартенситных сталей

Во время закалки углеродистой стали, содержащей более 0, 25 – 0,3% углерода, наблюдается резкое изменение ее свойств. Сталь получает структуру мартенсита. При определенной температуре нагревания и последующем охлаждении из аустенитных зерен образуются кристаллы мартенсита.

В основе полиморфного мартенситного превращения лежит бездиффузный механизм превращения гамма-железа аустенита с гранецентрированной кубической решеткой кристаллов (ГЦК) аустенита в альфа-железо с объемно центрированной решеткой (ОЦК) мартенсита.

Процесс перекристаллизации происходит с высокими почти дозвуковыми скоростями, благодаря когерентной связи растущих кристаллов мартенсита с исходными кристаллами аустенита. Чем больше структурное и размерное соответствие, тем тоньше иглы мартенсита.

Мартенситная структура представляет собой пересыщенный раствор углерода в альфа-железе, его кристаллы имеют форму призмы. От концентрации углерода и легирующих элементов зависит увеличение длины призмы и уменьшение ее основания, и соответственно повышение прочности и твердости мартенситной стали. Вследствие большой упругости и малой подвижности атомов мартенситное превращение происходит путем кооперативного координированного смещения атомов на расстояния меньше межатомных. Вновь образованная мартенситная фаза является неравновесной системой.

Благодаря пластинчатой (игольчатой) форме кристаллов и пластической деформации (фазовому наклепу), происходящему по мере увеличения несоответствия в положении атомов и нарушения когерентности, мартенситные структуры обладают более высокой прочностью, твердостью и меньшей пластичностью по сравнению с исходными кристаллами аустенитной структуры. Существуют гипотезы о волновой природе процесса пластической деформации.

кристаллическая решетка мартенсита

Свойства мартенсита

  • Искажением кристаллической решетки от внедрения углерода или легирующих элементов.
  • Дроблением субзерен, или блочной структуры.
  • Увеличением плотности дислокации.

4 типа мартенситных кристаллов стали

  • Тонкопластинчатый.
  • Бабочкообразный.
  • Пластинчатый (линзовидный, двойниковый).
  • Пакетный (массивный, реечный, недвойникоый).

Пакетный тип мартенсита (пластины образуют пакет). Пакетное строение у сталей марок 10Х2Г3М, 12Х2Н4, 40ХН, 37ХН3, 30ХГС, 45ХНМФА.

В некоторых высоколегированных сталях образуется тонкопластинчатый мартенсит.

Бабочкообразный тип в своей структуре имеет сочленения пластин двух пластин, похожие на бабочку. Распространен у легированных сталей.

Пластинчатый тип мартенсита на срезе имеет линзовидное строение, напоминающее иглы. Такое строение после закалки наблюдается у углеродистых сталей У2, У12 и высоконикелевых Н31, Н32.

Пакетный тип характеризуется пакетами, образованными из блоков пластин. Пакетное строение у сталей марок 12Х2Н4, 37ХН3, 30ХГС.

Мартенситные точки

Основной характеристикой сплавов при определенном режиме закалке является мартенситные точки.

Температура начала мартенситных превращений обозначается Мн. При достижении температуры охлаждения стали значений Мн начинается мгновенный лавинообразный процесс перекристаллизации стали. Температура Мн определяется для каждой марки стали экспериментальным путем на металлургических предприятиях. Значение Мн снижается от увеличения количества углерода и легирующих элементов в составе стали.

Температура конца мартенситных превращений обозначается Мк. В промежутке значений температур между Мн и Мк происходит бездиффузная перестройка кристаллической решетки стали. При достижении температуры Мк бездиффузная перекристаллизация прекращается. Для высокоуглеродистых легированных сталей она может быть отрицательной.

мартенситные стали

Практика термической обработки сталей на мартенсит

На крупносерийных и массовых производствах для закалки стальных изделий используют автоматические конвейерные линии, на которых производится полный цикл получения необходимой мартенситной структуры для определенных марок стали.

В инструментальных цехах и на опытных производствах инструмент и детали закаляют вручную путем нагрева инструмента в муфельных печах, в ваннах с маслами, солями или расплавленными металлами. Охлаждение производится в разных средах: воде, масле, воздухе. Параметры температур и процесса закалки разрабатывает технолог согласно техническим нормам и марочникам стали.

Поверхностный нагрев осуществляют в тех случаях, когда нужно повысить прочность наружных слоев изделий при сохранении мягкой сердцевины. Поверхностная закалка производится в генераторах высокой частоты.

В зависимости от требуемой температуры нагрева применяют различные соли или смеси солей; так при высокотемпературных нагревах (1000-1300 градусов), используют расплавленный хлористый барий, при нагревах до 750-950 градусов используют смеси солей хлористого бария, хлористого калия и хлористого натрия. При низкотемпературных нагревах 300-550 градусов используют смеси калиевой и натриевой селитр.

В качестве охлаждающих сред при закалке на мартенсит чаще всего применяют жидкие среды различной охлаждающей способности. Обычно используют воду, а скорость отвода теплоты увеличивают добавлением едкого натра. К более мягким охладителям относятся масла – минеральные и трансформаторные.

Виды закалки на мартенсит

  • Непрерывная, или закалка в одной среде.
  • Закалка в двух средах.
  • Ступенчатая закалка.
  • Обработка холодом.

После нагревания стального изделия до температуры аустенитной фракции, его резко охлаждают либо в воде (самый простой вариант), либо в подогретых маслах, либо на воздухе в зависимости от состава стали. При таком способе охлаждения появляются коробления, а иногда и трещины.

Во избежание рисков используют закалку в двух средах. После нагрева изделие погружают в воду, некоторое время выдерживается, и затем дальнейшее охлаждение до температуры до Мк происходит в более мягкой среде. Этот способ походит для серийных производств.

При ступенчатой схеме охлаждения, сталь, погружают в охлаждающую жидкость, с температурой, превышающей Мп на 60-100 градусов, выдерживают расчетное время, и в дальнейшем охлаждают на спокойном воздухе. Такому виду охлаждения подвергают малогабаритный инструмент из средне- и низколегированных сталей.

К охлаждению в холоде (жидком азоте) обычно прибегают в случаях, когда Мк для марки стали оказывается ниже нуля. Это высоколегированные углеродистые марки, используемые для изготовления мерительного инструмента и элементов подшипников качения.

мартенситная сталь

Применение мартенситных марок стали

В мартенситные стали добавляют легирующие элементы, чтобы получить нужные свойства сплавов: прочность, износостойкость, хладо-жаропрочность, коррозийную стойкость. В одной марке легированной стали может быть до 7 легирующих элементов. Стали легируют никелем, хромом, азотом, вольфрамом, бериллием, ванадием, кремнием, молибденом, медью, бором.

Обычно в обозначении стали зашифрованы легирующие добавки и их количество (38ХН3МФА), некоторые экспериментальные шифруются буквой Э. В этом случае буква не отражает состава стали – ЭИ, ЭП3. Иногда стали, предназначенные для изготовления выпускных авиационных и автомобильных клапанов, называют сокращенно – сильхромы.

Легированные мартенситные стали способны противостоять агрессивным среда: кислотам, щелочам, солям, агрессивным газам. По применению мартенситные стали бывают коррозионностойкие, жаростойкие, жаропрочные и стали специального назначения.

Коррозионностойкие марки сталей (15Х28, 20Х13, 12Х18Н9) применяют на опытных производствах, в химической промышленности.

Жаростойкие марки сталей (ХН60Ю, 12Х25Н16Г7АР, (15Х6СЮ) используют для изготовления деталей, которые работают под умеренной нагрузкой при температурах до 1000 градусов.

Изделия из жаропрочных марок сталей (15Х6СЮ, 08Х13, 14Х17Н2) могут работать под нагрузкой весьма длительный и длительный период при высоких температурах.

К специальным сталям можно отнести стали, из которых катают броневой сэндвич. Отдельное место занимает сталь Гадфильда (1,1% углерода, 13% магния). При работе в условиях высоких давлений происходит самопроизвольная пластическая деформация и соответственно увеличивается степень ее прочности. Уникальные механические свойства пока не до конца изучены.

Магнитные свойства мартенситной стали

У мартенситной структуры кристаллической решетки стали ярко выражены магнитные свойства. Мартенсит – ферромагнетик в чистом виде. Однако выдержать идеальный химический состав сложно. Углеродистые мартенситные стали, легированные молибденом, кобальтом и хромом (ЕХ9К15М2), кобальтом и хромом (ЕХ5К6), хромом (ЕХ3) можно отнести магнитотвердыми материалами.

Легирование кобальтом наиболее эффективно с точки зрения магнетизма – у атомов кобальта присутствует магнитный момент, таким образом, остаточная индукция мартенсита возрастает. Низкая цена и легкость механической и термической обработки дает возможность применения мартенситных сталей в магнитных системах в качестве переключателей для изменения направления при подаче управляющих сигналов.

Свариваемость мартенситных сталей

Технологии сварки мартенситных сплавов усложняются повышенной хрупкостью металла после закалки. Эти типы стали варят после предварительного нагрева примерно от 200 до 450 градусов, температура окружающей среды не должна быть отрицательной. Обычно детали из стали мартенситной группы сваривают методами ручной дуговой сварки электродами, покрытыми специальными составами. Иногда используют и другие виды сварки: аргонодуговые, электрошлаковые, под флюсом.

Мартенситные трансформации в полиморфных кристаллах

Аналогичные мартенситные превращения, когда атомы не меняются местами, а только смещаются друг относительно друга на расстояния, меньшие, чем межатомные (сокращение межатомных связей и изменение углов между ними), наблюдаются не только в сплавах железа, но и в других полиморфных кристаллах.

Такие превращения, их еще называют метаморфозными, имеют место в сталях, чистых металлах: железе, кобальте, титане, литии, как минимум в 35 металлах, в твердых растворах на их основе, в полупроводниках и в полимерах, в интерметаллидах.

В отличие от нормальных равновесных полиморфных превращений мартенситные превращения бездиффузны и метастабильны. Эти превращения носят неравновесный характер. Физика металлов гласит: неравновесные состояния должны быть саморганизованными.

С точки зрения второго закона термодинамики мартенситные трансформации в веществах происходят с убыванием энтропии. Это означает, что кристаллические структуры таких превращений являются результатом самоорганизации, а их параметры приближаются к сверхкритическим.

Структура интерметаллида моноалюминида никеля после мартенситного превращения способна выдерживать температуры до 1300 градусов при высоких нагрузках, но из-за повышенной хрупкости применяется только в качестве жаростойкого покрытия газотурбинных двигателей.

Некоторые интерметаллиды с мартенситными структурами, имеющими в своем составе, платину используют в качестве катализаторов в производстве азота. В связи с ужесточением экологических норм для автомобилей ведутся разработки по дожиганию продуктов сгорания с применением интерметаллидов.

На кристаллах некоторых полупроводников (кремний, германий) можно наблюдать прямые или обратные бездиффузные фазовые переходы состояний. Эксперименты по термообработке кремниевых пластин были реализованы на производстве с 20% экономическим эффектом.

Исследуя процесс обратимости мартенситных трансформаций на перекристаллизации сплава TiNi (интерметаллида), обнаружено изменение размеров образцов.

закалка на мартенсит

Эффект памяти

Дальнейшие эксперименты с различными материалами показали, что многие полиморфные кристаллы могут проявлять такие свойства как эффект памяти формы, сверхупругость и сверхпластичность.

Деформация и ее уменьшение или даже полное восстановление исходных форм при обратном протекании мартенситных превращений названо эффектом памяти формы. А все явления, связанные с мартенситными превращениями в веществах объединены под одним названием «необычные физико-механические свойства».

Эффект памяти формы уже сегодня используется в гидравлических муфтах в кораблестроении и авиации, в демпфирующих приспособлениях, в термореле, в медицине для лечения сколиоза, соединения сломанных костей, в хирургии сердца, в стоматологии.

Фундаментальные исследования мартенситных превращений, начатые советским ученым Г. В. Курдюмовым, который впервые предложил теорию бездиффузного мартенситного превращения, продолжаются более 60 лет. Технологии на основе «необычных физико-механических свойств» мартенситных материалов могут быть особенно востребованы в самых передовых отраслях промышленности. В оборонной, в авиа-космической, в точном приборостроении, в электронике, в нанопроизводствах, в медицине и даже косметологии.

5 способов быстрой и эффективной закалки металла

Закалка металла — нагревание до температуры каления, при которой структура его видоизменяется, и остывание в какой-либо жидкости (масле, воде) или на открытом воздухе. Делают такую обработку для того, чтобы повысить твёрдость материала. На производстве температура закалки определяется по диаграмме «железо-углерод».

как закалить металл

Отпуск и старение металла

Часто путём закалки повышается не только твёрдость металла, но и его хрупкость, поэтому необходимо выполнять ещё один этап — отпуск, при котором прочность и твёрдость несколько снижаются, но материал становится более пластичным. Делают отпуск при температуре, ниже, чем в предыдущем процессе, и охлаждают металл постепенно.

Можно проводить закалку без изменения структуры металла (полиморфного превращения). В этом случае не возникнет проблем с хрупкостью, но необходимая твёрдость не будет достигнута. А повысить её удастся путём ещё одного процесса термообработки, называемого старением. При старении происходит распад пересыщенного твёрдого раствора, в результате которого увеличивается прочность и твёрдость материала.

Отпуск стали — это разновидность термообработки, используемая для деталей, закалённых до критической точки, при которой происходит полиморфное изменение кристаллической решётки. Он заключается в выдерживании металла определённый промежуток времени в нагретом состоянии и медленном охлаждении на открытом воздухе. Делают отпуск, чтобы снизить внутреннее напряжение, а также исключить хрупкость металла и увеличить его пластичность.

  • естественным, при котором самопроизвольно повышается прочность закалённого металла и снижается его пластичность. Происходит данный процесс при выдержке в естественной среде;
  • термическим. Такое старение — это процесс повышения твёрдости металла посредством выдержки при высоких температурах. По сравнению с первым видом, в данном случае может произойти перестаривание — это когда твёрдость, пределы прочности и текучести, достигая максимальной величины, начинают снижаться;
  • деформационным. Такое старение достигается при помощи пластической деформации закалённого сплава, имеющего структуру пересыщенного твёрдого раствора.

закалка металла в домашних условиях

Способы закалки

Суть любой закалки — превращение аустенита в мартенсит (диаграмма «железо-углерод»). В зависимости от температурного режима, закалка может быть полной или неполной. Первым способом закаливают инструментальную сталь, а вторым — цветную.

  • с использованием одного охладителя;
  • с подстуживанием;
  • прерывистой;
  • ступенчатой;
  • изотермической.

Закалка в одном охладителе

Данный метод применяется для термообработки простых деталей, изготовленных из легированной и углеродистой стали. Деталь нагревается до необходимой температуры, а затем охлаждается в жидкости. Углеродистую сталь диаметром от 2 до 5 мм охлаждают в воде, детали меньшего диаметра и всю легированную сталь — в масле.

Закалка с подстуживанием

При термообработке с одним охладителем часто возникают состояния термического и структурного внутреннего напряжения. Развиваются они в том случае, когда разность температур достигает минимума. На поверхности металла образуется напряжение растяжения, в центре — напряжение сжатия. Чтобы данные напряжения уменьшить, перед тем, как опустить нагретую деталь в жидкость, её недолго держат на открытом воздухе. Температура детали в данном случае не должна быть ниже линии 0,8К по диаграмме «железо-углерод».

Прерывистая

Эту закалку проводят в двух средах — воде и масле или воде и воздухе. Нагретую до критической точки деталь сначала быстро охлаждают в воде, а потом медленно в масле или на открытом воздухе. Такой способ термообработки применяют для высокоуглеродистой стали. Этот метод — сложный, так как время охлаждения в первой среде очень мало и определить его сможет лишь специалист высокой квалификации.

закалка металла в масле

Ступенчатая

При прерывистой термообработке деталь охлаждается неравномерно — более тонкие поверхности быстрее, чем все остальные. К тому же очень трудно отрегулировать время нахождения детали в первой среде (воде). Поэтому лучше использовать ступенчатую закалку. Данный метод позволяет охлаждать деталь в среде при температуре, превышающей мартенситную точку. Первая ступень — охлаждение и выдержка детали в данной среде до того момента, когда все сечения детали достигнут одной и той же температуры. Вторая ступень — окончательное медленное охлаждение (преобразование аустенита в мартенсит).

Изотермическая

При изотермической термообработке деталь нагревают до критической точки, а затем опускают в масляную или соляную ванну температурой 250 градусов. Выдерживают полчаса, а далее остужают на открытом воздухе. Такая закалка обеспечивает высокую конструкционную прочность и применяется для легированных и конструкционных сталей, у которых распад аустенита в промежуточной области не происходит до конца. В дальнейшем он превращается не в мартенсит, а в бейнит + 20% остаточный аустенит, обогащённый углеродом. Такой закалкой можно достичь высокой прочности при хорошей вязкости.

Температурный режим

Закалка — это превращение аустенита в мартенсит. На производстве при выборе температур термообработки пользуются диаграммой «железо-углерод». Температуру закалки углеродистых сталей определить очень легко. Нагрев конструкционной стали с содержанием углерода менее 0,8% доводят до температур, расположенных над линией GS и выше точки Ас3 на 30-50 градусов. Нагрев сталей, содержащих более 0,8% углерода, проводят при температурах на 30-50 градусов выше тех, которые расположены выше линии PSK. Температуру закалки легированной стали также выбирают, исходя из критических точек, но данный процесс много сложнее, так как помимо углерода такие стали содержат и другие компоненты.

температурный режим закалки

Выбор охлаждающей среды

От выбора зависит качество детали:

  • для охлаждения простых деталей и изделий, изготовленных из углеродистых сталей применяют чистую воду;
  • для изделий сложных форм в качестве охладителя используют каустическую соду, смешанную с водой в соотношении 1:1. Приготовленный раствор нагревают до 50-60 градусов;
  • закалка металла в масле применима к тонкостенным деталям из легированных или углеродистых сталей.

Углеродистую сталь, имеющую сложный состав, остужают в двух охладителях — сначала быстро в чистой воде, а затем медленно в ванне, наполненной маслом. Перемещать детали из воды в масло нужно очень быстро.

Какую сталь подвергают закалке

Какие бывают дефекты при закалке металла

закалка металла графитом

Закалка стали в условиях дома или дачи

  • готовим две ёмкости. В одну наливаем минеральное масло, в другую — воду;
  • также нужно подготовить инструмент, при помощи которого будем класть закаливаемый металл в костёр и вынимать из него. Для этой процедуры подойдут клещи;
  • далее разводим костёр и ждём когда образуются угли. На них и кладём металлический предмет, который нужно закалить;
  • следим за цветом углей и окраской пламени. Раскалённые угли имеют белый цвет. А пламя не должно быть белым. Малиновый цвет пламени — оптимальный для процесса закалки в домашних условиях. Белое пламя говорит о слишком высокой температуре внутри костра, и деталь наша может просто сгореть;
  • также необходимо следить, чтобы на металлическом изделии не появлялись чёрные или синие пятна, которые говорят о деформации металла в результате чрезмерного размягчения. А если металл стал белым, то такую деталь можно смело выкидывать.
  • как только металлический предмет нагреется до нужной нам температуры, вытаскиваем его и опускаем сначала в масло. Делаем это трижды, первый раз на три секунды. Каждый раз время увеличиваем на столько же. Опускаем и вынимаем резко;
  • далее опускаем металлический инструмент в ёмкость с водой и оставляем там до тех пор, пока он полностью не остынет.

Детали или предметы, имеющие вытянутую форму в воду помещаем вертикально. Для оценки температуры закалки в костре используем таблицу цветов. Вместо костра можно использовать любую печку.

оценка температуры закалки по цвету

Отпуск металла в духовке

При необходимости закалённый предмет можно подвергнуть отпуску. Для этого его нужно поместить в нагретую до 300-320 градусов духовку и продержать там в течение часа. Затем вынуть и дать остыть на открытом воздухе.

Проверка металла на наличие термообработки

Перед тем, как начать каление, нам необходимо убедиться, что материал приобретённого нами инструмента не термообработан. Делаем проверку с помощью обыкновенного паяльника. Нагреваем инструмент и проводим им по интересующей нас металлической поверхности. Если паяльник прилипает к металлу, то значит ни о какой его термообработке не может быть и речи. Плавное прохождение паяльника по поверхности стали или отскакивание от неё говорят о том, что проверяемый нами предмет либо хорошо термообработан либо обработан слишком сильно. При отсутствии термообработки делаем её самостоятельно.

Закалка ножа графитом

Термическая обработка металла графитом хороша тогда, когда нужно закалить не весь предмет, а только его часть. У ножа — это кромка. Последовательность процесса термообработки ножа в домашних условиях:

  • острие ножа проверяем на твёрдость при помощи надфиля. Если металл легко стачивается, а надфиль издаёт глухой звук, значит нож не термообработан;
  • для данного процесса понадобится графит, который можно добыть из круглых батареек, взять стержни простого карандаша или воспользоваться графитовыми щётками генератора;
  • добытый графит превращаем в порошок;
  • в качестве источника питания используем сварочный аппарат постоянного тока. Выставляем на минимум;
  • делаем подложку из оцинкованного листа. На неё насыпаем графитовый порошок;
  • к подложке подсоединяем «плюс» сварочного прибора, а ручке ножа — «минус»;
  • далее лезвием ножа аккуратно водим по графиту так, чтобы оно не касалось подложки. А ещё следим, чтобы графит не воспламенился, иначе ножик наш будет испорчен;
  • при движении лезвия по графиту последний будет выдавать искры. Как только увидим, что остриё ножика нагрелось, процесс прекращаем. Приблизительное время закалки — не более 5 минут;
  • даём ножу остыть естественным путём, затем берём надфиль и проверяем твёрдость. Если звук, издаваемый надфилем при контакте с ножом звонкий, а остриё не поддаётся затачиванию, значит твёрдость лезвия высокая.

Процесс закалки на производстве провести намного легче, чем дома. При необходимости можно попробовать закалить нужный предмет или инструмент «топорными» способами с применением подручных средств.

Мартенситная сталь

Мартенситная сталь

Мартенситная сталь получается в процессе переохлаждения аустенитной фазы. В качестве исходного материала используется сталь, процент углерода в которой больше 0,3. Легирование вольфрамом, хромом, ниобием и другими металлами придает большую жаропрочность и улучшает механические свойства.

Мартенситная сталь применяется для изготовления деталей, на которые будут действовать агрессивная среда и большая нагрузка. Несмотря на трудности в процессе сварки, соединение получается надежным, в том числе при сварке без подогрева. О том, какую структуру и свойства имеет мартенситная сталь, какие марки производят и где ее применяют, читайте в нашем материале.

Общая характеристика мартенситной стали

Мартенситы представляют собой игольчатую микроструктуру, которая образуется в структуре стали при закалке. Выглядит это как скопление иголок железа, образующих углы около 60°. Мартенсит – твердый раствор углерода в железе. Первым это фазовое состояние металла описал Мартин Мартенс, в честь которого и назвали открытую им структуру.

Мартенситы отличают большая прочность, которая возрастает с увеличением удельной концентрации углерода, но только до определенных значений. По достижении критической отметки начинается снижение прочности. Дальнейшее увеличение процентного содержания углерода ведет к возрастанию хрупкости.

В начале XX века в Советском Союзе были проведены исследования, в результате которых ученые пришли к выводу, что причинами специфических характеристик стали мартенситного класса выступают:

  • относительно маленькие размеры блоков, составляющих строение мартенситов;
  • устойчивое положение атомов в структурной решетке мартенситов;
  • образующиеся при закалке мелкие частицы, препятствующие взаимному смещению слоев.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Твердость получаемых при закалке сплавов изменчива, она зависит от температурного режима. Нагрев, остывание металла, временные интервалы при термообработке меняют твердость в диапазоне от 35 до 70 единиц по Роквеллу. От других фаз мартенситы отличаются также большим удельным объемом, величина которого значительно превосходит этот показатель у других фазовых состояний стали.

Мартенситное превращение в углеродистой стали, как следует из сказанного выше, вызывает серьезное увеличение объема. Что в свою очередь может стать причиной возникновения зон с повышенным внутренним напряжением и впоследствии привести к образованию микротрещин.

Структура мартенситной стали

Мартенситная сталь имеет тетрагональную структуру, в которой атомам железа отведено место в узлах решетки, а атомами углерода заполнен объем ячеек, имеющих форму прямоугольных параллелепипедов. В неравновесной структуре такого сплава имеются зоны больших внутренних напряжений, способствующие дополнительному увеличению твердости и прочности.

Структура мартенситной стали

Термообработка разных видов мартенситной стали, которая заключается в их нагреве, приводит к диффузному перераспределению атомов углерода и возникновению двух фазовых состояний: феррита с очень низкой углеродистостью, не превышающей 0,02 %, и цементита (6,67 %). Кубические структурные ячейки феррита включают в себя объемноцентрированные атомы железа, которые распределяются по вершинам и центрам ячеек. Для цементита характерна ромбическая форма граней ячеек.

Для мартенсита характерна призмовидная форма кристаллов. Процентное содержание углерода и легирующих добавок влияет на длину таких призм и площадь их оснований. С увеличением длины структурных ячеек и уменьшением их оснований растут прочность и твердость металла. Упругость решетки и низкая подвижность атомов ведут к координированному смещению атомов на расстояние, не превышающее межатомное, и мартенситному превращению.

Как уже говорилось, мартенситы отличают высокие механические показатели. Кристаллическая решетка сплава искажается и приобретает большую тетрагональность по мере роста процентного содержания в ней углерода. Такое искажение и ведет к повышению твердости и прочности металла.

Однако у такого изменения механических свойств сплавов имеется обратная сторона. Мартенситное преобразование приводит к снижению пластичности и возрастанию склонности к хрупкому разрушению.

Свойства мартенситной стали

Мартенситная сталь тяжело поддается механической обработке, в частности, резке. Для того чтобы металл можно было подвергнуть обработке, его отжигают при температуре +800…+900 °С.

Свойства мартенситной стали

В качестве легирующих присадок к различным видам мартенситной стали чаще всего используют вольфрам, никель или молибден, которые повышают термостойкость, коррозионную устойчивость металла и его сопротивляемость воздействиям других агрессивных факторов.

Сталь в результате мартенситного преобразования приобретает также способность к самозакаливанию. Прочность металла возрастает самопроизвольно в результате воздействия высокой температуры.

Виды мартенситной стали относят к ограниченно свариваемым (третья группа). Сварка деталей при этом производится после преднагрева в диапазоне температуры +200…+300 °С с последующим отжигом. Дело в том, что при сваривании деталей из мартенситной стали велика вероятность холодного растрескивания шва и особенно околошовной зоны, которое происходит из-за наличия зон с повышенным внутренним напряжением в структуре металла.

Чаще всего в этом случае пользуются дуговой сваркой в среде аргона, электрошлаковым методом и сваркой с применением флюса. Также существуют специальные электроды, с помощью которых осуществляется ручная дуговая сварка мартенситной стали.

Мартенситная сталь получила широкое распространение в промышленном производстве благодаря своим механическим характеристикам. Например, у стали марки 15Х5, из которой изготавливают сосуды высокого давления, прочность на разрыв достигает 400 МПа.

В жаропрочные марки стали добавляют в качестве легирующих добавок вольфрам и ванадий. Сталь марки 10ХМФБ, помимо способности работать при экстремальной температуре, имеет прочность на разрыв до 600 МПа. Из нее изготавливают коллекторы, трубы и нагревательные котлы.

Для дополнительного улучшения механических характеристик марок мартенситной стали в их состав вводят бериллий. Сталь 14Х11В2МФ имеет прочность на разрыв в районе 850 МПа. Детали из этого сплава применяют в конструкциях, эксплуатируемых под интенсивными температурными и механическими нагрузками. Такой металл идет на изготовление корпусов и роторов газовых или паровых турбин, из него также выполняют лопатки в турбовинтовых компрессорах.

Мартенситные сплавы с умеренным процентным содержанием углерода обладают неплохой упругостью и отлично справляются с ударными нагрузками. В зависимости от того, каким был режим термообработки и химического состава металла, значения ударной вязкости могут варьировать в диапазоне от 80 до 150 Дж/см2. Наиболее высоких показателей ударной вязкости удается достичь с помощью закалки и последующего высокого отпуска.

К достоинствам мартенситных марок стали нельзя отнести высокую пластичность. Значения удельного сжатия для таких сплавов колеблются в пределах не выше 14–24 %. На пластичность металла главным образом влияет процентное содержание углерода, никеля и меди в его составе.

Для мартенситных марок стали, являющихся истинными ферромагнетиками, характерны высокие магнитные свойства. Недостаточные показатели по этим характеристикам могут быть обусловлены сложностью выдерживания идеального соотношения химических составляющих. Мартенситные сплавы с легирующими добавками, такими как молибден, кобальт и хром, относятся к магнитотвердым металлам.

Наилучший эффект для улучшения магнитных свойств металла дает добавление в его состав кобальта. Увеличение остаточной индукции сплава при этом происходит за счет того, что атомы этого химического элемента обладают собственным магнитным моментом. Относительно невысокая стоимость, хорошая механическая и термическая обрабатываемость позволяют широко применять мартенситные сплавы в качестве материала для деталей магнитных систем.

Изначально мартенситное преобразование было открыто в ходе экспериментов по улучшению механических свойств стальных сплавов, однако в дальнейшем выяснилось, что соответствующая обработка позволяет добиться проявления подобных качеств и у других полиморфных кристаллических материалов.

Уменьшение деформаций или полное их устранение в ходе обратного течения мартенситного преобразования сплава или эффект памяти наряду с другими явлениями, связанными с мартенситным преобразованием материалов, называют «необычными физико-механическими свойствами».

Эффектом памяти формы в наши дни часто пользуются при изготовлении гидравлических муфт для кораблей и самолетов, различных демпферов и температурных реле. Современная медицина применяет такие изделия для лечения сколиозов, переломов костей, изготовления искусственных сердечных клапанов и стоматологических имплантатов.

Виды закалки мартенсита

Закалка мартенситных сталей – особая термическая обработка, которую осуществляют путем быстрого нагрева до температуры выше соответствующей критической точки с последующим быстрым охлаждением. При понижении температуры более чем на 200 °С в секунду, как правило, это охлаждение водой, в структуре металла происходит мартенситное превращение.

Виды закалки мартенсита

Главными механическими свойствами такого сплава являются высокие показатели прочности и твердости, которых удается достичь путем высокоскоростного закаливания.

Мартенсит в кристаллической решетке металла может быть:

Формирование реечного или дислокационного мартенсита характерно для сталей с содержанием углерода в низких и средних концентрациях. Еще одним условием для образования реечной мартенситной структуры может быть высокое процентное содержание легирующих добавок. Мартенситные превращения стали при закалке возможны при температуре от +300 °С.

Образование пластинчатой или двойниковой мартенситной структуры происходит при температуре, не превышающей +200 °С в высокоуглеродистых легированных сплавах.

Область применения мартенситной стали

Мартенситная нержавеющая сталь в силу своих выдающихся, а порой и уникальных механических и химических свойств нашла широкое применение в промышленном производстве. Из нее выполняют детали, которые будут эксплуатироваться в экстремальных условиях.

Область применения мартенситной стали

Такая сталь идет на изготовление:

  1. роторов, диафрагм, лопаток, деталей корпуса и других частей газотурбинных и паровых установок;
  2. деталей сварочного оборудования;
  3. сосудов высокого давления, выдерживающих нагрузку до 16 МПа;
  4. комплектующих насосов высокого давления;
  5. пружин, работающих под высокими нагрузками;
  6. ответственных деталей трубопроводных магистралей, коллекторов, рассчитанных на работу под высокой температуре и давлением пара;
  7. режущих, измерительных, обрабатывающих и многих других инструментов;
  8. медицинского оборудования и инструментария.

Главные недостатки мартенситных сплавов кроются в том, что такой металл плохо поддается слесарной обработке и свариванию. Как было сказано выше, качественная сварка деталей из такой стали возможна только с применением специальных расходных материалов и/или в особых средах.

Рекомендуем статьи

Начатые в середине XX века в нашей стране исследования свойств мартенситов, когда учеными впервые были разработаны методы бездиффузионного мартенситного преобразования структуры металла, успешно продолжаются и сегодня.

Уникальные физические и химические свойства мартенситной стали находят широкое применение в высокотехнологичных производственных процессах. Такие материалы эффективно используются в оборонной, авиакосмической, приборостроительной промышленности, в электронике, медицине, косметологии, робототехнике и в ряде других направлений.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Читайте также: