Сущность процесса передела чугуна в сталь
Сущность передела чугуна в сталь заключается в уменьшении количества содержащегося в нём углерода и других веществ до нужных значений путем их окисления и перевода продуктов окисления в шлак или атмосферу. В табл. 3.2 это хорошо иллюстрируется сравнением концентрации основных компонентов в чугуне и в стали.
Рисунок 3.6 – Схема кислородного конвертора:
1 – жидкий чугун, 2 – кислородная фурма, 3 – стальная лётка, 4 – горловина, 5 – стальной кожух, 6 – футеровка, 7 – струя кислорода, 8 – схема движения металлического расплава при продувке
Таблица 3.2 – Сравнительная характеристика химического состава
передельного чугуна и углеродистой стали
железа с углеродом
Концентрация компонентов, мас. %
В процессе передела чугуна в сталь происходит взаимодействие между элементами, находящимися в какой-либо из трёх фаз – жидкой металлической, жидкой шлаковой или газовой – различных по агрегатному состоянию и химическому составу. При этом один и тот же элемент, например, железо может одновременно присутствовать и в металлической, и в шлаковой фазе, а в результате взаимодействия с другими элементами переходить из одной фазы в другую. Местоположение элемента или соединения в той или иной фазе принято обозначать заключением химического символа в разные скобки. В квадратных (в [11] – прямых) скобках указывают элементы или химические соединения в металлической фазе, в круглых скобках – в шлаке, в фигурных скобках – в газовой фазе.
Направляемый из фурмы на металлический расплав кислород взаимодействует с элементами, присутствующими в чугуне. В соответствии с химическим законом действующих масс скорость химических реакций пропорциональна концентрации реагирующих веществ. Поскольку в наибольшем количестве в чугуне присутствует железо, то оно окисляется в первую очередь при взаимо-
действии чугуна с кислородом на границе раздела металл – газ:
Одновременно с железом газообразным кислородом на межфазной границе окисляются Si, P, C, Mn и др.:
Однако основное количество примесей окисляется за счёт кислорода, содержащегося в оксиде железа:
Чем больше оксида железа в жидком металле, тем активнее окисляются примеси. Для ускорения окисления примесей в в жидкую металлическую фазу добавляют железную руду, окалину, содержащие много оксидов железа.
Скорость окисления примесей зависит не только от концентрации, но подчиняется также принципу Ле Шателье. В соответствии с ним химические реакции, выделяющие теплоту (Q > 0), протекают интенсивнее при боле низких температурах, а реакции, поглощающие теплоту (Q < 0), протекают активнее при высоких температурах или при некотором повышении температуры.
Поэтому в начале плавки, когда температура металла невысока, интенсивнее идут процессы окисления кремния, фосфора, марганца, протекающие с выделением тепла по реакциям (3.2) . (3.4), а углерод интенсивно окисляется по реакции (3.5) только при высокой температуре металла, т.е. в середине и в конце плавки.
Второй жидкой фазой, не смешивающейся с металлической в сталеплавильном агрегате, является шлак – сплав оксидов с незначительным количеством сульфидов. Образование шлака есть, прежде всего, результат расплавления оксида CaO из флюса, а затем окисления примесей в жидком металле и образования оксидов с меньшей плотностью, чем металл. Поэтому оксиды шлака всегда собираются на поверхности металлической фазы.
Большинство компонентов чугуна (Mn, Si, Р, S) и их соединения, растворимые и в жидком металле, и в жидком шлаке, будут распределяться между металлом и шлаком в определённом соотношении, называемом константой распределения (закон Нернста), характерном для данной температуры.
Нерастворимые соединения в зависимости от плотности будут переходить либо в шлак, либо в металл. Изменяя состав шлака, можно менять константы распределения, т.е. соотношения между количеством примесей в металле и шлаке, так, что нежелательные примеси будут удаляться из металла в шлак. Убирая шлак с поверхности металла и наводя новый путём подачи флюса требуемого состава, можно очищать металл от вредных примесей – серы и фосфора. Поэтому регулирование состава шлака с помощью флюса является одним из основных способов управления металлургическими процессами.
Рисунок 3.7 – Последовательность технологических операций при выплавке стали в кислородном конверторе:
а – положение конвертора в ходе продувки, б – завалка скрапа, в – заливка жидкого чугуна, г – загрузка
железной руды и флюсов, д – выпуск готовой стали через лётку, е – слив шлака через горловину
Дефосфорация. Для удаления фосфора шлак должен содержать большое количество основного оксида CaO, чтобы поглощать из металла и удерживать серу и фосфор. Такой шлак обладает высокой основностью В, определяемой как отношение концентраций основных и кислых оксидов в шлаке:
В кислородно-конверторном процессе требуемая основность В = 3…4.
Образующийся по реакции (3.3) фосфорный ангидрид образует с оксидом железа в шлаке нестойкое соединение (FeO∙Р2О5) . Оксид кальция CaO – более сильный основной оксид, чем оксид железа, поэтому приневысоких температурах связывает ангидрид Р2О5, оставляя его в шлаке:
Десульфурация. Сера находится в стали в виде сульфида [FeS], который растворяется также в основном шлаке (FeS). Чем выше температура, тем большее количество FeS растворяется в шлаке, т.е. больше серы переходит из металла в шлак Сульфид железа, растворённый в шлаке, взаимодействует с оксидом кальция, также растворённым в шлаке:
(FeS) + (CaO) = (CaS) + (FeO). (3.7)
Эта же реакция протекает на межфазной границе металл – шлак между сульфидом железа в стали [FeS] и оксидом кальция в шлаке (CaO):
[FeS] + (CaO) = (CaS) + (FeO). (3.8)
Образующееся соединение (CaS) растворимо в шлаке, но не растворяется в железе, поэтому сера не может снова вернуться в сталь и остается в шлаке и удаляется с ним.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой.
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!
Сущность процесса передела чугуна на сталь. Сравнительная характеристика основных способов производства стали: в конвертерах, в мартенах, электропечах.
Сталь является основным видом металла, применяемым для создания современной техники. Это объясняется тем, что сталь обладает высокими прочностью и износостойкостью, хорошо сохраняет приданную форму в изделиях, сравнительно легко поддается различным видам обработки. Основной компонент стали -железо - является широко распространенным элементом в земной коре.
Сущностью любого металлургического передела чугуна в сталь является снижение содержания углерода и примесей путем их избирательного окисления и перевода в шлак и газы в процессе плавки.
Основными материалами для производства стали являются передельный чугун и стальной лом (скрап). Содержание углерода и примесей в стали значительно ниже, чем в чугуне.
В процессе плавки стали происходит взаимодействие между металлической, шлаковой и газовой фазами и футеровкой плавильного агрегата, различными по агрегатному состоянию и химическому составу. В результате этого взаимодействия осуществляется переход химических элементов из одной фазы в другую. Обменные процессы сопровождаются химическими превращениями, главным образом на границе металлической фазы со шлаком. Металлическая фаза состоит из расплава химических элементов, шлаковая - из расплава оксидов и их соединений. Поэтому переход элемента из одной фазы в другую возможен только при протекании химической реакции образования или восстановления оксида. Так как примеси по своим физико-химическим свойствам различны, то для их удаления в плавильном агрегате создают определенные условия, используя основные законы физической химии.
Чем больше оксида железа содержится в жидком металле, тем активнее окисляются примеси. Для ускорения окисления примесей в сталеплавильную ванну добавляют железную руду, окалину, содержащие много оксидов железа. Таким образом, основное количество примесей окисляется за счет кислорода оксида железа.
Скорость окисления примесей зависит не только от их концентрации, но и от температуры металла и подчиняется принципу Ле Шателье, в соответствии с которым химические реакции, выделяющие теплоту, протекают интенсивнее при более низких температурах или при некотором понижении температуры, а реакции, поглощающие теплоту, протекают активнее при высоких температурах или при некотором повышении температуры. Поэтому в начале плавки, когда температура металла невысока, интенсивнее идут процессы окисления кремния, фосфора, марганца, протекающие с выделением теплоты, а углерод интенсивно окисляется только при высокой температуре металла (в середине и конце плавки).
После расплавления шихты в сталеплавильной печи образуются две несмешивающиеся среды: жидкий металл и шлак. Шлак представляет собой сплав оксидов с незначительным содержанием сульфидов. Образование шлака связано с окислением элементов металлической фазы во время плавки и образованием различных оксидов с меньшей плотностью, чем металл, собирающихся на его поверхности. В соответствии с законом распределения (закон Нернста), если какое-либо вещество растворяется в двух соприкасающихся, но несмешивающихся жидкостях, то распределение вещества между этими жидкостями происходит до установления определенного соотношения (константы распределения), постоянного для данной температуры. Поэтому большинство компонентов (Мп, 81, Р, 8) и их соединения, растворимые в жидком металле и шлаке, будут распределяться между металлом и шлаком в определенном соотношении, характерном для данной температуры.
Нерастворимые соединения в зависимости от плотности будут переходить либо в шлак, либо в металл. Изменяя состав шлака, можно менять соотношение между количеством примесей в металле и шлаке так, что нежелательные примеси будут удаляться из металла в шлак. Убирая шлак
с поверхности металла и наводя новый путем подачи флюса требуемого состава, можно удалять вредные примеси (серу, фосфор) из металла. Поэтому регулирование состава шлака с помощью флюсов является одним из основных путей управления металлургическими процессами.
Мартены в основном остаются работать в нашей стране и по сей день, хотя они уже морально устарели, и очень сильно загрязняют окружающую среду. В кислородных конвертерах выплавляют конструкционные стали с различным содержанием углерода, кипящие и спокойные.
В кислородных конвертерах трудно выплавлять стали, содержащие легкоокисляющиеся легирующие элементы, поэтому в них выплавляют низколегированные (до 2-3 % легирующих элементов) стали. Легирующие элементы вводят в ковш, расплавив их в электропечи, или твердые ферросплавы вводят в ковш перед выпуском в пего стали. Плавка в конвертерах вместимостью 130-300 т заканчивается через 25-50 мин. Кислородно-конвертерный процесс более производительный, чем плавка стали в мартеновских печах. Самым лучшим вариантом является электропечь, т.к. электричество является дешевым видом энергии, и экологическим, электропечи имеют преимущества по сравнению с другими плавильными агрегатами, так как в них можно получать высокую температуру металла, создавать окислительную, восстановительную, нейтральную атмосферу и вакуум, что позволяет выплавлять сталь любого состава, раскислять металл с образованием минимального количества неметаллических включений — продуктов раскисления. Поэтому электропечи используют для выплавки конструкционных, высоколегированных, инструментальных, специальных сталей и сплавов.
КРАТКИЕ СВЕДЕНИЯ О ПРОИЗВОДСТВЕ ЧУГУНА И СТАЛИ
Выплавка чугуна и стали. Современное металлургическое производство чугуна и стали состоит из сложного комплекса различных производств (рис. 17).
1. Шахт и карьеров по добыче руд, каменных углей, флюсов, огнеупорных материалов.
2. Горно-обогатительных комбинатов, на которых подготовляют руды к плавке обогащают их, удаляя часть пустой породы, и получают концентрат - продукт с повышенным содержанием железа по сравнению с рудой.
3. Коксохимических цехов и заводов, на которых осуществляют подготовку коксующихся углей, их коксование (сухую перегонку при температуре ~ 1000" С без доступа воздуха) в коксовых печах и попутное извлечение из них ценных химических продуктов: бензола, фенола, каменноугольной смолы и др.
4 . Энергетических цехов для получения и трансформации электроэнергии сжатого воздуха, необходимого для дутья при доменных процессах кислорода для выплавки чугуна и стали, а также очистки газов металлургических производств с целью охраны природы и сохранения чистоты воздушного бассейна.
5. Доменных цехов для выплавки чугуна и ферросплавов.
6 Заводов для производства различных ферросплавов.
7. Сталеплавильных цехов - конвертерных, мартеновских, электросталеплавильных для производства стали.
8. Прокатных цехов, в которых нагретые слитки из стали перерабатываются в заготовки (блюмы и слябы) и далее в сортовой прокат, трубы, лист, проволоку и т.п.
Современное производство стали основано на двухступенчатой схеме, которая состоит из доменной выплавки чугуна и различных способов последующего его передела в сталь. В процессе доменной плавки, осуществляемом в доменных печах, происходит избирательное восстановление железа из его окислов, содержащихся в руде. Одновременно с этим из руды восстанавливаются также фосфор и в небольших количествах марганец и кремний; происходит науглероживание железа и частичное насыщение его серой топлива (кокса). Таким образом из руды получают чугун—сплав железа с углеродом более 2,14%, кремнием, марганцем, серой и фосфором.
Передел чугуна в сталь осуществляют в металлургических агрегатах: в конвертерах, мартеновских и электрических печах. В них из-за ряда происходящих химических реакций осуществляется избирательное окисление примесей чугуна и перевод их в процессе плаг-ки в шлак и газы. В результате получают сталь заданного химического состава.
Продукция черной металлургии. Основной продукцией черной металлургии являются
1. передельный чугун,
2. литейный чугун,
3. доменные ферросплавы,
4. стальные слитки и
Передельный чугун, используемый для передела на сталь, содержит 4,0-4.4 % С; до 0,6-0,8% Si; до 0,25-1,0% Mn; 0,15-0,3% Р и 0,03-0,07% S. Некоторые марки чугуна, предназначенные для передела в сталь в конвертерах, имеют пониженное до 0,07% содержание фосфора. До 90% всего выплавляемого чугуна приходится на чугун передельный.
Литейный чугун, предназначенный для производства фасонных отливок способами литья на машиностроительных заводах, имеет повышенное содержание кремния (до 2,75-3,25%).
Ферросплавы — сплавы железа с повышенным содержанием марганца, кремния, ванадия, титана и других металлов. Их применяют для раскисления и производства легированных сталей. К ферросплавам относят доменный ферросилиций, содержащий 9—13% Si и до 3% Мn; доменный ферромарганец, содержащий 70—75% Мn и до 2% Si; зеркальный чугун с 10-25%Мn и до2%Si.
Стальные слитки, полученные в изложницах или кристаллизаторах, подвергают обработке давлением (прокатке, ковке). Прокат используют непосредственно в конструкциях (мостах, зданиях, железобетонных конструкциях, железнодорожных путях, станинах машин и т.д.), в качестве заготовок для изготовления деталей резанием и заготовок для последующей ковки и штамповки.
Форму поперечного сечения прокатанного металла называют профилем. Совокупность различных профилей разных размеров называют сортаментом. Сортамент прокатываемых профилей разделяют наследующие группы: заготовки, сортовой прокат, листовой прокат, трубы и специальные виды проката.
Заготовки прокатывают в горячем состоянии непосредственно из слитков. Заготовки квадратного сечения с размерами от 150 х 150 до 450х450 мм называют блюмами. Они предназначены для последующей прокатки на сортовых станах и в качестве заготовок для изготовления поковок ковкой. Заготовки прямоугольного сечения толщиной 65—300 мм и шириной 600-1600 мм называют слябами. Их используют для прокатки толстых листов.
Сортовой прокат по профилю подразделяют на две группы: простой геометрической формы (квадрат, круг, шестигранник, прямоугольник) и сложной — фасонной формы (швеллеры, двутавровые балки, рельсы, уголки и т.д.).
Листовой прокат подразделяют по назначению (судостроительный, электротехнический, аптолист и т.д.) и по толщине.
1. с толщиной 4 - 160 мм называют толстолистовой, а
2. с толщиной 0,2-4 мм -тонколистовой. Листы
3. с толщиной менее 0,2 мм называют фольгой.
Трубытакже подразделяют по назначению и способу изготовления. Они бывают
2. сварные (с прямым и спиральными швами).
Специальные виды проката — колеса и оси железнодорожных вагонов, кольца, зубчатые колеса, периодические профили и т.п.
Периодическим профилем называют прокатанную заготовку, форма и площадь сечения которой периодически изменяются вдоль оси.
Побочными продуктами металлургического производства являются коксовальный газ и извлекаемые из него ценные химические продукты, а также доменный шлаки
колошниковый газ. Доменным шлаком называют легкоплавкое соединение флюса (СаСО, — известняк) с пустой породой руды и золой топлива. Шлак используют для строительства дорог, из него изготовляют шлаковату, шлакоблоки, цемент, а колошниковый (доменный) газ после очистки от пыли используют как топливо для нагрева воздуха, вдуваемого в доменную печь, а также в цехах металлургических заводов.
Современное металлургическое производство все более развивается по пути внедрения малоотходных и безотходных технологических процессов.
Физико-химические процессы получения стали
Основными материалами для производства стали являются передельный чугун и стальной лом (скрап).
Сущностью любого металлургического передела чугуна в сталь является снижение содержания углерода и примесей путём их избирательного окисления и перевода в шлак и газы в процессе плавки.
Примеси отличаются по своим физико-химическим свойствам, поэтому для удаления каждой из них в плавильном агрегате создают определённые условия, используя основные законы физической химии.
В соответствие с законом действующих масс (норвежских учёных Като Гульдберга и Петера Вааге) скорость химической реакции пропорциональна концентрации реагирующих веществ. Поскольку в чугуне больше всего железа, то оно и окисляется в первую очередь при взаимодействии чугуна с кислородом в сталеплавильной печи.
2Fe + O2 = 2FeO + Q (1)
Одновременно с железом окисляются примеси Si, P, Mn, C и другие.
Образующийся оксид железа (II) при высоких температурах растворяется в железе и окисляет примеси:
2FeO + Si = SiO2 + 2Fe + Q (2)
FeO + Mn = MnO + Fe + Q (4)
FeO + C = CO + Fe – Q (5).
Чем больше FeO содержится в жидком металле, чем активнее окисляются примеси. Для ускорения окисления примесей в сталеплавильную печь добавляют железную руду, содержащую оксиды железа. Т.о., основное количество примесей окисляется за счёт кислорода FeO.
I этап – расплавление шихты и нагрев ванны жидкого металла. На этом этапе температура металла невысока; интенсивно происходит окисление железа и примесей по реакциям 1 – 4. Наиболее важная задача этого этапа – удаление вредной примеси фосфора. Для этого необходимо проведение плавки в печи с основным огнеупором, в которой можно использовать основные флюсы, содержащие СаО.
II этап – «кипение» металлической ванны. Начинается оно по мере её прогревания до более высоких температур. Образующийся FeO реагирует с углеродом по реакции 5, а пузырьки СО, выделяющиеся из жидкого металла, вызывают эффект «кипения» ванны.
В этот же период создаются условия для удаления серы из металла. Сера в стали находится в виде сульфида FeS:
FeS + CaO = CaS + FeO (7)
Образующееся соединение CaS растворимо в шлаке, но не растворяется в железе.
В сталеплавильных печах с кислой футеровкой нет условий для уменьшения количества фосфора и серы, т.к. нельзя использовать основные флюсы, поэтому в кислых печах можно выплавлять сталь только из шихтовых материалов с малым содержанием серы и фосфора.
III этап (завершающий) – раскисление стали. Заключается в восстановлении FeO, растворённого в жидком металле.
Раскисление осуществляется введением в жидкую сталь ферромарганца, ферросилиция и алюминия. При этом происходят реакции:
FeO + Mn = MnO + Fe
2FeO + Si = SiO2 + Fe
При последовательном раскислении стали ферромарганцем, ферросилицием и алюминием получают спокойную сталь, при раскислении ферромарганцем и уменьшенным количеством ферросилиция – полуспокойную , при раскислении только ферромарганцем – кипящую.
Раскислители вводят либо в печь, либо в струю разливаемого в ковш металла.
Материаловедение и высокоэффективные процессы обработки
Физико-химическая сущность процесса передела чугуна в сталь. Основные химические реакции окисления примесей и удаления серы и фосфора. Сущность, достоинства, недостатки и область применения способа литья под давлением на машине с горизонтальной камерой.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 19.01.2016 |
Размер файла | 148,1 K |
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
«Саратовский государственный технический университет
имени Гагарина Ю.А.»
Кафедра «Материаловедение и высокоэффективные процессы обработки»
Контрольная работа
по дисциплине «Материаловедение и ТКМ»
направления подготовки «Нефтегазовое дело» (бакалавр)
Студент заочного обучения
Кандидат технических наук / доцент
Задание № 1.
Изложите физико-химическую сущность процесса передела чугуна в сталь. Приведите основные химические реакции окисления примесей и удаления серы и фосфора.
Принцип передела чугуна на сталь
Сталь отличается от чугуна меньшим содержанием углерода и других примесей (табл. 1). Вне зависимости от способа получения стали (кислородно-конверторного, мартеновского или плавки в электропечах) можно выстроить общую принципиальную схему протекания сталеплавильного процесса. Весь процесс можно разбить на ряд этапов.
чугун сталь литье давление
Состав передельного чугуна и низкоуглеродистой стали
Первый этап это окисление примесей. Следует заметить, что источником О2 могут быть как чистый кислород, так и кислород воздуха, подаваемого в печь для сжигания топлива:
Fe+1/2O2=FeO+Q; Si+O2=SiO2+Q; Mn+1/2 O2= MnO+Q;
Элементы, обладающие большим сродством к кислороду, чем железо(Si, Mn), могут окисляться, отнимая кислород у оксидов железа, входящих в железную руду или окалину, которые добавляют в шихту:
Реакции окисления - экзотермические. Выделение тепла приводит к повышению температуры расплава. В процессе протекания окислительных или окислительно восстановительных химических реакций имеет место выделение газообразных веществ (СО, SO2). Всплытие пузырьков газообразных веществ, образующихся в результате реакций окисления, вызывает «кипение» ванны расплавленного металла.
Удаление негазообразных оксидов происходит за счет процесса шлакования, общий принцип которого рассмотрен выше. Процесс идет как за счет взаимодействия оксидов с флюсом (кислым или основным), так и за счет взаимодействия образовавшихся оксидов между собой:
Процесс удаления вредных примесей серы и фосфора носит название «рафинирование». Важно отметить, что удаление серы и фосфора возможно лишь при использовании основного флюса (извести СаО). Сера в стали содержится в виде химического соединения FeS, а если сталь богата марганцем, то в виде MnS:
Удаление фосфора идет по типовой схеме взаимодействия кислого и основного оксида:
Заключительным этапом любого сталеплавильного процесса является процесс раскисления. Он может происходить как в печи, так и в разливочном ковше, куда вводят раскислители либов виде ферросплавов (ферромарганиц, ферросилиций), либо в виде чистого алюминия. Цель этого этапа восстановить окисленное на первом этапе железо. В общем виде химическую реакцию можно представить так:
где Х элемент, обладающий большим сродством к кислороду, чем железо. В реальных сталеплавильных процессах - это Si, Mn, C, CO, Al и др.
Процесс, протекающий по вышеприведенной схеме, носит название осаждающего раскисления. В результате данного процесса происходит восстановление железа и образование оксидов MnO, SiO2, Al2O3 и др. Образующиеся малорастворимые в металле окислы легко отделяются от расплава и благодаря меньшей плотности, чем плотность жидкого металла, всплывают в шлак. Как было сказано выше, реакции, протекающие при раскислении, идут с выделением тепла.
При понижении температуры металла в изложнице (при разливке) течение реакций раскисления может продолжиться. Вновь образовавшиеся оксиды не успевают всплывать и удаляться из металла. В случае, когда требуется получить особо чистую от неметаллических включений сталь, применяют диффузионное раскисление. При данном методе раскислители подают на поверхность шлака. Восстанавливая железо из его оксидов, они тем самым понижают концентрацию FeO в шлаке. В соответствии с законом распределения оксиды железа переходят из металла в шлак. Процесс идет до тех пор, пока не установится равновесное распределение закиси железа в шлаке и металле, соответствующее данным внешним условиям (температура и др.). Преимуществом диффузионного раскисления является достижение высокой чистоты металла по неметаллическим включениям. Недостатком данного способа является высокий угар дорогостоящих раскислителей (вследствие их реакции с кислородом атмосферы печи). По этой причине метод диффузионного раскисления применяется реже.
Раскисление синтетическими шлаками по своему физикохимическому принципу схож с диффузионным. В ковш, на дне которого находится расплав шлака, не содержащего FeO, с большой высоты заливают раскисляемую сталь. Струя металла дробится на капли, контакт металла со шлаками возрастает. Благодаря этому процесс раскисления идет с большой скоростью. При этом сталь не только раскисляется, но и снижается содержание в ней серы и фосфора, а также других неметаллических включений.
Сталеплавительное производство включает в себя конвертерный, мартеновский способы получения стали и плавку в электропечах.
В середине XIX века английский изобретатель Генри Бессимер предложил способ получения стали путем продувки жидкого чугуна в конвертере с кислой футеровкой.
Позднее Сидней Томас предложил вести процесс в конвертерах с основной футеровкой, что позволило получать сталь из жидких чугунов, содержащих большое количество фосфора. Способ, предложенный французским металлургом Пьером Мартеном (мартеновский), позволил использовать для плавки твердые шихтовые материалы (руду, лом, отходы машиностроительного производства). Разработка в середине ХХ века кислородно-конвекторного способа позволила получать сталь, не уступающую по качеству мартеновской. Применение электрической энергии в качестве источника тепла для плавки стали позволяет получать высокие температуры (до 35000С), которые при сжигании обычных видов металлургического топлива, получить не представляется возможным.
Задание №2
Изложите сущность способа литья под давлением. Приведите схему изготовления отливок давлением на машинах с горизонтальной камерой прессования. Укажите достоинства, недостатки и области применения этого способа литья.
Литье под давлением.
Литье под давлением ведут на компрессорных и прошневых машинах. Поршневые машины выполнены с вертикальной и горизонтальной камерами прессования. Камеры могут быть холодными и горячими.
Литье под давлением на машине с горизонтальной камерой (рис. 1) протекает в той же последовательности.
Рис. 1. Схемы процесса литья под давлением на машине
Основные преимущества литья под давлением заключаются в следующем. Литье под давлением позволяет решить одну из важнейших задач литейного производства: максимально приблизить размеры отливки к размерам готовой детали. Отливки, полученные в металлических пресс-формах, имеют чистую и гладкую поверхность, что значительно сокращает поверхностную отделку деталей (шлифование, полирование и т. д.). Этим способом отливают ответственные детали с тонкими стенками, сложной конфигурации. Кроме того, литье под давлением применяют для соединения нескольких деталей или получения отливок с арматурой из других металлов. Отливки, полученные литьем под давлением, имеют мелкозернистую структуру и высокие механические свойства.
Экономически выгодным также является то, что в одной пресс-форме можно изготовить в короткий срок большое количество отливок. Высокая производительность этого способа литья и минимальные припуски снижают себестоимость производства как в литейном, так и в механических цехах.
Кроме того, литье под давлением исключает применение формовочных смесей, поэтому санитарно-производственные условия лучше, чем в обычных литейных цехах.
Таким образом, литье под давлением - один из наиболее прогрессивных способов изготовления отливок.
С другой стороны, литье под давлением - сложный технологический процесс, который требует знаний металлургии сплава, технологии литья, специальных знаний инструментального производства при изготовлении пресс-форм и, наконец, механики при эксплуатации машин для литья под давлением.
Литье под давлением имеет некоторые недостатки, например появление в отливках мелких воздушных раковин (пористости). Находящийся в полости пресс-формы воздух не успевает полностью выходить наружу и частично смешивается с расплавом. Не успевают выйти из отливки и газы, растворенные в металле, из-за пористости отливки нельзя подвергать термообработке, так как при нагреве появляются вздутия. Трудно, а иногда и невозможно, отлить этим способом деталь с поднутрением и внутренними полостями.
Существующие в современном производстве машины и пресс-формы пригодны лишь для изготовления отливок из сплавов с температурой плавления ниже 1000° С. Для литья стали изготовлены специальные опытные литейные машины и пресс-формы (см. гл. VI).
Литьем под давлением можно получать отливки не из всех сплавов. Наиболее пригодные - цинковые сплавы, некоторые алюминиевые, латуни. Труднее получать этим способом детали из стали и чугуна. Не отливают под давлением детали из бронз.
Высокая стоимость оборудования и пресс-форм делает не всегда выгодным производство небольших партий отливок способом литья под давлением, поэтому способ литья под давлением широко распространен в серийном и массовом производствах.
Подобные документы
Сущность и методы литья металла под давлением. Технологический процесс формирования отливки, оборудование и инструменты. Общая характеристика литья под низким давлением. Преимущества и недостатки способа, область применения. Режимы получения отливки.
реферат [1,4 M], добавлен 04.04.2011
Оптимизация технической схемы литья под давлением на машинах с холодной горизонтальной камерой прессования поршнем. Особенности получения отливок. Движение расплава в пресс-форме. Общие принципы конструирования литой детали. Методы повышения стойкости.
дипломная работа [1,4 M], добавлен 24.01.2016
Чугун - сплав железа с углеродом, дешевый машиностроительный материал. Основные физические и химические свойства серого чугуна. Применение в машиностроении для отливок деталей. Влияние на свойства чугуна примесей: кремния, марганца, серы и фосфора.
реферат [15,5 K], добавлен 07.03.2011
Технологические процессы приготовления литейных расплавов, их свойства. Классификация кокилей, область применения; литниковая система; достоинства и технико-экономические показатели производства отливок. Изготовление кокильного литья из серого чугуна.
курсовая работа [57,5 K], добавлен 13.02.2013
Проект реконструкции цеха литейного участка внутризаводского предприятия "Металлург" ОАО АК "Туламашзавод" с выпуском 1800 тонн отливок в год. Технологический процесс отливки детали "Крышка" на машине литья под давлением с холодной камерой прессования.
Читайте также: