Титан это сталь или нет
Видео: Как отличить нержавеющую сталь от титана
Содержание
Основное отличие - титан против нержавеющей стали
Металлы и металлические сплавы являются очень важными веществами в промышленности и строительстве. Титан является известным металлом для его применения в космической промышленности. Сталь - это металлический сплав. Он состоит из железа и некоторых других элементов. Сталь широко используется во всем мире по нескольким причинам, таким как низкая стоимость, простота производства, прочность и т. Д. Существуют различные сорта стали в зависимости от их свойств. Нержавеющая сталь - это такой тип стали. Основное отличие титана от нержавеющей стали состоит в том, что титан - это металл, а нержавеющая сталь - это металлический сплав.
Кея Области Покрыты
1. Что такое титан
- Определение, свойства, использование
2. Что такое нержавеющая сталь
- определение, разные типы, химический состав
3. В чем разница между титаном и нержавеющей сталью
- Сравнение основных различий
Основные термины: аустенитная нержавеющая сталь, биосовместимость, коррозия, дуплексная нержавеющая сталь, ферритная нержавеющая сталь, мартенситная нержавеющая сталь, металл, металлический сплав, нержавеющая сталь, закаливающаяся в осадках, нержавеющая сталь, сталь, титан
Что такое титан
Титан - это химический элемент, обозначаемый символом «Ti». Атомный номер Титана равен 22. Это означает, что один атом Титана имеет 22 протона в своем ядре. Это металл серебристо-серого цвета. Атомный вес этого металла составляет 47,87. Это указывает на то, что один моль титана имеет вес 47 г. Следовательно, молярная масса титана составляет 47,87 г / моль.
Титан - это элемент d-блока в периодической таблице элементов. Поскольку его атомный номер равен 22, электронная конфигурация титана равна [Ar] 3d. 2 4s 2 , При комнатной температуре и давлении титан находится в твердой фазе. Температура плавления этого металла составляет около 1668 ° C. Температура кипения составляет около 3287 ° С.
Титан имеет высокое отношение прочности к весу. Это означает, что этот металл обладает высокой прочностью по сравнению с его весом. Он также обладает отличной коррозионной стойкостью и высокой эффективностью теплообмена. Эти специфические свойства делают титан превосходным металлом для строительных целей.
Рисунок 1: Титан используется для изготовления двигателей и планеров космических кораблей.
Одним из основных применений металлического титана является аэрокосмическая промышленность. Поскольку это легкий металл с высокой прочностью, титан используется для производства деталей космических аппаратов, таких как двигатели, планеры и т. Д. Титан также используется для производства труб для транспортировки химикатов из-за его устойчивости к коррозии.
Согласно последним исследованиям, титан обладает высокой биосовместимостью. Это означает, что он игнорируется иммунной системой человека. Поэтому титан можно использовать для замены поврежденных костей бедра или колена. Свойство коррозионной стойкости также полезно в этой заявке.
Что такое нержавеющая сталь
Нержавеющая сталь - это металлический сплав, состоящий из железа и хрома, а также некоторых других элементов, таких как никель, молибден, титан и медь. Нержавеющая сталь - это разновидность стали. Содержание хрома в нержавеющей стали составляет около 10-30%.
Наиболее желательным свойством нержавеющей стали является ее коррозионная стойкость. В отличие от обычной стали, она не подвергается коррозии; следовательно, ржавчина отсутствует. Это свойство делает его полезным при производстве кухонных и медицинских изделий, поскольку его можно безопасно использовать во влажной среде. Нержавеющая сталь выдерживает высокие температуры. Поэтому для изготовления кухонных предметов используется нержавеющая сталь. В отличие от обычной стали, нержавеющая сталь имеет блестящий внешний вид, что очень привлекательно.
Рисунок 2: Нержавеющая сталь используется для изготовления кухонных предметов.
Существует пять видов нержавеющей стали. Они есть;
- аустенитный
- ферритные
- мартенситные
- дуплексный
- Отверждение осадков
Аустенитная нержавеющая сталь это самая сварная нержавеющая сталь. Это способствует большей части нержавеющей стали на рынке стали. Ферритная нержавеющая сталь состоит из следовых количеств никеля, хрома и углерода. Эта сталь обладает хорошей пластичностью и пластичностью. Мартенситная нержавеющая сталь это другой тип нержавеющей стали, который содержит около 20% хрома. Дуплекс из нержавеющей стали в основном используется в приложениях трубопроводов. Отверждение осадков хромоникелевая нержавеющая сталь Этот сплав позволяет упрочнять нержавеющую сталь растворами и термической обработкой старением.
Разница между титаном и нержавеющей сталью
Определение
Титан: Титан - это металл, обозначенный символом «Ti».
Нержавеющая сталь: Нержавеющая сталь - это металлический сплав, состоящий из железа и хрома, а также некоторых других элементов.
биосовместимость
Титан: Титан является биосовместимым.
Нержавеющая сталь: Нержавеющая сталь не является биосовместимой.
Титан: Титан имеет небольшой вес по сравнению с прочностью.
Нержавеющая сталь: Нержавеющая сталь имеет большой вес.
плотность
Титан: Титан более плотный, чем нержавеющая сталь.
Нержавеющая сталь: Нержавеющая сталь менее плотная, чем титан.
Приложения
Титан: Титан используется в аэрокосмической промышленности и используется для замены тазобедренного и коленного суставов.
Нержавеющая сталь: Нержавеющая сталь используется для производства кухонной и медицинской продукции.
Заключение
Титан является хорошо известным металлическим веществом благодаря высокому соотношению прочности и веса. Он имеет множество применений в аэрокосмической промышленности. Нержавеющая сталь известна своей коррозионной стойкостью, которая отсутствует у других видов стали. Основное различие между титаном и нержавеющей сталью заключается в том, что титан - это металл, а нержавеющая сталь - это металлический сплав.
Рекомендации:
1. «Нержавеющая сталь | Четыре типа стали | Металлические супермаркеты ». Металлические супермаркеты - Сталь, Алюминий, Нержавеющая сталь, Горячекатаный, Холоднокатаный, Сплав, Углерод, Оцинкованный, Латунь, Бронза, Медь, 17 мая 2016 г.
Титан против нержавеющей стали, в чем разница?
Титан и нержавеющая сталь являются традиционными металлами, которые сегодня часто используются в обрабатывающей промышленности. Эти два металла по своей природе изысканны, и оба обладают уникальным набором свойств и прочностью. Следовательно, знание как титана, так и нержавеющей стали может иметь большое значение для достижения вашей цели в вашем проекте. Мы составили это подробное руководство, чтобы помочь вам отличить оба металла.
Давайте сравним 17 различий между титаном и нержавеющей сталью
Титан и нержавеющая сталь обладают превосходными характеристиками, которые отличают их друг от друга. Для простоты понимания мы проведем сравнение между титаном и нержавеющей сталью, используя разные свойства. Эти свойства включают элементный состав, коррозионную стойкость, электропроводность, теплопроводность, температуру плавления, твердость, вес и многое другое.
Титан против нержавеющей стали: состав элементов
Элементный состав — это характеристика, по которой можно отличить титан от нержавеющей стали. Для сравнения, коммерчески чистый титан содержит множество элементов, включая азот, водород, кислород, углерод, железо и никель. Имея титан в качестве основного элемента, состав других элементов варьируется от 0.013 до 0.5 процента.
С другой стороны, нержавеющая сталь состоит из разновидностей элементного состава с 11% хрома, а также других элементов с процентным составом от 0.03% до более 1.00%. Содержание хрома в нержавеющей стали помогает предотвратить ржавчину, а также обеспечивает характеристики термостойкости. Эти элементы включают алюминий, кремний, серу, никель, селен, молибден, азот, титан, медь и ниобий.
Титан против нержавеющей стали: коррозионная стойкость
Когда дело доходит до применений, связанных с коррозией, существует термин, называемый специальными металлами. Эти специальные металлы обладают высокой коррозионной стойкостью. В этом контексте специальные металлы, такие как титан, обеспечивают высокую коррозионную стойкость и механическую стабильность, в то время как другие металлы, такие как нержавеющая сталь и многие другие, являются недостаточными. Материалы из нержавеющей стали обладают превосходными механическими свойствами; однако их коррозионная стойкость ограничена. Это ограничение в основном встречается в концентрированных кислотах при высоких температурах.
Специальные металлы, такие как титан, наиболее привлекательны для использования в чувствительном к коррозии оборудовании в различных отраслях промышленности. В заключение, титан более устойчив к коррозии, чем нержавеющая сталь, в широкой области, такой как коррозия от щелочей, кислот, природных вод и промышленных химикатов.
Титан против нержавеющей стали: электропроводность
Электропроводность включает поток электронов через материал из-за падения потенциала. Кроме того, атомная структура такого металла сильно влияет на его электропроводность. По сравнению с использованием меди в качестве стандарта для измерения электропроводности, титан не является хорошим проводником. Он демонстрирует проводимость меди около 3.1%, в то время как нержавеющая сталь имеет проводимость меди 3.5%.
С другой точки зрения, электрическое сопротивление, которое противопоставляет материал потоку электронов. С этой точки зрения титан обладает плохой электропроводностью. В результате титан является хорошим резистором.
Титан против нержавеющей стали: теплопроводность
Теплопроводность — еще одна характеристика, которую можно использовать для сравнения титана и нержавеющей стали. Теплопроводность — это мера, с которой титан и нержавеющая сталь могут использоваться для тепловых применений. В этом процессе измеряется и определяется количество энергии, а также скорость, с которой энергия поглощается и передается. Для сравнения, теплопроводность титана составляет 118 БТЕ-дюйм/час-фут²-°F.
С другой стороны, теплопроводность нержавеющей стали колеблется от 69.4 до 238 БТЕ-дюйм/час-фут²-°F. Это означает, что нержавеющая сталь обладает более высокой теплопроводностью по сравнению с титаном. В ситуации, когда теплопроводность имеет приоритет над другими характеристиками, то можно рассматривать нержавеющую сталь.
Титан против нержавеющей стали: температура плавления
Температура плавления материала, известная как точка плавления, представляет собой температуру, при которой материал начинает переходить из твердой фазы в жидкую. При этой температуре твердая фаза материала и жидкая фаза такого материала находятся в равновесии. Как только материал достигает этого температурного уровня, его можно легко формовать и использовать для термических применений.
В этом случае титан имеет температуру 1650–1670 °C (3000–3040 °F), а нержавеющая сталь — 1230–1530 °C (2250–2790 °F). Это показывает, что, когда для определения точки плавления требуется металл, титан предпочтительнее нержавеющей стали.
Титан против нержавеющей стали: твердость
Твердость материала — это сравнительная величина, которая помогает описать реакцию такого материала на травление, деформацию, царапание или вмятину вдоль поверхности материала. Эта мера в основном выполняется с использованием инденторных машин, которые существуют в большом количестве в зависимости от прочности материала. Для высокопрочных материалов производители или пользователи используют критерий твердости по Бринеллю.
Хотя твердость нержавеющей стали по Бринеллю сильно зависит от состава сплава и термической обработки, в большинстве случаев она тверже титана. Однако титан легко деформируется при вмятинах или царапинах. Чтобы избежать этого, титан образует оксидный слой, называемый слоем оксида титана, который образует исключительно твердую поверхность, сопротивляющуюся большинству сил проникновения. Титан и нержавеющая сталь являются прочными материалами, которые отлично работают в суровых условиях.
Титан против нержавеющей стали: вес
Одним из важных поразительных различий между титаном и нержавеющей сталью является их плотность. Титан имеет превосходное соотношение прочности к весу, благодаря чему он обеспечивает почти такую же прочность, как нержавеющая сталь, при 40% своего веса. При измерении титан наполовину плотнее стали и значительно легче нержавеющей стали.
В результате титан жизненно важен для проектов, требующих минимального веса при максимальной прочности. Вот почему титан отлично подходит для изготовления деталей самолетов и других приложений, зависящих от веса. С другой стороны, сталь применяется в шасси транспортных средств и во многих других областях, но в большинстве случаев снижение веса часто вызывает озабоченность.
Титан против нержавеющей стали: долговечность
Долговечность материала — это его способность оставаться функциональными без использования чрезмерного ремонта или технического обслуживания всякий раз, когда материал сталкивается с проблемами нормальной эксплуатации в течение своего полураспада. И титан, и нержавеющая сталь долговечны благодаря превосходным свойствам, которые они предлагают. Для сравнения, титан примерно в 3-4 раза прочнее нержавеющей стали. Это делает титан долговечным в течение нескольких поколений. Тем не менее, титан можно легко поцарапать, так как он требует регулярной полировки или рискует повредить его поверхность или потускнеть.
Титан против нержавеющей стали: обрабатываемость
Обрабатываемость — это сравнительная оценка, присваиваемая металлам для определения их реакции на механические нагрузки, включая фрезерование, токарную обработку, штамповку и многое другое. Эта оценка жизненно важна для проведения сравнений, чтобы определить лучший обрабатываемый материал для успеха вашего проекта. Кроме того, показатели обрабатываемости можно использовать для определения типа используемой механической обработки. Модуль упругости титана почему-то низкий, что говорит о том, что титан легко изгибается и деформируется. Это связано с трудностями обработки титана, поскольку он склеивает фрезы и предпочитает возвращаться к своей первоначальной форме.
С другой стороны, нержавеющая сталь имеет гораздо более высокий модуль упругости, что позволяет легко обрабатывать ее. В результате он используется в приложениях, включая кромки ножей, потому что он ломается и не сгибается под нагрузкой.
Титан против нержавеющей стали: формуемость
Когда материал проявляет пластическую деформацию, не повреждаясь при формовании, это называется формуемостью материала. Когда титан сравнивают с нержавеющей сталью, титан и его сплав можно формировать с использованием методов и оборудования, подходящих для нержавеющей стали. Однако титан обладает более низкой пластичностью при растяжении и требует больших радиусов изгиба.
Кроме того, титан имеет большую склонность к истиранию по сравнению с нержавеющей сталью и может быть исправлен с помощью горячей штамповки. Кроме того, может иметь место пружинение, в то время как подавляющее большинство титана изготавливается путем холодной или горячей штамповки с последующей горячей проклейкой для решения этой проблемы.
Титан против нержавеющей стали: свариваемость
Свариваемость, также известная как соединяемость, представляет собой способность материала к сварке. Титан и нержавеющая сталь можно сваривать, но один из двух металлов сваривается легче, чем другой. Свариваемость материала обычно используется для определения процесса сварки и для сравнения качества окончательного сварного шва с качеством другого материала. Для сравнения, нержавеющая сталь легче сваривается по сравнению с титаном. Это связано с тем, что сварка титана — это специальность внутри специальности. Хотя на первый взгляд сварка титана похожа на сварку стали, она требует высокого профессионализма.
Титан против нержавеющей стали: предел текучести
При сравнении предела текучести титана и нержавеющей стали интересно отметить, что нержавеющая сталь намного прочнее титана. Это интересное открытие противоречит распространенному заблуждению о том, что предел текучести титана выше, чем у большинства металлов. В то время как титан только на одном уровне с нержавеющей сталью, он демонстрирует это при половине плотности нержавеющей стали. Вот почему титан считается одним из самых прочных металлов на единицу массы.
С другой стороны, нержавеющая сталь является идеальным материалом, когда проект требует общей прочности. В заключение, когда в проекте требуется только прочность, нержавеющая сталь является идеальным выбором, тогда как титан предпочтительнее, когда требуется прочность на единицу массы.
Титан против нержавеющей стали: прочность на растяжение
Предел прочности материала на растяжение является максимальным на инженерной кривой напряжения-деформации. Это максимальное напряжение, которое может выдержать материал при растяжении. Предельная прочность на растяжение в большинстве случаев сокращается до «прочности» или «предела прочности».
Когда металл достигает своего предела прочности на растяжение, материал подвергается сужению, при котором площадь поперечного сечения локально уменьшается. При сравнении титан демонстрирует предел прочности при растяжении 230 МПа (31900 фунтов на квадратный дюйм), в то время как нержавеющая сталь имеет предел прочности при растяжении от 34.5 до 3100 МПа (5000–450000 фунтов на квадратный дюйм). Это значение показывает, что нержавеющая сталь имеет более высокий предел прочности при растяжении и поэтому предпочтительнее титана.
Титан против нержавеющей стали: прочность на сдвиг
Прочность материала на сдвиг — это его устойчивость к нагрузке сдвига до того, как компонент разрушится при сдвиге. Действие сдвига обычно происходит в направлении, параллельном направлению силы, действующей на плоскости. Напряжение сдвига титана составляет от 240 до 335 МПа в зависимости от свойств сплава, в то время как напряжение сдвига нержавеющей стали составляет от 74.5 до 597 МПа. Это показывает, что нержавеющая сталь является идеальным выбором в ситуациях, когда требуется высокая устойчивость к сдвигающей нагрузке.
Сравнение титана и стали
Когда мы говорим о прочных металлах, первое, о чем мы обычно думаем, это сталь или титан. Они оба имеют широкий спектр сплавов с различными легирующими элементами и количествами, поэтому сложно определить, с какого типа начать.
Сталь и титан
Сталь является одним из наиболее распространенных сплавов. Обычно это сплав железа с добавлением нескольких процентов углерода для повышения его прочности и сопротивления разрушению. Сталь плотная, твердая, магнитная и ус тойчивая к высоким температурам, большинство сталей подвержены коррозии, но нержавеющая сталь устраняет этот недостаток. Из-за своей низкой стоимости, высокой прочности на растяжение и рабочих характеристик сталь популярна в строительстве, зданиях, инфраструктуре, транспорте, оборудовании, электроприборах и автомобилях. Различное содержание углерода и других легирующих элементов в металле приводит к множеству различных стальных сплавов, таких как сталь 4130 , сталь 4140, сталь A36 и т. д., что улучшает качество, а также придает им уникальные свойства.
Титан — легкий металл блестящего серебристо-серого цвета, низкой плотности и высокой прочности, устойчивый к коррозии в морской воде, царской водке и хлоре. Титан может быть легирован железом, алюминием и многими другими элементами. Благодаря коррозионной стойкости и соотношению прочности к плотности титан и титановый сплав могут широко использоваться в аэрокосмической, морской, промышленной, потребительской, архитектурной и других отраслях, несмотря на то, что это нелегко обрабатывать, обработка титана с ЧПУ по-прежнему является эффективной и быстрой. Turn производственный метод для производства различных прецизионных деталей из титана. Обычными типами титана, с которыми можно работать, являются титан класса 2 и титан класса 5 (Ti-6Al-4V).
Титан против стали - в чем разница между титаном и сталью
По сравнению со сталью титан обладает исключительной прочностью и весом, а также отличной биологической совместимостью, что делает его предпочтительным материалом для хирургических имплантатов. Другими распространенными областями применения титана являются аэрокосмическая и ювелирная промышленность, что также связано с его легкими характеристиками, высокой прочностью и коррозионной стойкостью к широкому спектру кислот, щелочей и химикатов. В автомобильной промышленности сталь составляет сильную конкуренцию титану, сталь предпочтительнее, когда требуется прочность твердого материала, кроме того, поскольку железа намного больше, чем титана, с меньшими затратами на сырье, сталь обычно дешевле титана.
В заключение, вот несколько моментов, описывающих разницу между титаном и сталью.
1. Титан может выдерживать более высокие и более низкие температуры, чем сталь.
2. Титан значительно прочнее наиболее часто используемых марок стали. Но самые прочные из известных легированных сталей в самом сильном отпуске прочнее самых прочных титановых сплавов в самом твердом состоянии.
3. В нелегированном состоянии при той же прочности титан намного легче
4. Титан значительно дороже стали. Несмотря на то, что некоторые марки для очень специфических применений могут продаваться по цене, близкой к цене титана, большинство сталей очень дешевы по сравнению с титаном.
5. Титан менее токсичен, чем сталь, имеет меньшее тепловое расширение, чем сталь, и имеет более высокую температуру плавления.
6. Титан имеет более высокую прочность на растяжение по массе, но не по объему.
7. Сталь тверже титана. Титан деформируется легче, чем сталь.
8. Сталь обычно предпочтительнее для изготовления прочных предметов, так как ее объем более приемлем.
Поговорим о титане или все что Вы хотели спросить.
Титан – блестящий металл серебристого цвета, легко поддающийся различным видам обработки – сверлению, точению, фрезерованию, шлифованию. При распиловке, сверлении и фрезеровании титана необходимо постоянно применять охлаждающую смазку, при этом на инструмент сильно надавливать нельзя; титан не поддается пайке, но хорошо куется (и в горячем, и в холодном состоянии), перед волочением титановой проволоки необходимо осуществить ее отжиг. Он обладает высокой прочностью, имеет низкую плотность, является достаточно легким.
По коррозионной стойкости титан сравним с драгоценными металлами.
В последнее время в зарубежных странах из титана изготовляют широкий ассортимент самых разнообразных ювелирных украшений. Титан стал привлекательным для изготовления украшений благодаря интересным цветовым эффектам, образующимся на его поверхности при нагревании.
Явление это объясняется тем, что при нагревании на поверхности титана образуется окисный слой, поглощающий определенное количество света, и только оставшаяся часть его отражается в виде спектрального цвета, который нами воспринимается.
С повышением температуры отжига пропорционально увеличивается слой окиси. С увеличением толщины окисной пленки света поглощается больше и образуется четко разграниченная гамма цветов побежалости, начиная от светло-желтого (в тонком слое поглощается мало света) до зеленоватого, фиолетового и голубого, вплоть до темно-синего (толстый слой отражает лишь незначительную часть света).
При изготовлении, например, браслета один конец полосы нагревается узким горячим пламенем: образующийся сначала желтый тон медленно, что позволяет наблюдать за ним, проходит по всей длине полосы, за ним же следуют зеленоватые, фиолетовые и синие тона.
Примечательно, что при высокой температуре отжига титан еще раз окрашивается в желтый цвет. Если окрашенную таким образом полосу изогнуть в кольцо, то оба конца желтого цвета будут отличаться по интенсивности. Таким же методом можно изготавливать пластины для брошей и подвесок.
Цветовой эффект на титановой пластине можно усилить последующим травлением, для чего обычным образом наносится защитный лак и выскабливается рисунок, а затем осуществляется травление в холодном растворе плавиковой кислоты. После травления между цветами побежалости проявляется серый цвет металла, удачно дополняя и подчеркивая многоцветность всей поверхности.
Термическое оксидирование можно осуществить с помощью муфельной печи или обычной горелки.
Сначала титан приобретает первый цвет – золотистый. С ростом температуры появляются разнообразные оттенки: от светло-желтого до зеленоватого, фиолетового и голубого, вплоть до темно-синего. Для получения на поверхности специальных эффектов можно использовать различные тонизирующие присадки, придающие изделиям очень красивый угольно-серый цвет.
Пламенное окрашивание выполняется с помощью газовой горелки, которая в этом случае становится кистью художника. Поскольку точный контроль цвета невозможен, то полагаться следует на собственный художественный вкус и подход. В работе пригодна любая горелка, так как высокие температуры здесь не требуются; большое, мягкое пламя может дать участки ровного цвета, а маленький горячий язычок – радугу цветов. Пламенное окрашивание можно произвести также в стандартной муфельной печи. Поместив украшения в печь всего на несколько минут, можно получить золотой, пурпурный и синий цвета. Температура нагрева и время пребывания изделий в печи в каждом конкретном случае зависит от размера и толщины украшения. Этим методом можно получить и одноцветные краски.
Более точно окраску титана можно выполнить электролитическим методом окисления. В зависимости от используемого напряжения можно получать слои различной толщины и, следовательно, различные оттенки: желтый, темно-синий, голубой, фиолетовый, сине-зеленый. Если на одном изделии необходимо получить несколько цветовых оттенков, то пластина обрабатывается сначала при самом низком напряжении, а затем участок, на котором остается данный оттенок, закрывается, а обработка остальной поверхности продолжается таким же образом, но уже при более высоком напряжении.
Обработку можно производить и в другой последовательности: сначала прикладывается самое высокое напряжение, обработанный участок закрывается, а все остальное обрабатывается пескоструйным аппаратом. Цветные слои, получаемые электролитическим способом, можно сделать блестящими, а также белыми, для чего соответствующие участки также закрываются, а другие подвергаются обработке пескоструйным устройством, или же на них наносится защитный лак и выполняется травление плавиковой кислотой.
Распиловка, сверление, волочение и пайка титана.
Титан в некоторых случаях ведет себя иначе, чем обычно применяемые в ювелирном деле металлы.
При распиловке титана ножовкой сначала делается легкий надрез, и лишь после того, как ножовочное полотно захватило металл, можно увеличить силу нажатия.
Титан можно обрабатывать обычными напильниками, не сильно надавливая при этом, в противном случае насечка напильника забивается, и он «засаливается», отчего время от времени его необходимо прочищать.
При сверлении полагается пользоваться смазкой и помнить, что сверло быстро затупляется, а потому требуется новая заточка. При фрезеровании инструмент подвергается большим нагрузкам, поэтому его нужно обязательно охлаждать маслом. Токарную обработку, чтобы резец не затуплялся быстро, следует выполнять при низком числе оборотов детали; рекомендуется обработка алмазными и керамическими шлифовальными кругами.
Титан поддается обработке давлением, но в этом случае следует часто производить промежуточный отжиг, потому что он быстро нагартовывается. При прокатке необходимо большое усилие.
При волочении проволоки целесообразно сначала произвести ее отжиг – в этом случае смазка (масло или мыло) лучше ложится на окисную пленку; отжиг следует производить и после «прохождения» каждой третьей фильеры. При температуре 650-950°С можно производить горячую ковку титана, его можно обрабатывать также и в холодном состоянии – в этом случае он лучше поддается растяжению, чем сжатию.
Титан не поддается пайке ни мягким, ни твердым припоем, а сварка его производится только в среде защитного газа. Ювелир может соединять титановые детали и только механическим способом, например, клепкой. Как и все другие металлы, титан можно склеивать, если при этом соединяемые поверхности достаточно большие.
Поверхностная обработка титана производится сначала наждачной бумагой различной зернистости, а затем полировальной; блестящая поверхность получается лучше всего с помощью пасты из окиси никеля или шлифовальных средств для благородных металлов.
Для подготовки поверхности изделия из титана под окраску рекомендуется слегка ее протравить: изделие на мгновение опускается в 2 %-й раствор плавиковой кислоты, затем промывается, а потом обрабатывается обычным травильным раствором серной кислоты.
Используемые материалы: ХУДОЖЕСТВЕННОЕ МАТЕРИАЛОВЕДЕНИЕ. ЮВЕЛИРНЫЕ СПЛАВЫ: УЧЕБНОЕ ПОСОБИЕ . Автор/создатель: Мутылина И.Н.
Читайте также: