Углеродистая сталь где используется
Углеродистые стали подразделяют на три основные группы: углеродистые стали обыкновенного качества, качественные углеродистые стали и углеродистые стали специального назначения (автоматная, котельная и др.).
Стали углеродистые обыкновенного качества соответствуют ГОСТ 380–2005. Их поставляют в виде проката в нормализованном состоянии и применяют в машиностроении, строительстве и в других отраслях народного хозяйства.
Углеродистые стали обыкновенного качества обозначают буквами Ст и цифрами от 0 до 6.
Цифры — это условный номер марки. Чем больше число, тем больше содержание углерода, выше прочность и ниже пластичность.
В зависимости от назначения и гарантируемых свойств углеродистые стали обыкновенного качества поставляют трех групп: А, Б, В. Индексы справа от номера марки означают:
- кп — кипящая;
- пс — полуспокойная;
- сп — спокойная.
Между индексом и номером марки может стоять буква Г, это означает повышенное содержание марганца. Вобозначениях марок слева от букв Ст указаны группы (Б и В) стали. Стали обыкновенного качества подразделяют на категории. Категорию стали обозначают соответствующей цифрой правее индекса степени раскисления. Например, Ст5Гпс3 означает: сталь группы А, марки Ст5, с повышенным содержанием марганца, полуспокойная, третьей категории. Сталь первой категории пишется без указания номера последней, например Ст4пс.
Химический состав сталей группы А не регламентируют, а гарантируют их механические свойства, определяемые соответствующим государственным стандартом. Стали этой группы применяют обычно для деталей, не подвергаемых в процессе изготовления горячей обработке (сварке, ковке и др.).
Сталь группы Б поставляют по химическому составу и применяют для деталей, которые проходят в процессе изготовления термообработку и горячую обработку давлением (штамповку, ковку). Механические свойства стали группы Б не гарантируют. Сталь группы Б поставляют по механическим свойствам, соответствующим нормам для стали группы А, и по химическому составу, соответствующему нормам для стали группы Б. Сталь группы Б используют, в основном, для сварных конструкций.
2. Стали углеродистые качественные конструкционные
Стали углеродистые качественные конструкционные соответствуют ГОСТ 1050–88. От сталей обыкновенного качества они отличаются меньшим содержанием серы, фосфора и других вредных примесей, более узкими пределами содержания углерода в каждой марке и в большинстве случаев — более высоким содержанием кремния и марганца.
Сталь маркируют двузначными числами, которые обозначают содержание углерода в сотых долях процента, и поставляют с гарантированными показателями химического состава и механических свойств. Буква Г в марках этих сталей также указывает на повышенное содержание марганца (до 1%). Сталь углеродистую качественную поставляют катаной, кованой, калиброванной, круглой с особой отделкой поверхности (серебрянка). К сталям углеродистым специального назначения относят стали (ГОСТ 1414–75) с хорошей и повышенной обрабатываемостью резанием (автоматные стали). Они предназначены, в основном, для изготовления деталей массового производства.
Автоматные стали с повышенным содержанием серы и фосфора имеют хорошую обрабатываемость. Обрабатываемость резанием улучшают также введением в стали технологических добавок — селена, свинца, теллура. Автоматные стали маркируют буквой А и цифрами, показывающими среднее содержание углерода в сотых долях процента. Применяют следующие марки автоматной стали: А12, А20, А30, А40Г. Из стали А12 изготовляют неответственные детали, из сталей других марок — более ответственные детали, работающие при значительных напряжениях и повышенных давлениях. Сортамент автоматной стали предусматривает изготовление сортового проката в виде прутков круглого, квадратного и шестигранного сечений.
Стали листовые (котельные, ГОСТ 5520–79 и ТУ) для котлов и сосудов, работающих под давлением, применяют для изготовления паровых котлов, судовых топок, камер горения газовых турбин и других деталей. Они должны работать при переменных давлениях и температуре до 450°С. Кроме того, котельная сталь должна хорошо свариваться. Для получения таких свойств в углеродистую сталь вводят технологическую добавку (титан) и дополнительно раскисляют ее алюминием. Выпускают следующие марки углеродистой котельной стали: 12К, 15К, 16К, 18К, 20К, 22К с содержанием в них углерода от 0,08 до 0,28%. Эти стали поставляют в виде листов толщиной до 200 мм и поковок в состоянии после нормализации и отпуска. Свойства и назначение качественных конструкционных сталей приведены в табл. 1.
3. Влияние легирующих элементов. Маркировка легированных сталей
Для улучшения физических, химических, прочностных и технологических свойств стали легируют, вводя в их состав различные легирующие элементы (хром, марганец, никель и др.). Стали могут содержать один или несколько легирующих элементов, которые придают им специальные свойства.
Таблица 1. Механические свойства качественной конструкционной стали
прочности
при растяжении
Основной структурной составляющей в конструкционной стали является феррит, занимающий в структуре не менее 90% по объему. Растворяясь в феррите, легирующие элементы упрочняют его.
Твердость феррита (в состоянии после нормализации) наиболее сильно повышают кремний, марганец и никель — элементы с решеткой, отличающейся от решетки -Fe. Молибден, вольфрам и хром влияют слабее. Большинство легирующих элементов, упрочняя феррит и мало влияя на пластичность, снижают ударную вязкость (за исключением никеля). При содержании до 1% марганец и хром повышают ударную вязкость. Свыше этого содержания ударная вязкость снижается, достигая уровня нелегированного феррита при 3% Сr и 1,5% Мn.
Повышению конструктивной прочности при легировании стали способствует увеличение прокаливаемости. Улучшение прокаливаемости стали достигается при ее легировании несколькими элементами, например Сr + Мо, Cr + Ni, Cr + Ni + Mo и другими сочетаниями различных элементов.
Высокая конструктивная прочность стали обеспечивается рациональным содержанием в ней легирующих элементов. Избыточное легирование после достижения необходимой прокаливаемости приводит к снижению вязкости и облегчает разрушение стали.
Хром оказывает благоприятное влияние на механические свойства конструкционной стали. Его вводят в сталь в количестве до 2%; он растворяется в феррите и цементите.
Никель — наиболее ценный легирующий элемент. Его вводят в сталь в количестве от 1 до 5%.
Марганец вводят в сталь до 1,5%. Он распределяется между ферритом и цементитом. Никель заметно повышает предел текучести стали, но делает ее чувствительной к перегреву. Всвязи с этим для измельчения зерна одновременно с никелем в сталь вводят карбидообразующие элементы.
Кремний является некарбидообразующим элементом, и его количество в стали ограничивают до 2%. Он значительно повышает предел текучести стали и при содержании более 1% снижает вязкость и повышает порог хладноломкости.
Молибден и вольфрам являются карбидообразующими элементами, которые большей частью растворяются в цементите. Молибден в количестве 0,2…0,4% и вольфрам в количестве 0,8…1,2% в комплексно легированных сталях способствуют измельчению зерна, увеличивают прокаливаемость и улучшают некоторые другие свойства стали.
Ванадий и титан — сильные карбидообразущие элементы, которые вводят в небольшом количестве (до 0,3% V и 0,1% Ti) в стали, содержащие хром, марганец, никель, для измельчения зерна. Повышенное содержание ванадия, титана, молибдена и вольфрама в конструкционных сталях недопустимо из-за образования специальных труднорастворимых при нагреве карбидов. Избыточные карбиды, располагаясь по границам зерен, способствуют хрупкому разрушению и снижают прокаливаемость стали.
Бор вводят для увеличения прокаливаемости в очень небольших количествах (0,002…0,005%).
Марка легированной качественной стали состоит из сочетания букв и цифр, обозначающих ее химический состав. Легирующие элементы имеют следующие обозначения (ГОСТ 4543–71):
- хром (X),
- никель (Н),
- марганец (Г),
- кремний (С),
- молибден (М),
- вольфрам (В),
- титан (Т),
- алюминий (Ю),
- ванадий (Ф),
- медь (Д),
- бор (Р),
- кобальт (К),
- ниобий (Б),
- цирконий (Ц).
Цифра, стоящая после буквы, указывает на содержание легирующего элемента в процентах. Если цифра не указана, то легирующего элемента содержится до 1,5%.
В качественных конструкционных легированных сталях две первые цифры марки показывают содержание углерода в сотых долях процента. Высококачественные легированные стали имеют в конце марки букву А, а особо высококачественные — Ш. Например, сталь марки 30ХГСН2А: высококачественная легированная сталь содержит 0,30% углерода, до 1% хрома, марганца, кремния и до 2% никеля; сталь марки 95Х18Ш: особо высококачественная, выплавленная методом электрошлакового переплава с вакуумированием, содержит 0,9…1,0% углерода; 17…19% хрома, 0,030% фосфора и 0,015% серы. Легированные конструкционные стали делят на цементуемые, улучшаемые и высокопрочные.
4. Цементуемые, улучшаемые и высокопрочные стали
Цементуемые стали — это низкоуглеродистые (до 0,25 С), низко- (до 2,5%) и среднелегированные (2,5…10% суммарное содержание легирующих элементов) стали. Они предназначены для деталей машин и приборов, работающих в условиях трения и испытывающих ударные и переменные нагрузки.
Стали марки 15ХА с пределом прочности σв МПа предназначены для изготовления небольших деталей, работающих в условиях трения при средних давлениях и скоростях. Для изготовления ответственных деталей, работающих при больших скоростях, высоких давлениях и ударных нагрузках, используется сталь марок 18ХГ и 25ХГМ. Для крупных, ответственных, тежелонагруженных деталей применяются стали 20ХН и 20Х2Н4А.
При изготовлении крупных, особо ответственных, тяжелонагруженных деталей, работающих при больших скоростях с наличием вибрационных и динамических нагрузок, используется сталь с пределом прочности в МПа марки 18Х2Н4МА.
Работоспособность таких деталей зависит от свойств сердцевины и поверхностного слоя металла. Цементуемые стали насыщают с поверхности углеродом (цементуют) и подвергают термической обработке (закалке и отпуску). Такая обработка обеспечивает высокую поверхностную твердость (HRC 58…63) и сохраняет требуемую вязкость и заданную прочность сердцевины металла.
Улучшаемые легированные стали — среднеуглеродистые (0,25…0,6% С) и низколегированные стали. Для обеспечения необходимых свойств (прочности, пластичности, вязкости) эти стали термически улучшают, подвергая закалке и высокому отпуску (при 500…600°С).
Улучшаемые и цементуемые стали после термической обработки дают прочность до σв МПа и вязкость до КС= 0,8…1,0 МДж/м 2 . Для создания новых современных машин такой прочности недостаточно. Необходимы стали с пределами прочности σв МПа. Для этих целей применяют комплексно легированные и мартенситостареющие стали. Свойства таких сталей и их назначение показаны в табл. 2.
Таблица 2. Улучшаемые легированные стали
прочности
при
растяжении
вязкость
Комплексно легированные стали — это среднеуглеродистые (0,25…0,6% С) легированные стали, термоупрочняемые при низком отпуске или подвергающиеся термомеханической обработке.
Мартенситостареющие стали — это новый класс высокопрочных легированных сталей на основе безуглеродистых (не более 0,03% С) сплавов железа с никелем, кобальтом, молибденом, титаном, хромом и другими элементами. Мартенситостареющие стали закаливают на воздухе от 800…860°С с последующим старением при 450…500°С.
5. Углеродистые инструментальные стали
Инструментальные стали — это особая группа сталей, обладающих специфическими свойствами. Эти стали предназначены для изготовления режущего и измерительного инструмента, штампов.
По условиям работы инструмента к углеродистым инструментальным сталям предъявляют следующие требования:
- стали для режущего инструмента (резцы, сверла, метчики, фрезы и др.) должны обладать высокой твердостью, износостойкостью и теплостойкостью;
- стали для измерительного инструмента должны быть твердыми, износостойкими и длительное время сохранять размеры и форму инструмента;
- стали для штампов (холодного и горячего деформирования) должны иметь высокие механические свойства (твердость; износостойкость, вязкость), сохраняющиеся при повышенных температурах;
- стали для штампов горячего деформирования должны обладать устойчивостью против образования поверхностных трещин при многократном нагреве и охлаждении.
Инструментальные углеродистые стали (ГОСТ 1435–99) выпускают следующих марок: У7, У8, У8Г, У9, У10, У11, У12 и У13. Цифры указывают на содержание углерода в десятых долях процента. Буква Г, например У8Г, после цифры означает, что сталь имеет повышенное содержание марганца, что обеспечивает большую твердость сплава.
Марка инструментальной углеродистой стали высокого качества имеет букву А, например У12А: инструментальная углеродистая сталь высокого качества, содержащая 1,2% С. Инструменты, применение которых связано с ударной нагрузкой, например зубила, бородки, молотки, изготовляют из сталей У7А, У8А. Инструменты, требующие большой твердости, но не подвергающиеся ударам, например сверла, метчики, развертки, шаберы, напильники, изготовляют из сталей У12А, У13А. Стали У7—У9 подвергают полной, а стали У10— У13 — неполной закалке.
Недостатком углеродистых инструментальных сталей является их низкая теплостойкость — способность сохранять большую твердость при высоких температурах нагрева. При нагреве выше 200°С инструмент из углеродистых сталей теряет твердость, т.е. при повышенных температурах нужно применять инструменты из других сталей.
6. Легированные инструментальные стали
Легированные инструментальные стали имеют ГОСТ 5950– 2000. Легирующие элементы, вводимые в инструментальные стали, увеличивают теплостойкость (вольфрам, молибден, кобальт, хром), закаливаемость (марганец), вязкость (никель), износостойкость (вольфрам). По сравнению с углеродистыми легированные инструментальные стали имеют преимущества:
- хорошая прокаливаемость;
- большая пластичность в отожженном состоянии;
- значительная прочность в закаленном состоянии, более высокие режущие свойства.
Низколегированные инструментальные стали содержат до 2,5% легирующих элементов, имеют высокую твердость (HRC 62…69), значительную износостойкость, но малую теплостойкость (200…260°С). Их используют для изготовления инструмента более сложной формы. В низколегированных сталях X, 9ХС, ХВГ, ХВСГ основной легирующий элемент — хром. Сталь X легирована только хромом. Повышенное содержание хрома увеличивает ее прокаливаемость. Сталь X прокаливается в масле полностью в сечении до 25 мм, сталь У10 — только в сечении до 5 мм.
Применяют сталь X для изготовления токарных, строгальных и долбежных резцов. Сталь 9ХС, кроме хрома, легирована кремнием. По сравнению со сталью X она имеет большую прокаливаемость — до 35 мм; повышенную теплостойкость — до 250…260°С (сталь X — до 200…210°С) и лучшие режущие свойства. Из стали марки 9ХС изготовляют сверла, развертки, фрезы, метчики, плашки. Сталь ХВГ легирована хромом, вольфрамом и марганцем; имеет прокаливаемость на глубину до 45 мм. Сталь ХВГ используют для производства крупных и длинных протяжек, длинных метчиков, длинных разверток и т.п.
Сталь ХВСГ — сложнолегированная и по сравнению со сталями 9ХС и ХВГ лучше закаливается и прокаливается. При охлаждении в масле она прокаливается полностью в сечении до 80 мм. Она менее чувствительна к перегреву. Теплостойкость ее такая же, как у стали 9XС. ХВСГ применяют для изготовления круглых плашек, разверток, крупных протяжек и другого режущего инструмента.
Высоколегированные инструментальные стали содержат вольфрам, хром и ванадий в большом количестве (до 18% основного легирующего элемента); имеют высокую теплостойкость (600…640°С). Их используют для изготовления высокопроизводительного режущего инструмента, предназначенного для обработки высокопрочных сталей и других труднообрабатываемых материалов. Такие стали называют инструментальными быстрорежущими (ГОСТ 19265–73). Быстрорежущие стали обозначают буквой Р, цифра после которой указывают содержание вольфрама. Содержание хрома (4%) и ванадия (2%) в марках быстрорежущих сталей не указывают. В некоторые быстрорежущие стали дополнительно вводят молибден, кобальт и большое количество ванадия. Марки таких сталей содержат соответственно буквы М, К, Ф и цифры, указывающие их количество. Для изготовления измерительных инструментов применяют X, ХВГ и другие стали, химический состав которых приведен в ГОСТ 5950–2000.
Для измерительного инструмента большое значение имеет изменение размеров закаленного инструмента с течением времени. Поэтому при термической обработке измерительного инструмента внимание уделяется стабилизации напряженного состояния. Это достигается режимом низкого отпуска — при температуре 120…130°С в течение 15…20 ч и обработкой при температурах ниже нуля (до –60°С).
Штампы холодного деформирования небольших размеров (сечением 25…30 мм), простой формы, работающие в легких условиях, изготовляют из углеродистых сталей У10, УН, У12. Штампы сечением 75…100 мм более сложной формы и для более тяжелых условий работы изготовляют из сталей повышенной прокаливаемости X, ХВГ. Для изготовления инструмента с высокой твердостью и повышенной износостойкостью, а также с малой деформируемостью при закалке используют стали с высокой прокаливаемостью и износостойкостью, например высокохромистую сталь Х12Ф1 (11…12,5% Сr; 0,7…0,9% V).
Для инструмента, подвергающегося в работе большим ударным нагрузкам (такого как пневматические зубила, режущие ножи для ножниц холодной резки металла), применяют стали с меньшим содержанием углерода, повышенной вязкости — 4ХС, 6ХС, 4ХВ2С и др.
Молотовые штампы горячего деформирования изготовляют из сталей 5ХНМ, 5ХГМ, 5ХНВ. Эти стали содержат одинаковое количество (0,5…0,6%) углерода и легированы хромом. Такое содержание углерода позволяет получить достаточно высокую ударную вязкость; хром повышает прочность и увеличивает прокаливаемость сталей. Никель вводят в эти стали с целью повышения вязкости и улучшения прокаливаемости. Вольфрам и молибден повышают твердость и теплостойкость, уменьшают хрупкость, измельчают зерно и уменьшают склонность стали к перегреву. Марганец как более дешевый легирующий элемент является заменителем никеля. Для сталей молотовых штампов характерна глубокая прокаливаемость.
7. Коррозионно-стойкие стали
Коррозионно-стойкой (или нержавеющей) называют сталь, обладающую высокой химической стойкостью в агрессивных средах. Коррозионно-стойкие стали получают легированием низкои среднеуглеродистых сталей хромом, никелем, титаном, алюминием, марганцем. Антикоррозионные свойства сталям придают введением в них большого количества хрома или хрома и никеля. Наибольшее распространение получили хромистые и хромоникелевые стали.
Хромистые стали более дешевые, однако хромоникелевые обладают большей коррозионной стойкостью. Содержание хрома в нержавеющей стали должно быть не менее 12%. Наибольшая коррозионная стойкость сталей достигается после термической и механической обработки (табл. 3).
Таблица 3. Химический состав (%) некоторых нержавеющих сталей
Углеродистая сталь
Углеродистая сталь отличается содержанием углерода до 2,14% без наличия легирующих элементов, небольшим количеством примесей в составе, и небольшим содержанием магния, кремния и марганца. Это в свою очередь влияет на свойства и особенность применения. Она является основным видом продукции металлургической промышленности.
Состав
В зависимости от количества углерода, разделяют углеродистую и легированную сталь. Наличие углерода придает материалу прочность и твердость, а также уменьшает вязкость и пластичность. Его содержание в сплаве на уровне до 2,14%, а минимальное количество примесей, обусловленное технологическим процессом изготовления, позволяет основной массе до 99,5% состоять из железа.
Высокая прочность и твёрдость - вот что характеризует углеродистую сталь.
Примеси, которые постоянно входят в структуру углеродистой стали, имеют небольшое содержание. Марганец и кремний не превышают 1 %, а сера и фосфор находятся в пределах 0,1 %. Увеличение количества примесей характерно для другого типа стали, который называют легированным.
Отсутствие технической возможности полного удаления примесей из готового сплава, позволяет входить в состав углеродистой стали таким элементам как:
- водороду;
- азоту;
- кислороду;
- кремнию;
- марганцу;
- фосфору;
- сере.
Наличие этих веществ обусловлено методом плавки стали: конвертерным, мартеновским или другим. А углерод, добавляется специально. Если количество примесей, трудно отрегулировать, то корректируя уровень углерода, в составе будущего сплава, влияют на свойства готового изделия. При наполнении материала углеродом до 2,4 %, стали относят к углеродистым.
Характеристика
Характеристики и структуру металла меняют, используя термическую обработку, посредством которой, достигают нужной твердости поверхности или других требований для применения стальной конструкции. Однако, не все структурные свойства поддаются корректировке с помощью термических методов. К таким структурно-нечуствительным характеристикам относят жесткость, выраженную модулем упругости или модулем сдвига. Это учитывают при проектировании ответственных узлов и механизмов в различных сферах машиностроения.
В случаях, когда расчет прочности узла требует применения деталей малых размеров, способных выдержать требуемую нагрузку, применяют термическую обработку. Такое воздействие на «сырую» сталь позволяет увеличить жесткость материала в 2-3 раза. К металлу, который подвергают такому процессу, предъявляют требования по количеству углерода и других примесей. Называют эту сталь – повышенного качества.
Классификация углеродистых сталей
По направленности применения продукции, углеродистую сталь разделяют на инструментальную и конструкционную.
Последнюю из них используют для возведения различных строений и остовов деталей. Из инструментальных, изготавливают прочный инструмент для выполнения любых работ, вплоть до обработки металлов резанием. Применение металлических изделий в хозяйстве, потребовало выделить сталь в разные категории, обладающие специфическими свойствами: жаропрочную, криогенную и коррозионно-стойкую.
По способу получения углеродистые стали делят на:
- электростали;
- мартеновские;
- кислородно-конвертерные.
Различия структуры сплава обусловлены наличием разных примесей, характерных для того или иного способа плавки.
Отношение стали к химически активным средам, позволило разделить изделия на:
- кипящие;
- полуспокойные;
- спокойные.
Содержание углерода делит сталь на 3 категории:
- заэвтектоидные, в которых количество углерода превышает 0,8 %;
- эвтектоидные, с содержанием на уровне 0,8 %;
- доэвтектоидные – менее 0,8 %.
Именно структура, является характерным признаком, при определении состояния металла. У доэвтектоидных сталей, структура состоит из перлита и феррита. У эвтектоидных – чистый перлит, а заэвтектоидные, характеризуются перлитом с примесями вторичного цементита.
При увеличении количества углерода, сталь повышает прочность и уменьшает пластичность. Большое влияние оказывается также на вязкость и хрупкость материала. При повышении процентного содержания углерода, уменьшается ударная вязкость и повышается ломкость материала. Не случайно, при содержании, на уровне более 2,4 %, металлические сплавы относят уже к чугунам.
По количеству углерода, в составе сплава, сталь бывает:
- низкоуглеродистая (до 0,29 %);
- среднеуглеродистая (от 0,3 до 0,6 %);
- высокоуглеродистая (более 0,6 %).
Маркировка
При обозначении углеродистых сталей обычного качества, используют буквы Ст, которые сопровождаются цифрами, характеризующими содержание углерода. Одна цифра показывает количество, увеличенное в 10, а две цифры – в 100 раз. При гарантии механического состава сплава, перед обозначением добавляют Б, а соблюдение химических составляющих веществ – В.
В окончании маркировки, две буквы показывают степень раскисления: пс – полуспокойного, кп – кипящего состояния сплавов. Для спокойных металлов этот показатель не указывают. Увеличенное количество марганца в структуре изделия, обозначают буквой Г.
При обозначении углеродистых сталей высокого качества, используемых при изготовлении инструментов, применяют букву У, рядом с которой прописывают число, подтверждающее количество процентов углерода в 10-кратном размере, независимо от того, будет оно двухзначным или однозначным. Для выделения сплавов повышенного качества, к обозначению инструментальных сталей добавляют букву А.
Примеры обозначения углеродистых сталей: У8, У12А, Ст4кп, ВСт3, Ст2Г, БСт5пс.
Производство
Изготовлением металлических сплавов занимается металлургическая промышленность. Специфика процесса получения углеродистой стали, заключается в переработке чугунных заготовок с уменьшением таких взвесей, как сера и фосфор, а также углерод, до требуемой концентрации. Различия методики окисления, посредством которой удаляют углерод, позволяет выделить различные виды плавки.
Кислородно-конвертерный способ
Основой методики был бессемеровский метод, который предусматривает продувку жидкого чугуна воздухом. Во время этого процесса, углерод окислялся и удалялся из сплава, после чего, чугунные слитки постепенно превращаются в сталь. Производительность данной методики высока, но сера и фосфор оставались в металле. Кроме того, углеродистая сталь насыщается газами, в том числе, азотом. Это улучшает прочность, но снижает пластичность, сталь становится более склонной к старению и изобилию неметаллическими элементами.
Учитывая низкое качество стали, получаемой бессемеровским методом, его перестали использовать. На замену пришел кислородно-конвертерный способ, отличием которого является использование чистого кислорода, вместо воздуха, при выполнении продувки жидкого чугуна. Использование определенных технических условий, при продувке, значительно снизило количество азота и других вредных примесей. В результате, углеродистая сталь, полученная кислородно-конвертерным способом, по качеству приближена к сплавам, переплавляемым в мартеновских печах.
Технико-экономические показатели конверторного способа подтверждают целесообразность такой плавки и позволяют вытеснить устаревшие методы изготовления стали.
Мартеновский метод
Особенностью способа получения углеродистой стали, является выжигание углерода из чугунных сплавов не только с помощью воздуха, но и за счет добавления железных руд и ржавых изделий из металла. Этот процесс обычно происходит внутри печей, к которым подводят подогретый воздух и горючий газ.
Размер таких плавильных ванн очень велик, они могут вмещать до 500 тонн расплавленного металла. Температура в таких емкостях поддерживается на уровне 1700 ºC, а выжигание углерода происходит в несколько этапов. Сначала, благодаря избытку кислорода в горючих газах, а когда образуется шлак над расплавленным металлом, посредством оксидов железа. При их взаимодействии образуются шлаки фосфатов и силикатов, которые, в дальнейшем удаляются и сталь приобретает требуемые по качеству свойства.
Плавка стали в мартеновских печах проходит около 7 часов. Это позволяет отрегулировать нужный состав сплава, при добавлении различных руд или лома. Углеродистая сталь давно изготавливается этим методом. Такие печи, в наше время, можно найти на территории стран бывшего Советского Союза, а также – в Индии.
Электротермический способ
Изготовить качественную сталь с минимальным содержанием вредных примесей, удается при плавке в вакуумных топках электродуговых или индукционных печей. Благодаря улучшенным свойствам электростали, удается изготовить жаростойкие и инструментальные сплавы. Процесс преобразования сырья в углеродистую сталь, происходит в вакууме, благодаря чему качество полученных заготовок, будет выше, относительно рассмотренных ранее методов.
Стоимость такой обработки металлов дороже, поэтому данный метод используют при технологической необходимости в качественном изделии. Для удешевления технологического процесса используют специальный ковш, который разогревают внутри вакуумной емкости.
Применение
Углеродистая сталь, благодаря своим свойствам, нашла широкое применение в различных отраслях народного хозяйства, особенно, в машиностроении. Использование в конструкторских расчетах способности металла сопротивляться нагрузкам и иметь высокие пределы усталости, позволяет изготавливать из углеродистой стали такие ответственные детали машин, как: маховики, зубчатые передачи редукторов, корпуса шатунов, коленчатые валы, поршни плунжерных насосов, технологическую оснастку для деревообрабатывающей и легкой промышленности.
Высокоуглеродистые стали с увеличенным количеством марганца, применяют для изготовления таких деталей, как пружины, рессоры, торсионы и подобные узлы, требующие упругости сплава. Инструментальные сплавы повышенного качества, широко применяют при производстве инструментов, которыми обрабатывают металлы: резцы, сверла, зенковки.
Использование углеродистой стали с низким и средним количеством содержания углерода, нашло применение при возведении металлических конструкций и коммуникаций. Специальные прокатные станы металлургических комбинатов изготавливают, постоянно пользующиеся спросом, различные профили:
- уголки;
- швеллеры;
- трубы;
- двутавры;
- другие, в том числе заказные, виды профилей.
Во всех отраслях широко используется листовой прокат, который отличается размерами, качеством и толщиной изготавливаемых изделий.
Используя специфические свойства углеродистых сталей, их применяют в различных областях народного хозяйства. Знание специфики отличий тех или иных сплавов, позволит грамотно и технологично применить требуемый материал в нужном месте.
Всё об углеродистой стали – от состава до применения
Центральное место во всем промышленном материаловедении занимает сталь. С ее помощью успешно решают большинство технических задач. К услугам инженера — огромный диапазон вариантов: начиная от самой простой строительной арматуры и заканчивая хромоникелевой нержавейкой, способной работать в условиях открытого космоса.
Наибольшего внимания заслуживает углеродистая сталь и ее марки. Они лишены значимых легирующих добавок и потому представляют собой исключительно композицию железа и углерода в чистом виде. Познакомиться с углеродистыми сталями поближе — значит понять основополагающие принципы, как ведут себя все сплавы из категории «черных» и от чего зависят их рабочие характеристики.
Классификация и марки
Лишь у некоторых уникальных промышленных материалов есть полноценные имена — в честь их изобретателей или каких-то особенных свойств. Остальные довольствуются условным обозначением — т.н. маркой, внутри которой зашифрована ключевая информация. Марку можно сравнить с разновидностью, чей состав и структура жестко определены и неизменны.
Условно все углеродистые стали делят на несколько категорий, используя два определяющих параметра: химсостав материала или его функциональное применение. Причем марки, соседствующие в одной группе по первому делению, с большой долей вероятности станут коллегами и при оценке рабочих свойств.
По химическому составу
Ключевым параметром, на который обращают внимание при знакомстве с любой маркой стали, становится процент содержания углерода. Различают три вида:
05кп, 08кп, 10, 15, 20, Ст0, Ст1, Ст2
25, 35, 45, 55, Ст3, Ст4, Ст5, Ст6
58, 60, 65, 70, 75, 80, 85, У9, У12, У13
Низкоуглеродистые стали предназначены преимущественно для изготовления сварных изделий — за счет малой доли углерода они очень податливы к любым процессам сварки, не склонны к образованию флокенов и трещин, легко поддаются механическому резанию и изгибу. В целом, они вязкие и с низкой прочностью.
Термическое упрочнение (закалка, улучшение) не дают ощутимого эффекта по росту прочности или твердости. Зато собственное низкое содержание углерода позволяет применить к материалу особый вид химико-термической обработки — цементацию. Поверхностные слои насыщаются углеродом из внешнего источника, после чего реакция на закалку становится уже совершенно иной. Твердость поверхности зашкаливает, а сердцевина по-прежнему остается мягкой и может работать как гаситель напряжений.
Среднеуглеродистые стали — наиболее ходовые и популярные благодаря своей «серединности» и универсальности. Они лишены недостатков остальных граничных групп и обладают собственными достоинствами.
В частности, такие марки стабильно и уверенно реагируют на закалку, набирая нужную прочность и твердость без дополнительных ухищрений. Но сварку следует вести с осторожностью — увеличенная доза углерода может приводить к развитию трещин при кристаллизации шва.
Их используют для производства деталей машин и механизмов, которые постоянно испытывают рабочие нагрузки. Это разнообразные шестерни, рычаги, колеса, шкивы ременных передач, валы и оси. Углеродистые стали всегда дешевле любых легированных, поэтому марки со средним содержанием углерода предпочтительны, если конечное изделие не испытывает негативного воздействия коррозии, нагрева или охлаждения. Тяжелая работа в обычных условиях — это пример применения таких сплавов.
Высокоуглеродистые стали вообще не рекомендуется варить: они очень склонны к образованию трещин, флокенов и остаточных напряжений в зоне шва. За счет высокой доли углерода на закалку реагируют лучше всех остальных. Результатом становится очень высокая твердость и прочность, вплоть до возникновения пружинящих свойств.
Такие марки закладывают для изготовления специальных деталей машин, пружин различной конфигурации (плоские, витые, тарельчатые), режущего и слесарного инструмента.
По области применения
С учетом химического состава, «круг обязанностей» каждой марки уже предопределен, как и сфера, где ее можно использовать максимально эффективно. Поэтому все углеродистые стали разделили на три категории по области применения:
Категория | Группа | Примеры марок |
Конструкционные | Общего назначения | Ст0, Ст1, Ст2, Ст3, Ст4, Ст5, Ст5 |
Качественные | 05кп, 08кп, 10, 15, 20, 35, 45, 50, 55, 60 | |
Повышенной обрабатываемости | А11, А20, А30, А35 | |
Инструментальные | - | У8, У10, У11, У12А |
Специальные | Рессорно-пружинные | 65, 70, 75, 80, 85 |
Для строительных конструкций | С235, С285, С590К | |
Подшипниковые | ШХ4 | |
Для крановых рельс | К63 |
Конструкционные углеродистые стали предназначены для изготовления деталей машин и металлоконструкций. Их активно используют во всех сферах промышленности — начиная от металлообработки и заканчивая возведением атомных электростанций.
Среди них выделяют три основных группы:
- общего назначения — марки со стандартной степенью очистки от постоянных примесей. Нужно преимущественно для сварных строительных конструкций, корпусных деталей и ненагруженных элементов;
- качественные — повышенной степени очистки и с улучшенными механическими свойствами. Применяются для производства деталей машин и крепежа;
- повышенной обрабатываемости — с максимально стабильной структурой и постоянством физико-механических свойств по всему объему. Такой материал идет в работу на автоматические линии.
Инструментальные углеродистые стали могут похвастать куда большим содержанием углерода, чем все остальные «родственники» — от 0,66 до 1,35%. Такие сплавы используют для производства:
- режущего инструмента — для работ по дереву, пластику, мягким цветным сплавам и незакаленной стали;
- мерительного инструмента;
- слесарного инструмента;
- оснастки для холодной штамповки;
- вспомогательной станочной оснастки.
Главное преимущество инструментальных марок — очень сильная реакция на закалку, увеличенная износостойкость, твердость и прочность.
Углеродистая сталь для строительных конструкций идет на массовый выпуск фасонного проката: швеллера, тавровой и двутавровой балки, уголков. В сплавах этого типа заложено мало углерода и ощутимое количество примесей кремния и марганца (до 0,5..0,8%), чтобы обеспечить необходимую вязкость, устойчивость и хорошее восприятие сварочных процессов.
Очень интересна марка ШХ4, случайно попавшая в группу подшипниковых как единственная нелегированная сталь. Ее используют для производства колец железнодорожных подшипников. Содержание углерода там изрядное — в пределах 0,95 до 1,05% — и присутствует щепотка хрома — 0,35..0,5%.
Марку К63 (или просто 63) применяют исключительно для горячей прокатки специального сортамента — рельс крановых путей. Этот сплав обеспечивает необходимый баланс между прочностью, износостойкостью и стрессоустойчивостью. Материал постоянно работает с высокими нагрузками и фрикционным износом от катания колес.
Свойства углеродистых сталей
При рассмотрении той или иной марки, инженера интересует химический состав не сам по себе, а как прямое указание на возможные физико-механические свойства. А те, в свою очередь, отражают диапазон функций, которые характерны для материала.
И с оглядкой на такую взаимосвязь можно сделать утверждение, что каждая марка углеродистой стали по-своему уникальна, потому что обладает собственным, неповторимым набором характеристик.
Прочностные характеристики
Первым параметром, на который ориентируются при проектировании любой конструкции, становится умение материала сопротивляться действующим нагрузкам. Это комплексная характеристика, в которую войдут:
- предел прочности — размер силовой нагрузки, при которой металл разрушается;
- предел текучести — размер силовой нагрузки, при которой металл начинает деформироваться;
- ударная вязкость — способность сопротивляться внезапным силовым воздействиям;
- относительное удлинение при разрыве — насколько металл будет удлиняться перед тем, как окончательно «порваться» под действием радикальной силовой нагрузки, превышающей предел прочности;
- твердость — способность сопротивляться внедрению иного твердого тела.
Все эти показатели тесно связаны между собой. И по их оценке можно легко предсказать, как материал поведет себя в работе.
Связь между отдельными механическими характеристиками сплава не всегда прямая. Например, предел прочности всегда в 1,7..2,2 раза больше предела текучести. Зато, чем выше предел прочности сплава — тем зачастую меньшую величину относительного удлинения при разрыве он покажет.
Механические характеристики углеродистых сталей растут вместе с содержанием углерода. Этот элемент — главный признак всех возможностей сплава.
Ниже в таблице приведены ориентировочные показатели разных категорий сталей в «сыром» состоянии.
Стали углеродистые. Марки, свойства и их применение
Сталь является наиболее распространенным материалом в машиностроении. Создание новых более совершенных машин стимулирует создание марок сталей со свойствами, отвечающими современным требованиям в машиностроении. При этом ранее созданные марки сталей, с учетом новых технологий их производства, продолжают быть востребованы конструкторами при создании новых и совершенствовании действующих машин. Принято выделять следующие группы сталей:
- углеродистые стали, которые в общем объеме составляют примерно 80%,
- легированные стали конструкционные и инструментальные,
- стали с особыми свойствами специального назначения и др.
1. Стали углеродистые обыкновенного качества
Относятся к числу наиболее дешевых и широко применяемых. Из них получают до 70% всего проката — горячекатаного, сортового и фасонного толсто- и тонколистового, широкополосного и холоднокатаного тонколистового. Из этих сталей изготовляют трубы, поковки, штамповки, ленту, проволоку, металлические изделия (метизы): гвозди, канаты, сетки, болты, гайки, заклепки, а также мало- и средненагруженные детали; штифты, шайбы, шпонки, крышки, кожухи, а из стали номеров 4-6 — валы, винты, зубчатые колеса и шпиндели. Стали обыкновенного качества хорошо свариваются.
В зависимости от назначения углеродистые стали обыкновенного качества подразделяют (ГОСТ 380- 94) на три группы:
- А — поставляемые по механическим свойствам,
- Б — поставляемые по химическому составу,
- В — поставляемые по механическим свойствам и химическому составу.
В зависимости от нормируемых показателей (прочностная характеристика, химический состав) сталь каждой группы подразделяют на категории:
- группа А — 1, 2 и 3-я;
- группа Б — 1, 2,-я;
- группа В — 1, 2, 3, 4, 5, 6-я.
Буквы Ст означают «сталь», цифры от 0 до 6 — условный номер марки, характеризующий механические свойства стали. С увеличением номера марки повышаются предел прочности σв и предел текучести σт и уменьшается относительное удлинение δ. Для обозначения степени раскисления после номера марки ставятся индексы: кп — кипящая, пс — полуспокойная, сп — спокойная (например: СтЗкп, СтЗпс, СтЗсп; табл. 1 и 2).
Механические свойства углеродистой стали обыкновенного качества группы А и примерное назначение углеродистой стали обыкновенного качества приведены в табл. 1.
Таблица 1. Стали углеродистые, их механические свойства и назначение
заклепки, шайбы, шплинты, прокладки, кожухи.
от которых требуется высокая твердость поверхности и
невысокая прочность сердцевины, крюки кранов,
Для возможности распознания марок стали при складировании, прокат маркируют несмываемой краской. Для этого, независимо от группы и степени раскисления стали, используют краску цветов, указанных в табл. 2.
Таблица 2. Цвет маркировки стали углеродистой обыкновенного качества
2. Стали углеродистые качественные конструкционные
Являются основным металлом для изготовления деталей машин (валов, шпинделей, осей, зубчатых колес, шпонок, муфт, фланцев, фрикционных дисков, винтов, гайек, упоров, тяг, цилиндров гидроприводов, эксцентриков, звездочек цепных передач и др.), которые при взаимодействии в работающей машине воспринимают и передают различные по величине нагрузки. Эти металлы хорошо обрабатываются давлением и резанием, льются и свариваются, подвергаются термической, термомеханической и химико-термической обработке.
Различные специальные виды обработки обеспечивают вязкость, упругость и твердость сталей, позволяют делать из них детали, вязкие в сердцевине и твердые снаружи, что резко увеличивает их износостойкость и надежность. Из углеродистых качественных конструкционных сталей производят прокат, поковки, калиброванную сталь, сталь серебрянку, сортовую сталь, штамповки и слитки.
Таблица 3. Основные свойства стали углеродистой качественной конструкционной
Качественные конструкционные стали обладают более высокими механическими свойствами (ГОСТ 1050-88), чем стали обыкновенного качества, за счет меньшего содержания в них фосфора, серы и неметаллических включений. По видам обработки их делят на горячекатаную, кованую, калиброванную и серебрянку (со специальной отделкой поверхности).
Обозначение марки стали составляют из слова «Сталь» и двузначной цифры, которая указывает на среднее содержание углерода в сотых долях процента. Например, Сталь 25 содержит 0,25% углерода (допустимое количество углерода — 0,220,30 %), Сталь 60-0,60 % (допустимое количество -0,57-0,65%). Степень раскисления в марках спокойных сталей не отражается, а в марках полуспокойных и кипящих сталей, как и сталей обыкновенного качества, обозначается буквами «пс» и «кп» соответственно. В качественных конструкционных сталях всех марок допускается содержание серы не более 0,040% и фосфора — не более 0,035%.
Основные свойства углеродистой качественной конструкционной стали приведены в табл. 3, основное назначение — в табл. 4. Цвета маркировки приведены в табл. 5.
Таблица 4. Стали углеродистые качественные конструкционные, их основное назначение
Таблица 5. Цвета маркировки стали углеродистой качественной
3. Стали углеродистые инструментальные
Из инструментальных углеродистых сталей получают горячекатаную, кованую и калиброванную сталь, сталь серебрянку, сталь для сердечников, а также слитки, листы, ленту, проволоку и другую продукцию. Из этих сталей изготовляют режущий инструмент для обработки металлов, дерева и пластмасс, измерительный инструмент, штампы для холодного деформирования.
Теплостойкость инструментальных углеродистых сталей не превышает 200°С, при нагревании выше этой температуры они теряют свою твердость, а следовательно режущие свойства и износостойкость.
Инструментальные углеродистые стали условно можно разделить на две группы (ГОСТ 1435-99):
- качественные стали У7, У8, У8Г, У9, У10, У11, У12 и У13;
- высококачественные марок У7А, У8А, У8ГА, У9А, У10А, У НА, У12А и У13А.
В качественных инструментальных углеродистых сталях допускается содержание 0,03% серы и 0,035% фосфора, в высококачественных — 0,02% серы и 0,03% фосфора. Стали, полученные методом электрошлакового переплава, содержат до 0,015% серы. В зависимости от содержания хрома, никеля и меди инструментальные углеродистые стали подразделяются на пять групп:
- 1-я — качественные стали всех марок, предназначенные для изготовления продукции всех видов (кроме патенти- рованной проволоки и ленты);
- 2-я — высококачественные стали всех марок, предназначенные для тех же целей, что и стали первой группы;
- 3-я — стали марок У10А и У12А для изготовления сердечников;
- 4-я — стали всех марок для производства патентированной проволоки и ленты;
- 5-я — стали марок У7÷У13 для изготовления горяче- и холоднокатаных листов и лент, в том числе термически обработанных толщиной до 2,5 мм (кроме патентированной ленты), а также стали этих марок для производства горячекатаной и кованой сортовой стали и холоднотянутой шлифованной стали (серебрянки).
Инструментальная сталь должна обладать высокой твердостью (63÷64 HRC3), значительно превышающей твердость обрабатываемого материала, износостойкостью и теплостойкостью (способностью сохранять свойства при высоких температурах).
Измерительный инструмент, изготовленный из такой стали, должен быть прочным (ав = 590÷640 МПа), длительное время сохранять заданные размеры и форму. Рабочие детали штампов и накатных роликов для холодного деформирования (вытяжки, гибки, высадки, пробивки отверстий, накатки, раскатки), сделанные из этой стали, должны иметь высокую твердость, обладать износостойкостью при достаточной вязкости. Все это достигается путем закалки с отпуском, а для измерительного инструмента и за счет искусственного старения. В табл. 6 приведены свойства углеродистой инструментальной стали, в табл. 7 — примерное назначение инструментальной углеродистой стали.
Таблица 6. Свойства стали углеродистой инструментальной (ГОСТ 1435 — 74)
Таблица 7. Примерное назначение стали углеродистой инструментальной
Как правило, изготовлению инструмента предшествует отжиг на зернистый цементит, который способствует лучшей обрабатываемости резанием и уменьшает коробление деталей при закалке.
Углеродная (углеродистая) сталь: виды, производство и применение
Благодаря своим прочностным характеристикам и доступной цене углеродистая сталь является весьма распространенным сплавом. Его главные элементы — это железо и углерод с минимумом присесей. Из углеродной стали производят различную машиностроительную продукцию, детали трубопроводов и котлов, инструменты. В строительстве сплавы тоже нашли широкое применение.
Основные характеристики
В зависимости от основного своего назначения углеродистые стали делятся на инструментальные и конструкционные, легирующих элементов в их составе практически нет. От обыкновенных стальных сплавов они отличаются еще и тем, что имеют в составе значительно меньше базовых примесей: марганца, магния, кремния. Содержание главного элемента — углерода — варьируется в довольно широких пределах. В составе высокоуглеродистой стали содержится 0,6−2% C, среднеуглеродистой — 0,3−0,6%, низкоуглеродистой — до 0,25%.
Основной элемент определяет свойства и структуру. Во внутренней структуре сплавов с менее чем 0,8% C (сталь доэвтектоидная) — преимущественно перлит и феррит, а при увеличении концентрации главного элемента формируется вторичный цементит.
Представленные стали с преобладанием ферритной структурой высоко пластичны и имеют низкую прочность. Если в структуре преобладает цементит, металл характеризуется высокой прочностью, однако и большой хрупкостью. При повышении содержания C до 0,8−1% растет прочность и твердость, но сильно ухудшается вязкость и пластичность.
Количественное содержание углерода сказывается на технологических характеристиках, в частности, на свариваемости, легкости обработки резанием и давлением.
- Из низкоуглеродистых сталей изготавливают детали и конструкции, не предназначенные для значительных нагрузок.
- Характеристики среднеуглеродистых сталей делают их основным конструкционным материалом, который используется в производстве конструкций и деталей для транспортного и общего машиностроения.
- Высокоуглеродистые сплавы оптимальны для изготовления деталей, которые должны иметь повышенную износостойкость, в производстве измерительного и ударно-штампового инструмента.
Металл, как и иные стальные сплавы, в составе содержат примеси:
- кремний;
- фосфор;
- марганец;
- азот;
- серу;
- водород;
- кислород.
Кремний и марганец — это полезные примеси, которые вводятся в состав на стадии выплавки для раскисления. Фосфор и сера — вредные примеси, ухудшающие качественные характеристики сплава.
Считается, что легирование и углеродистые виды несовместимы, тем не менее с целью улучшения их технологических и физико-механических характеристик может выполняться микролегирование с помощью добавления различных добавок:
- бора;
- титана;
- циркония;
- редкоземельных элементов.
С их помощью не удастся превратить металл в нержавейку, но значительно улучшить свойства получится.
Классификация по степени раскисления
На разделение на типы влияет, в частности, степень раскисления. В зависимости от этого параметра наши сплавы делят на полуспокойные, спокойные и кипящие.
Более однородную внутреннюю структуру имеют спокойные стали, чье раскисление достигается путем добавления в расплавленный металл алюминия, ферросилиция и ферромарганца. Благодаря тому, что сплавы нашей категории полностью раскислились в печи, в их составе отсутствует закись железа. Остаточный алюминий, препятствующий росту зерна, обеспечивает мелкозернистую структуру. Она и практически абсолютное отсутствие растворенных газов позволяет получить качественный металл для изготовления из него самых ответственных деталей и конструкций. Наряду с плюсами у спокойных сплавов есть большой минус — достаточно дорогая выплавка.
Есть более дешевые, хотя и менее качественные, углеродистые сплавы, при выплавке которых используют минимум специальных добавок. В структуре такого металла из-за того, что процесс раскисления в печи не довели до конца, есть растворенные газы, негативно отражающиеся на характеристиках. Азот, например, плохо влияет на свариваемость и провоцирует образование трещин в области шва. Развитая ликвация в структуре сплавов приводит к тому, что металлопрокат, сделанный из них, отличается неоднородностью по структуре и механическим характеристикам.
У полуспокойных сталей промежуточное положение по свойствам и степени раскисления. Перед заливкой в изложницы в состав их вводится немного раскислитилей, благодаря которым затвердеванием металла происходит практически без кипения, но выделение газов в нем продолжается. В результате получается отливка, в структуре которой меньше газовых пузырей, чем в кипящих сталях. Эти внутренние поры при последующей прокатке металла завариваются практически полностью.
Большая часть полуспокойных углеродистых сталей используется как конструкционные материалы.
Производство и деление по качеству
Углеродистые стали получают путем использования разных технологий. Различают:
- качественные углеродистые стали;
- высококачественные стальные сплавы;
- углеродистые стальные сплавы обыкновенного качества.
Сплавы обыкновенного качества получают в мартеновских печах, а из них формируются большие слитки. К плавильному оборудованию, использующемуся для получения таких сталей, относятся, в частности, кислородные конвертеры. В сравнении с качественными стальными сплавами, в металле может содержаться много вредных примесей, что отражается на характеристиках и стоимости производства.
Сформированные и застывшие слитки прокатывают горячими или холодными. Горячей прокаткой получают сортовые и фасонные изделия, тонколистовой и толстолистовой металл, широкие металлические полосы. Холодной прокаткой получают тонколистовой металл.
Для производства качественной и высококачественной стали используются мартеновские печи и конвертеры, а также плавильные печи, которые работают на электричестве.
К составу, а именно к наличию в структуре вредных и неметаллических примесей, ГОСТ предъявляет жесткие требования. В высококачественных сталях должно быть не более 0,04% серы и не более 0,035% фосфора. Высококачественные и качественные стальные сплавы благодаря строгим требованиям к способу выплавки и характеристикам имеют повышенную чистоту структуры.
Применение и маркировка
Инструментальные сплавы, в которых 0,65−1,32% C, используются для изготовления различного инструмента. Для улучшения механических свойств инструментов делают закалку материала изготовления.
Из конструкционных сплавов делают детали для разного оборудования, элементы конструкций строительного и машиностроительного назначения, крепежные детали и прочее. Из конструкционной стали делается проволока углеродистая, которая используется в быту, в производстве крепежа, в строительстве, для изготовления пружин. После цементации конструкционные сплавы успешно используются в производстве деталей, подвергающихся при эксплуатации серьезному поверхностному износу и испытывающих большие динамические нагрузки.
Маркировка говорит о химическом составе сплава и о его категории. В обозначении углеродистой стали обыкновенного качества есть буквы «ст». ГОСТ оговаривает семь условных номеров марок (0−6), также указывающихся в обозначении. Степень раскисления обозначают буквы «кп», «пс», «сп», проставленные в конце маркировки. Марки высококачественных и качественных сталей обозначаются цифрами, которые указывают на содержание в сплаве C в сотых долях процента.
О том, что сплав инструментальный, можно понять по букве «У» в начале маркировки. Цифра, следующая за этой буквой, говорит о содержании C в десятых долях процента. Литера «А», если таковая присутствует в обозначении инструментальной стали, указывает на улучшенные качественные характеристики сплава.
Стали с повышенным содержанием углерода могут быть менее склонными к образованию структур малой пластичности. При воздействии структурных и сварочных напряжений металл малой пластичности может разрушиться. Этому способствует наличие в нем и его сварочном шве диффузионного водорода. Для предупреждения появления холодных трещин применяются способы, позволяющие устранить факторы, способствующие появлению таких недостатков.
Читайте также: