Укажите второй после железа важнейший элемент составе сталей
Феррит (твердый раствор внедрения C в α-железе с объемно-центрированной кубической решеткой)
Аустенит (твердый раствор внедрения C в γ-железе с гранецентрированной кубической решеткой)
Цементит (карбид железа; Fe3C метастабильная высокоуглеродистая фаза)
Графит стабильная высокоуглеродистая фаза
Ледебурит (эвтектическая смесь кристаллов цементита и аустенита, превращающегося при охлаждении в перлит)
Мартенсит (сильно пересыщенный твердый раствор углерода в α-железе с объемно-центрированной терагональной решеткой)
Перлит (эвтектоидная смесь, состоящая из тонких чередующихся пластинок феррита и цементита)
Сорбит (дисперсный перлит)
Троостит (высокодисперсный перлит)
Бейнит (устар: игольчатый троостит) — ультрадисперсная смесь кристаллов низкоуглеродистого мартенсита и карбидов железа
Белый чугун (хрупкий, содержит ледебурит и не содержит графит)
Серый чугун (графит в форме пластин)
Ковкий чугун (графит в хлопьях)
Высокопрочный чугун (графит в форме сфероидов)
Половинчатый чугун (содержит и графит, и ледебурит)
Сталь (от нем. Stahl ) [1] — сплав (твёрдый раствор) железа с углеродом (и другими элементами), характеризующийся эвтектоидным превращением. Содержание углерода в стали не более 2,14 %. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость.
Учитывая, что в сталь могут быть добавлены легирующие элементы, сталью называется содержащий не менее 45 % железа сплав железа с углеродом и легирующими элементами (легированная, высоколегированная сталь).
Содержание
Применения
Сталь — важнейший конструкционный материал для машиностроения, транспорта, строительства и прочих отраслей промышленности.
Стали с высокими упругими свойствами находят широкое применение в машино- и приборостроении. В машиностроении их используют для изготовления рессор, амортизаторов, силовых пружин различного назначения, в приборостроении — для многочисленных упругих элементов: мембран, пружин, пластин реле, сильфонов, растяжек, подвесок.
Пружины, рессоры машин и упругие элементы приборов характеризуются многообразием форм, размеров, различными условиями работы. Особенность их работы состоит в том, что при больших статических, циклических или ударных нагрузках в них не допускается остаточная деформация. В связи с этим все пружинные сплавы кроме механических свойств, характерных для всех конструкционных материалов (прочности, пластичности, вязкости, выносливости), должны обладать высоким сопротивлением малым пластическим деформациям. В условиях кратковременного статического нагружения сопротивление малым пластическим деформациям характеризуется пределом упругости, при длительном статическом или циклическом нагружении — релаксационной стойкостью. [2]
Классификация
Стали делятся на конструкционные и инструментальные. Разновидностью инструментальной является быстрорежущая сталь.
По химическому составу стали делятся на углеродистые [3] и легированные [4] ; в том числе по содержанию углерода — на низкоуглеродистые (до 0,25 % С), среднеуглеродистые (0,3—0,55 % С) и высокоуглеродистые (0,6—2 % С); легированные стали по содержанию легирующих элементов делятся на низколегированные — до 4 % легирующих элементов, среднелегированные — до 11 % легирующих элементов и высоколегированные — свыше 11 % легирующих элементов.
Стали, в зависимости от способа их получения, содержат разное количество неметаллических включений. Содержание примесей лежит в основе классификации сталей по качеству: обыкновенного качества, качественные, высококачественные и особо высококачественные.
По структуре сталь различается на аустенитную, ферритную, мартенситную, бейнитную или перлитную. Если в структуре преобладают две и более фаз, то сталь разделяют на двухфазную и многофазную.
Характеристики стали
- : 7700—7900 кг/м³, : 75500—77500 Н/м³ (7700—7900 кгс/м³ в системе МКГСС), при 20 °C: 462 Дж/(кг·°C) (110 кал/(кг·°C)), : 1450—1520 °C, : 84 кДж/кг (20 ккал/кг, 23 Вт·ч/кг), при температуре 100 °C [5]
- при температуре около 20 °C:
- стали при растяжении:
Разновидности некоторых сталей
Производство стали
Производство стали в мире
Мировым лидером в производстве стали является Китай, доля которого по итогам I полугодия 2009 года составила 48 %.
По данным Международного института чугуна и стали (IISI [6] ) производство стали в 2007 году в мире составило:
Группы стран | Производство в 2007 году, тыс. тонн | Доля в мировом пр-ве, % |
---|---|---|
Всего в мире | 1344265 | 100 % |
Азия | 754574 | 56,1 % |
Африка | 18764 | 1,4 % |
Ближний восток | 16452 | 1,2 % |
Европейский союз (27) | 210186 | 15,6 % |
Европейский союз (15) | 175609 | 13,1 % |
Прочая Европа | 30452 | 2,3 % |
Океания | 8745 | 0,7 % |
Северная Америка | 132834 | 9,9 % |
СНГ (6) | 124006 | 9,2 % |
Южная Америка | 48251 | 3,6 % |
2008 год
В 2008 году в мире было произведено 1 млрд 329,7 млн т. стали, что на 1,2 % меньше, чем в 2007 г. Это стало первым сокращением годового объёма производства за последние 11 лет.
2009 год
По итогам первых шести месяцев 2009 г. производство стали в 66 странах мира, доля которых в мировой сталелитейной отрасли составляет не менее 98 %, сократилось по сравнению с аналогичным периодом предыдущего года на 21,3 % — с 698,2 млн т до 549,3 млн т (статистика World Steel Association).
Китай увеличил производство стали относительно аналогичного периода 2008 года на 1,2 % — до 266,6 млн т. в Индии производство стали возросло на 1,3 % — до 27,6 млн т.
В США производство стали упало на 51,5 %, в Японии — на 40,7 %, в Южной Корее — на 17,3 %, в Германии — на 43,5 %, в Италии — на 42,8 %, во Франции — на 41,5 %, в Великобритании — на 41,8 %, в Бразилии — на 39,5 %, в России — на 30,2 %, на Украине — на 38,8 %.
В июне 2009 г. производство стали в мире составило 99,8 млн т., что на 4,1 % больше, чем в мае 2009 г.
Рейтинг ведущих мировых производителей стали
По данным Metal Bulletin’s Top Steelmakers of 2007 [7] производство стали по компаниям производителям составило (в млн тонн):
Основные производители стали в России
2007 | 2006 | Производитель | Производство в 2007 году | Производство в 2006 году |
---|---|---|---|---|
15 | 12 | Северсталь | 16,75 | 17,60 |
16 | 14 | Евраз | 16,30 | 16,10 |
21 | 23 | ММК | 13,30 | 12,45 |
33 | 31 | НЛМК | 9,06 | 9,13 |
48 | 47 | Металлоинвест | 6,43 | 6,28 |
51 | 47 | Мечел | 6,09 | 5,95 |
120 | 120 | ТМК | 2,19 | 2,15 |
Сертификат соответствия на сталь
В соответствии с ГОСТ 19281-89 сертификация продукции из стали является обязательной. Производителям или продавцам, а также импортерам данной продукции, в первую очередь необходимо получить сертификат соответствия на оцинкованную и листовую сталь. Качество данной продукции прямо или косвенно может повлиять на безопасность людей или окружающей природной среды. Угловая, полосовая, а также оцинкованная сталь подлежат обязательной сертификации в соответствии с ГОСТ 8509-93.
Маркировка и классификация сталей
Сталь — это сплав железа с углеродом (до 2% углерода). По химическому составу сталь разделяют на:
По качеству сталь разделяют на:
- сталь обыкновенного качества;
- качественную;
- повышенного качества;
- высококачественную.
Сталь углеродистую обыкновенного качества подразделяют на три группы:
- А — поставляемую по механическим свойствам и применяемую в основном тогда, когда изделия из нее подвергают горячей обработке (сварка, ковка и др.), которая может изменить регламентируемые механические свойства (Ст0, Ст1 и др.);
- Б — поставляемую по химическому составу и применяемую для деталей, подвергаемых такой обработке, при которой механические свойства меняются, а уровень их, кроме условий обработки, определяется химическим составом (БСт0, БСт1 и др.);
- В — поставляемую по механическим свойствам и химическому составу для деталей, подвергаемых сварке (ВСт1, ВСт2 и др.).
Сталь углеродистую обыкновенного качества изготовляют следующих марок: Ст0, Ст1кп, Ст1пс, Ст1сп, Ст2кп, Ст2пс, Ст2сп, СтЗкп, СтЗпс, СтЗсп, СтЗГпс, СтЗГсп, Ст4кп, Ст4пс, Ст4сп, Ст5пс, Ст5сп, Ст5Гпс, Стбпс, Стбсп.
Буквы Ст обозначают «Сталь», цифры — условный номер марки в зависимости от химического состава, буквы «кп», «пс», «сп» — степень раскисления «кп» — кипящая, «пс» — полуспокойная, «сп» — спокойная).
Сталь углеродистая качественная конструкционная по видам обработки при поставке делится на:
- горячекатаную и кованую;
- калиброванную;
- круглую со специальной отделкой поверхности, серебрянку.
Легированную сталь по степени легирования разделяют:
- низколегированная (легирующих элементов до 2,5%);
- среднелегированная (от 2,5 до 10%);
- высоколегированная (от 10 до 50%).
В зависимости от основных легирующих элементов различают сталь 14 групп.
К высоколегированным относят:
- коррозионностойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии; межкристаллитной коррозии, коррозии под напряжением и др.;
- жаростойкие (окалиностойкие) стали и сплавы, обладающие стойкостью против химического разрушения в газовых средах при температуре выше 50 °C, работающие в ненагруженном и слабонагруженном состоянии;
- жаропрочные стали и сплавы, работающие в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью.
Сталь легированную конструкционную в зависимости от химического состава и свойств делят:
- качественная;
- высококачественная А;
- особо высококачественную Ш (электрошлакового переплава).
По видам обработки при поставке различают сталь:
- горячекатаная;
- кованая;
- калиброванная;
- серебрянка.
По назначению изготовляют прокат:
- для горячей обработки давлением и холодного волочения (подкат);
- для холодной механической обработки.
2. Классификация углеродистых сталей
Стали подразделяются на углеродистые и легированные. По назначению различают стали конструкционные с содержанием углерода в сотых долях процента и инструментальные с содержанием углерода в десятых долях процента. Наибольший объем сварочных работ связан с использованием низкоуглеродистых и низколегированных конструкционных сталей.
Основным элементом в углеродистых конструкционных сталях является углерод, который определяет механические свойства сталей этой группы. Углеродистые стали выплавляют обыкновенного качества и качественные. Стали углеродистые обыкновенного качества подразделяются на три группы:
- группа А — по механическим свойствам;
- группа Б — по химическому составу;
- группа В — по механическим свойствам и химическому составу.
Изготавливают стали следующих марок:
- группа А — Ст0, Ст1, Ст2, Ст3, Ст4, Ст5, Ст6;
- группа Б — БСт0, БСт1, БСт2, БСт3, БСт4, БСт5, БСт6;
- группа В — ВСт0, ВСт1, ВСт2, ВСт3, ВСт4, ВСт5.
По степени раскисления сталь обыкновенного качества имеет следующее обозначение:
- кп — кипящая,
- пс — полуспокойная,
- сп — спокойная.
Кипящая сталь, содержащая кремния (Si) не более 0,07%, получается при неполном раскислении металла марганцем. Сталь характеризуется резко выраженной неравномерностью распределения вредных примесей (серы и фосфора) по толщине проката. Местная повышенная концентрация серы может привести к образованию кристаллизационных трещин в шве и околошовной зоне. Кипящая сталь склонна к старению в околошовной зоне и переходу в хрупкое состояние при отрицательных температурах.
Спокойная сталь получается при раскислении марганцем, алюминием и кремнием, и содержит кремния (Si) не менее 0,12%; сера и фосфор распределены в ней более равномерно, чем в кипящей стали. Эта сталь менее склонна к старению и отличается меньшей реакцией на сварочный нагрев.
Полуспокойная сталь по склонности к старению занимает промежуточное место между кипящей и спокойной сталью. Полуспокойные стали с номерами марок 1—5 выплавляют с нормальным и с повышенным содержанием марганца, примерно до 1%. В последнем случае после номера марки ставят букву Г (например, БСтЗГпс).
Стали группы А не применяются для изготовления сварных конструкций. Стали группы Б делятся на две категории. Для сталей первой категории регламентировано содержание углерода, кремния марганца и ограничено максимальное содержание серы, фосфора, азота и мышьяка; для сталей второй категории ограничено также максимальное содержание хрома, никеля и меди.
Стали группы В делятся на шесть категорий. Полное обозначение стали включает марку, степень раскисления и номер категории. Например, ВСтЗГпс5 обозначает следующее: сталь группы В, марка СтЗГ, полуспокойная, 5-й категории. Состав сталей группы В такой же, как сталей соответствующих марок группы Б, 2-й категории. Стали ВСт1, ВСт2, ВСтЗ всех категорий и степеней раскисления выпускаются с гарантированной свариваемостью. Стали БСт1, БСт2, БСтЗ поставляют с гарантией свариваемости по требованию заказчика.
Углеродистую качественную сталь выпускают в соответствии с ГОСТ 1060—74. Сталь имеет пониженное содержание серы. Допустимое отклонение по углероду (0,03—0,04%). Стали с содержанием углерода до 0,20%, включительно, могут быть кипящими (кп), полуспокойными (пс) и спокойными (сп). Остальные стали — только спокойные. Для последующих спокойных сталей после цифр, буквы «сп» не ставят.
Углеродистые стали в соответствии с ОСТ 14-1-142—84 подразделяются на три подкласса:
- низкоуглеродистые с содержанием углерода до 0,25%;
- среднеуглеродистые с содержанием углерода (0,25—0,60%);
- высокоуглеродистые с содержанием углерода более 0,60%.
В сварных конструкциях в основном применяют низкоуглеродистые стали.
В сварочном производстве очень важным является понятие о свариваемости различных металлов.
Свариваемостью называется способность металла или сочетания металлов образовывать при установленной технологии сварки соединения, отвечающие требованиям, обусловленным конструкцией и эксплуатацией изделия.
По свариваемости углеродистые стали условно подразделяются на четыре группы:
- I — хорошо сваривающиеся;
- II — удовлетворительно сваривающиеся, т. е. для получения качественных сварных соединений деталей из этих сталей необходимо строгое соблюдение режимов сварки, специальные присадочные материалы, определенные температурные условия, а в некоторых случаях — подогрев, термообработка;
- III — ограниченно сваривающиеся, для получения качественных сварных соединений необходим дополнительный подогрев, предварительная или последующая термообработка;
- IV — плохо сваривающиеся, т. е. сварные швы склонны к образованию трещин, свойства сварных соединений пониженные, стали этой группы обычно не применяют для изготовления сварных конструкций.
Все низкоуглеродистые стали хорошо свариваются существующими способами сварки плавлением. Обеспечение равнопрочности сварного соединения не вызывает затруднений. Швы имеют удовлетворительную стойкость против образования кристаллизационных трещин. Это обусловлено низким содержанием углерода. Однако в сталях, содержащих углерод по верхнему пределу, вероятность возникновения холодных трещин повышается, особенно с ростом скорости охлаждения (повышение толщины металла, сварка при отрицательных температурах, сварка швами малого сечения и др.). В этих условиях, для предупреждения появления трещин, применяют предварительный подогрев до 120—200 °C.
В табл. 1. приведено обозначение химических элементов в марке легированной стали, а в табл 2 — состав некоторых марок сталей. В табл. 3 приведено примерное назначение различных марок сталей.
Таблица 1. Обозначение химических элементов в марке легированной стали
Таблица 2. Массовая доля химических элементов в различных марках стали в %
Билет 21
1. Железо: положение в периодической системе химических элементов Д. И. Менделеева, строение атома, возможные степени окисления, физические свойства, взаимодействие с кислородом, галогенами, растворами кислот и солей. Роль железа в современной технике. Сплавы железа.
Железо находится в побочной подгруппе VIII группы периодической системы. Электронная формула атома железа:
Типичные степени окисления железа +2 и +3. Степень окисления +2 проявляется за счет потери двух 4s-электронов. Степень окисления +3 соответствует также при потере еще одного Зd-электрона, при этом Зd-уровень оказывается заполненным наполовину; такие электронные конфигурации относительно устойчивы.
Физические свойства. Железо – типичный металл, образует металлическую кристаллическую решетку. Железо проводит электрический ток, довольно тугоплавко, температура плавления 1539°С. От большинства других металлов железо отличается способностью намагничиваться.
Химические свойства. Железо реагирует со многими неметаллами:
Образуется железная окалина – смешанный оксид железа. Его формулу записывают также так: FeО•Fe2О3.
Реагирует с кислотами с выделением водорода:
Вступает в реакции замещения с солями металлов, расположенных правее железа в ряду напряжений:
Соединения железа. FeО — основной оксид, реагирует с растворами кислот с образованием солей железа (II). Fe2О3 — амфотерный оксид, реагирует также с рас творами щелочей.
Гидроксиды железа. Fe(ОН)2 — типичный основной оксид, Fe(ОН)3 обладает амфотерными свойствами, реагирует не только с кислотами, но и с концентрированными растворами щелочей.
Гидроксид железа (II) легко окисляется до гидроксида железа (III) кислородом воздуха:
При реакции солей железа (II) и (III) со щелочами в осадок выпадают нерастворимые гидроксиды:
Сплавы железа. Современная металлургическая промышленность производит железные сплавы разнообразного состава.
Все железные сплавы разделяются по составу и свойствам на две группы. К первой группе относятся различные сорта чугуна, ко второй — различные сорта стали.
Чугун хрупок; стали же пластичны, их можно ковать, прокаты^ вать, волочить, штамповать. Различие в механических свойствах чугунов и сталей зависит прежде всего от содержания в них углерода — в чугунах содержится около 4% углерода, а в сталях — обычно менее 1,4%.
В современной металлургии из железных руд получают сначала чугун, а затем из чугуна — сталь. Чугун выплавляют в доменных печах, сталь варят в сталеплавильных печах. До 90% всего выплавленного чугуна перерабатывают в стали.
Чугун. Чугун, предназначенный для переработки в сталь, называют передельным чугуном. Он содержит от 3,9 до 4,3% С, 0,3—1,5% Si, 1,5—3,5% Мn, не более 0,3% Р и не более 0,07% S. Чугун, предназначенный'для получения отливок, называется литейным чугуном, В доменных печах выплавляются также ферросплавы, применяемые преимущественно в производстве сталей в качестве добавок. Ферросплавы имеют, по сравнению с передельным чугуном, повышенное содержание кремния (ферросилиций), марганца (ферромарганец), хрома (феррохром) и других элементов.
Стали. Все стали делятся на углеродистые и легированные.
Углеродистые стали содержат в несколько раз меньше углерода, кремния и марганца, чем чугун, а фосфора и серы совсем мало. Свойства углеродистой стали зависят прежде всего от содержания в ней углерода: чем больше в стали углерода, тем она твёрже. Промышленность производит мягкие стали, стали средней твёрдости и твёрдые. Мягкие стали и стали средней твёрдости применяются для изготовления деталей машин, труб, болтов, гвоздей и т. д., а твёрдые стали—для изготовления инструментов.
В сталях должно быть возможно меньше серы и фосфора, так как эти примеси ухудшают механические свойства сталей. В повышенных количествах сера вызывает красноломкость — образование трещин при горячей механической обработке металла. Фосфор вызывает хладноломкость—хрупкость стали при обыкновенной температуре. -
Легированные стали. Физические, химические и механические свойства сталей существенно изменяются от введения в их состав повышенного количества марганца и кремния, а также хрома, никеля, вольфрама и других элементов. Эти элементы называются легирующими, а стали — легированными [от латинского слова ligare – связывать, соединять].
Наиболее широко в качестве легирующего элемента применяется хром. Особенно большое значение для сооружения машин, аппаратов и многих деталей машин имеют хромоникелевые стали. Эти стали обладают высокой пластичностью, прочностью, жаростойкостью и стойкостью к действию окислителей. Азотная кислота любой концентрации не разрушает их даже при температурах кипения. Хромоникелевые стали не ржавеют в атмосферных условиях и в воде. Блестящие, серебристого цвета, листы хромоникелевой стали украшают арки станции «Маяковская» Московского метро. Из этой же стали делают нержавеющие ножи, ложки, вилки и другие предметы домашнего обихода.
Молибден и ванадий повышают твёрдость и прочность сталей при повышенных температурах и давлениях. Так,хромомолибденовые и хромованадиевые стали применяются для изготовления трубопроводов и деталей компрессоров в производстве синтетического аммиака, авиационных моторов.
При резании с большой скоростью инструмент сильно разогревается и быстро изнашивается. При добавлении вольфрама твёрдость стали сохраняется и при повышенных температурах. Поэтому хромовольфрамовые стали применяются для изготовления режущих инструментов, работающих при больших скоростях '
Увеличение содержания в стали марганца повышает её сопротивление трению и удару. Марганцовистые стали применяются для изготовления железнодорожных скатов, стрелок, крестовин, камнедробильных машин.
Применение легированных сталей позволяет значигельно снизить вес металлических конструкций, повысить их прочность, долговечность и надёжность в эксплуатации.
2. Белкикак биополимеры. Первичная, вторичная и третичная структуры белков. Свойства и биологические функции белков.
Белки (протеины, полипептиды) — высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот.
Белки, подобно полисахаридам, являются биологическими полимерами. Большинство белковых молекул достигает гигантских размеров по сравнению с другими органическими соединениями и имеет очень большую молекулярную массу:
О стали. Немного.
Сталь (от нем. Stahl) — сплав железа с углеродом (и другими элементами). Содержание углерода в стали от 0,1 до 2,14 %. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость.
Учитывая, что в сталь могут быть добавлены легирующие элементы, сталью называется содержащий не менее 45 % железа сплав железа с углеродом и легирующими элементами (легированная, высоколегированная сталь).
Стали с высокими упругими свойствами находят широкое применение в машинно и приборостроении. В машиностроении их используют для изготовления рессор, амортизаторов, силовых пружин различного назначения, в приборостроении — для многочисленных упругих элементов: мембран, пружин, пластин реле, сильфонов, растяжек, подвесок.
Пружины, рессоры машин и упругие элементы приборов характеризуются многообразием форм, размеров, различными условиями работы. Особенность их работы состоит в том, что при больших статических, циклических или ударных нагрузках в них не допускается остаточная деформация. В связи с этим все пружинные сплавы, кроме механических свойств, характерных для всех конструкционных материалов (прочности, пластичности, вязкости, выносливости), должны обладать высоким сопротивлением малым пластическим деформациям. В условиях кратковременного статического нагружения сопротивление малым пластическим деформациям характеризуется пределом упругости, при длительном статическом или циклическом нагружении — релаксационной стойкостью.
Существует множество способов классификации сталей, таких как по назначению, по химическому составу, по качеству, по структуре.
По назначению стали делятся на множество категорий, таких как конструкционные стали, коррозионно стойкие (нержавеющие) стали, инструментальные стали, жаропрочные стали, криогенные стали.
По химическому составу стали делятся на углеродистые и легированные; в том числе по содержанию углерода — на низкоуглеродистые (до 0,25 % С), среднеуглеродистые (0,3—0,55 % С) и высокоуглеродистые (0,6—2 % С); легированные стали по содержанию легирующих элементов делятся на низколегированные — до 4 % легирующих элементов, среднелегированные — до 11 % легирующих элементов и высоколегированные — свыше 11 % легирующих элементов.
Стали, в зависимости от способа их получения, содержат разное количество неметаллических включений. Содержание примесей лежит в основе классификации сталей по качеству: обыкновенного качества, качественные, высококачественные и особо высококачественные.
По структуре сталь разделяется на аустенитную, ферритную, мартенситную, бейнитную и перлитную. Если в структуре преобладают две и более фаз, то сталь разделяют на двухфазную и многофазную.
Плотность: 7700—7900 кг/м³ (7,7 до 7,9 г/см³).
Удельный вес: 75500—77500 Н/м³ (7700—7900 кгс/м³ в системе МКГСС).
Удельная теплоёмкость при 20 °C: 462 Дж/(кг·°C) (110 кал/(кг·°C)).
Температура плавления: 1450—1520 °C.
Удельная теплота плавления: 84 кДж/кг (20 ккал/кг, 23 Вт·ч/кг).
Коэффициент теплопроводности при температуре 100 °C
Хромоникельвольфрамовая сталь 15,5 Вт/(м·К)
Хромистая сталь 22,4 Вт/(м·К)
Молибденовая сталь 41,9 Вт/(м·К)
Углеродистая сталь (марка 30) 50,2 Вт/(м·К)
Углеродистая сталь (марка 15) 54,4 Вт/(м·К)
Предел прочности стали при растяжении:
сталь для конструкций 373—412 МПа
сталь кремнехромомарганцовистая 1,52 ГПа
сталь машиностроительная (углеродистая) 314—785 МПа
сталь рельсовая 690—785 МПа
Суть процесса переработки чугуна на сталь состоит в уменьшении до нужной концентрации содержания углерода и вредных примесей — фосфора и серы, которые делают сталь хрупкой и ломкой. В зависимости от способа окисления углерода существуют различные способы переработки чугуна на сталь: конверторный, мартеновский и электротермический.
Передельный или литейный чугун в расплавленном или твердом виде и железосодержащие изделия, полученные прямым восстановлением (губчатое железо), составляют вместе с металлическими отходами и ломом исходные материалы для производства стали. К этим материалам добавляются некоторые шлакообразующие добавки, такие как известь, плавиковый шпат, раскислители (например, ферромарганец, ферросилиций, алюминий) и различные легирующие элементы. Процессы производства стали делятся на два основных способа, а именно: конвертерный процесс, в котором расплавленный передельный чугун в конвертере рафинируют от примесей, продувая его кислородом, и подовый процесс, для осуществления которого используются мартеновские или электрические печи. Конвертерные процессы не требуют внешнего источника тепла. Они применяются в том случае, когда загрузка состоит главным образом из расплавленного передельного чугуна. Окисление некоторых элементов, присутствующих в чугуне (например, углерода, фосфора, кремния и марганца), обеспечивает достаточно тепла, чтобы удерживать сталь в жидком состоянии и даже переплавить добавленный лом. Эти процессы включают в себя такие, при которых чистый кислород вдувается в расплавленный металл (процессы Линца-Донавица: ЛД или ЛДАС, ОБМ, ОЛП, Калдо и другие), и такие процессы, ныне уже устаревшие, при которых используется воздух, иногда обогащенный кислородом (томасовский и бессемеровский процессы). Подовые процессы, однако, требуют внешнего источника тепла. Они применяются, когда исходным материалом служит твердая шихта (например, отходы или лом, губчатое железо и твердый передельный чугун).
Двумя основными процессами в этой категории являются мартеновский процесс, при котором нагрев осуществляется при сжигании мазута или газа, и сталеплавильные процессы в дуговых или индукционных печах, где нагрев осуществляется электричеством. Для производства некоторых видов стали могут быть последовательно использованы два различных процесса (дуплекс-процесс). Например, процесс плавки может начаться в мартеновской печи, а закончиться в электропечи; или же сталь, расплавленная в электропечи, может быть слита в специальный конвертер, где обезуглероживание завершается путём вдувания кислорода и аргона в жидкую ванну (процесс, используемый, например, для производства коррозионностойкой стали).
Возникло много новых процессов производства сталей специального состава или со специальными свойствами. Эти процессы включают дуговой переплав в вакууме, электронно-лучевую плавку и электрошлаковый переплав. Во всех этих процессах сталь получается из переплавляемого электрода, который при плавлении начинает капать в кристаллизатор. Кристаллизатор может быть изготовлен цельным или его днище может быть отъемным для того, чтобы затвердевшую отливку можно было вынуть снизу. Жидкая сталь, полученная вышеописанными процессами, с дальнейшим рафинированием или без него, сливается в ковш. На этом этапе в неё могут быть добавлены легирующие элементы или раскислители. Процесс также можно провести в вакууме, что обеспечивает снижение содержания газообразных примесей в стали. Стали, полученные этими процессами, подразделяются в соответствии с содержанием в них легирующих элементов на "нелегированные стали" и "легированные стали" (коррозионностойкие стали или другие виды). Далее они подразделяются в соответствии с их индивидуальными свойствами, например, на автоматную сталь, кремнистую электротехническую сталь, быстрорежущую сталь или кремнемарганцовистую сталь.
Зависимость свойств от состава и структуры:
Свойства сталей зависят от их состава и структуры, которые формируются присутствием и процентным содержанием следующих составляющих.
Углерод — элемент, с увеличением содержания которого в стали увеличивается её твёрдость и прочность, при этом уменьшается пластичность.
Кремний и марганец (в пределах 0,5 … 0,7 %) существенного влияния на свойства стали не оказывают. Эти элементы вводятся в большинство углеродистых и низколегированных марок сталей во время операции раскисления (сначала — ферромарганец, затем — ферросилиций, как дешевые раскисляющие ферросплавы).
Сера является вредной примесью, образует с железом химическое соединение FeS (сернистое железо). Сернистое железо в сталях образует с железом эвтектику с температурой плавления 1258 К, которая обусловливает ломкость материала при обработке давлением с подогревом. Указанная эвтектика при термической обработке расплавляется, в результате чего между зернами теряется связь с образованием трещин. Кроме этого, сера уменьшает пластичность и прочность стали, износостойкость и коррозионную стойкость.
Фосфор также является вредной примесью, т. к. придает стали хладноломкость (хрупкость при пониженных температурах). Это объясняется тем, что фосфор вызывает сильную внутрикристаллическую ликвацию. Однако существует группа сталей с повышенным содержанием фосфора, так называемые — "автоматные стали", металлоизделия из которых легко поддаются обработке резанием (например, болты, гайки и пр. на револьверных токарных станках-полуавтоматах).
Феррит — железо с объемноцентрированной кристаллической решеткой. Сплавы на его основе обладают мягкой и пластичной микроструктурой.
Цементит — карбид железа, химическое соединение с формулой Fe3C, наоборот, придаёт стали твёрдость. При появлении в структуре заэвтектоидной стали свободного цементита (при С более 0,8 %) пропадает четкая связь между содержанием углерода и комплексом механических свойств: твердостью, ударной вязкостью и прочностью.
Перлит — эвтектоидная (мелкодисперсная механическая смесь) смесь двух фаз — феррита и цементита, содержит 1/8 цементита (точнее — согласно правилу "рычага", если пренебречь растворимостью углерода в феррите при комнатной температуре — 0,8/6,67) и поэтому имеет повышенную прочность и твёрдость по сравнению с ферритом. Поэтому доэвтектоидные стали гораздо более пластичны, чем заэвтектоидные.
Стали содержат до 2,14 % углерода. Фундаментом науки о стали как сплава железа с углеродом является диаграмма состояния сплавов железо-углерод — графическое отображение фазового состояния сплавов железа с углеродом в зависимости от их химического состава и температуры. Для улучшения механических и других характеристик сталей применяют легирование. Главная цель легирования подавляющего большинства сталей — повышение прочности за счет растворения легирующих элементов в феррите и аустените, образования карбидов и увеличения прокаливаемости. Кроме того, легирующие элементы могут повышать устойчивость против коррозии, термостойкость, жаропрочность и др. Такие элементы, как хром, марганец, молибден, вольфрам, ванадий, титан образуют карбиды, а никель, кремний, медь, алюминий карбидов не образуют. Кроме того, легирующие элементы уменьшают критическую скорость охлаждения при закалке, что необходимо учитывать при назначении режимов закалки (температуры нагрева и среды для охлаждения). При значительном количестве легирующих элементов может существенно измениться структура, что приводит к образованию новых структурных классов по сравнению с углеродистыми сталями.
Сталь в исходном состоянии достаточно пластична, её можно обрабатывать путём деформирования: ковать, вальцевать, штамповать. Характерной особенностью стали является её способность существенно изменять свои механические свойства после термической обработки, сущность которой заключается в изменении структуры стали при нагреве, выдержке и охлаждении, согласно специальному режиму. Различают следующие виды термической обработки:
отжиг;
нормализация;
закалки;
отпуск.
Чем богаче сталь на углерод, тем она твёрже после закалки. Сталь с содержанием углерода до 0,3 % (техническое железо) практически закаливанию не поддается.
Химико-термическая обработка сталей в дополнение к изменениям в структуре стали также приводит к изменению химического состава поверхностного слоя путём добавления различных химических веществ до определенной глубины поверхностного слоя. Эти процедуры требуют использования контролируемых систем нагрева и охлаждения в специальных средах. Среди наиболее распространённых целей, относящихся при использовании этих технологий, является повышение твёрдости поверхности при высокой вязкости сердцевины, уменьшение сил трения, повышения износостойкости, повышения устойчивости к усталости и улучшения коррозионной стойкости. К этим методам относятся:
Цементация © увеличивает твёрдость поверхности мягкой стали из-за увеличения концентрации углерода в поверхностных слоях.
Азотирование (N), как и цементация, увеличивает поверхностную твёрдость и износостойкость стали.
Цианирование и нитроцементация (N + C) — это процесс одновременного насыщения поверхности сталей углеродом и азотом. При цианировании используют расплавы солей, имеющих в своем составе группу NaCN, а при нитроцементации — смесь аммиака с газами, которые имеют в составе углерод (СО, СН4 и др.). После цианирования и нитроцементации проводят закаливание и низкий отпуск.
Сульфатирование (S) — насыщение поверхности серой улучшает приработки трущихся поверхностей деталей, уменьшается коэффициент трения.
Сталь: состав, свойства, применение
Сталь – это сплав железа с углеродом с добавлением различных примесей, оказывающих влияние на основные характеристики продукта. При заказе материала нужно учитывать, какими свойствами должна обладать сталь, так как механические и химические свойства стали напрямую влияют на то, где ее можно использовать.
Сталь – это один из основных промышленных материалов, используемых в разных отраслях, от машиностроения до медицины. Сырье представляет собой сплав, в котором соединяется железо с углеродом. Также добавляются и другие примеси, оказывающие значительное влияние на основные характеристики конечного продукта.
Состав стали
Основа состава – железо и углерод. В сплаве обычно содержится не более 2,14%.
Основной критерий классификации – химический состав. Вся представленная на рынке продукция разделена на два основных вида сырья:
- Углеродистая сталь. В ее составе кроме железа и углерода также есть фосфор, сера, марганец и кремний. В зависимости от процентного содержания углерода сырье разделено на высоко-, средне- и низколегированные марки. Этот материал можно применять, даже если перед вами стоит задача создать инструмент, использующийся под постоянным напряжением и высокими нагрузками.
- Легированная сталь. К основным компонентам добавлены дополнительные легирующие элементы. Среди них – множество типов веществ, от кремния, бора и азота до хрома, циркония, ниобия, вольфрама и титана. Это влияет не только на стоимость, но и на качество продукции, область использования и характеристики. В продаже вы найдете множество типов продукции – жаропрочные, цементуемые, улучшаемые стали. В зависимости от структуры сырье может быть доэвтектоидного, ледебуритного, эвтектоидного и заэвтектоидного типа.
Свойства и применение стали можно определить по ее марке.
В состав стали могут добавляться различные примеси. В зависимости от того, в каком количестве они представлены в рецептуре, выделяются два основных типа продукции:
- Обыкновенного качества. В составе такого сплава углерода не более 0,6%. Основные стандарты, используемые в изготовлении –ГОСТ 14637 и ГОСТ 380-94. Многие виды продукции в маркировке указываются как «Ст», что означает стандартное качество. На рынке этот тип сырья –один из наиболее доступных по стоимости.
- Качественный. К этой категории относятся легированная и углеродистая разновидности. Уже в маркировке указывается особенность состава, количество углерода в сотых долях. Основной стандарт, которого придерживаются изготовители, – ГОСТ 1577. Стоит такая сталь дороже, чем продукт обыкновенного качества. При этом материал намного более пластичен, хорошо сваривается и отлично защищен от механического воздействия.
Основные свойства стали
При заказе материала нужно учитывать, какими свойствами должна обладать сталь, чтобы подойти под конкретную область применения. Если не понимать такой особенности, есть риск покупки сырья, не соответствующего прочности, уровню защиты от коррозии, качеству свариваемости и другим характеристикам.
Рассмотрим основные характеристики материала.
Механические
Показывают, какие варианты обработки можно выбирать и где использовать. Есть несколько основных параметров:
- Прочность. Показывает, какую нагрузку можно прикладывать к детали, пока не появятся первые признаки разрушения. Для каждой марки материала указывается этот параметр, а также предел текучести.
- Предел прочности. Указывает на защищенность материала от механического напряжения.
- Предел текучести. Дает представление о растягиваемости материала. Это помогает понимать, насколько сильно можно растянуть материал до момента, пока процесс будет продолжаться, даже когда нагрузка перестанет прикладываться.
- Пластичность. Чтобы материал можно было использовать в изготовлении различных типов деталей и заготовок. Такая характеристика помогает сырью менять форму, прописывается, чтобы определить параметры относительного угла изгиба и удлинения.
- Ударная вязкость. Напрямую связана с пределами динамических нагрузок. Характеристика указывает, насколько сильный удар сможет выдержать готовое изделие или заготовка, прежде чем начнет окончательно разрушаться.
- Твердость. Показывает предельную нагрузку по площади до момента возникновения вдавливания. Может определяться разными методами, как Бринелля, так и Виккерса.
Физические
Параметры дают понять, возможно ли применение стали в строительстве или различных областях промышленности. Есть три значимых центральных показателя:
- Плотность. В характеристике зашифровано, какая масса стали содержится в указанном объеме. Чем выше прочность, тем больше защищенность от деформации, сильного давления и других потенциальных угроз.
- Теплопроводность. Параметр дает представление, насколько быстро тепло передается по заготовке. Параметр очень важен для промышленности, к примеру, при изготовлении радиаторов или труб для теплотрасс.
- Электропроводность. Позволяет оценить безопасность применения материала в местах, где есть риск удара током. Также сплав можно выбрать и для установки в сферах, где имеют значение его проводниковые характеристики.
Химические
Весь набор параметров дает представление о том, как поведет себя материал в разных температурах или средах с разной степенью агрессивности. Есть четыре основных параметра:
- Окисляемость. Процесс окисления вызывается контактом металла с кислородом, может стимулироваться увеличением температуры. На уровень окисляемости влияет содержание углерода и среда, в которой используются изделия. Чем больше подверженность окислению, тем быстрее на поверхности появится ржавчина.
- Защищенность от коррозии. Указывается для разных сред. Может меняться при использовании на открытом воздухе, а также при контакте с водой или почвой.
- Жаростойкость. Помогает понять, при каком нагреве на металле начинает постепенно развиваться коррозия. Характеристика напрямую связана с окисляемостью.
- Жаропрочность. От жаростойкости отличается тем, что затрагивает не коррозийную стойкость и защиту от окалины, а саму прочность. Знание параметров поможет вам понять, до какой температуры нагреется заготовка, прежде чем ее можно будет сломать или деформировать.
Технологические
Показывают возможность обработки с применением различных технологий. Центральные параметры:
- Ковкость. Чем она выше, тем быстрее можно будет придать форму постоянным внешним механическим воздействием.
- Жидкотекучесть. Если этот параметр находится на высоком уровне, расплавленный материал сможет лучше заполнять пустоты.
- Свариваемость. Помогает соединять различные заготовки между собой. Отличается как в зависимости от типа использованной сварки, так и самого сплава.
- Обрабатываемость резанием. Сталь можно обрабатывать разными видами режущих инструментов для создания металлопроката и деталей с разными параметрами и областью применения.
Применение стали
Механические и химические свойства стали напрямую влияют на то, где ее можно использовать. Проще всего определиться со сферой по марке, указанной на сырье. Так продукцию с хорошей жаропрочностью можно использовать в средах, где есть риск воздействия постоянных высоких температур. То же относится к маркам, отличающимся хорошей свариваемостью и коррозийной стойкостью.
По сферам производства можно выделить несколько основных категорий:
- Строительные. Применяются при создании металлоконструкций различного масштаба, арматуры, обшивки стен. Необходимые характеристики отличаются в зависимости от области применения. Так для одних видов сплава важна стойкость к коррозии во влажных средах, для других – защита от окисления при контакте с почвой. Но все используемые типы сырья должны хорошо свариваться, иметь повышенную прочность при постоянном или периодическом сильном механическом давлении. В сочетании с важной для строителей доступностью стоимости такими параметрами обладают низколегированные сплавы и варианты обычного качества.
- Инструментальные. Применяются для изготовления инструментов различного назначения. Все сплавы разделены на три категории. Первая используется для создания штампованных деталей. Вторая – при производстве режущего инструмента, третья – измерительного с высокой точностью. Лучшим решением станет заказ высоколегированных и высокоуглеродистых материалов. Они не только хорошо защищены от износа, но и отличаются твердостью, хорошей теплопроводностью.
- Конструкционные. Разнообразны по сфере использования: применяются для металлоконструкций, а также для деталей, крупных механических узлов. Лучшее решение – применение сплава с малой долей марганца. Легирование позволяет расширить список полезных характеристик. Эксперты рекомендуют обратить внимание на высокопрочные, автоматные, износостойкие и другие марки.
Также всегда можно заказать материалы со специальными характеристиками для конкретной зоны применения. Это могут быть как сплавы с повышенной жаропрочностью, так и защищенные от окисления при контакте с кислородом, хорошо плавящиеся, электропроводные и многие другие.
Читайте также: