Сталью называются такие сплавы железа которые содержат углерода от
Сталь (сплав железа с углеродом) Сталь (польск. stal, от нем. Stahl), деформируемый (ковкий) сплав железа с углеродом (до 2%) и др. элементами. С. ‒ важнейший продукт чёрной металлургии , являющийся материальной основой практически всех отраслей промышленности. Масштабы производства С. в значительной степени характеризуют технико-экономический уровень развития государства.
Историческая справка. С. как материал, используемый человеком, имеет многовековую историю. Наиболее древний способ получения С. в тестообразном состоянии ‒ сыродутный процесс , в основе которого лежало восстановление железа из руд древесным углём в горнах (позднее в небольших шахтных печах). Для получения литой С. древние мастера применяли тигельную плавку ‒ расплавление мелких кусков С. и чугуна в огнеупорных тиглях. Тигельная С. характеризовалась весьма высоким качеством, но процесс был дорогим и малопроизводительным. Таким способом изготовляли, в частности, булат и его разновидность ‒ дамасскую сталь . Тигельный процесс просуществовал до начала 20 в. и был полностью вытеснен электроплавкой. В 14 в. возник кричный передел , заключавшийся в рафинировании предварительно полученного чугуна в т. н. кричном горне (двухстадийный процесс с получением чугуна и последующим переделом его в С. является основой и современных схем производства С.). В конце 18 в. начало применяться пудлингование , при котором, как и при кричном переделе, исходным материалом был чугун, а продуктом ‒ тестообразный металл ( крица ) качество металла при этом было выше, а сам процесс характеризовался более высокой производительностью. Пудлингование сыграло важную роль в развитии техники, однако обеспечить всё возраставшие потребности общества в С. не могло. Лишь с появлением во 2-й половине 19 в. бессемеровского процесса и мартеновского процесса (см. Мартеновское производство ), а затем и томасовского процесса стало возможным массовое производство литой С. В конце 19 в. начала применяться выплавка С. в электрических печах (см. Электросталеплавильное производство ). До середины 20 в. главенствующее положение среди способов производства С. занимал мартеновский процесс, на долю которого приходилось около 80% выплавляемой в мире С. В 50-х гг. был внедрён кислородно-конвертерный процесс , причём в последующие годы его роль резко возросла. Наряду с указанными способами массового производства С. развиваются более дорогие и менее производительные способы, позволяющие получать особо чистый металл высокого качества: вакуумная дуговая плавка (см. Дуговая вакуумная печь ), вакуумная индукционная плавка, электрошлаковый переплав , электроннолучевая плавка , плазменная плавка (см. Плазменная металлургия ).
Структура и свойства стали. К С. как важнейшему материалу современной техники предъявляются разнообразные требования, что обусловливает большое число марок С., отличающихся по химическому составу, структуре, свойствам. Основной компонент С. ‒ железо. Свойственный железу полиморфизм , т. е. способность кристаллической решётки менять своё строение при нагреве и охлаждении, присущ и С. Для чистого железа известны 2 кристаллические решётки ‒ кубическая объёмноцентрированная (a-железо, при более высоких температурах d-железо) и кубическая гранецентрированная (g-железо). Температуры перехода одной модификации железа в другую (910 °С и 1400 °С) называются критическими точками. Углерод и др. компоненты и примеси С. меняют положение критических точек на температурной шкале. Взаимодействие углерода с модификациями железа приводит к образованию т. н. твёрдых растворов . Растворимость углерода в a-железе весьма мала; этот раствор называется ферритом . В g-железе, существующем при высоких температурах, растворяется практически весь углерод, содержащийся в С. (предел растворимости углерода в g-железе 2,01%); образующийся раствор называется аустенитом . Содержание углерода в С. всегда превышает его растворимость в a-железе; избыточный углерод образует с железом химическое соединение ‒ карбид железа Fe 3 C, или цементит . Т. о., при комнатной температуре структура С. состоит из частиц феррита и цементита, присутствующих либо в виде отдельных включений (т. н. структурно-свободных феррита и цементита), либо в виде тонкой механической смеси, называемой перлитом . Общие сведения о температурных и концентрационных границах существования фаз (феррита, цементита, перлита и аустенита) даёт диаграмма состояния сплавов Fe ‒ С (см. Железоуглеродистые сплавы ).
Для феррита характерны относительно низкие прочность и твёрдость, но высокие пластичность и ударная вязкость. Цементит хрупок, но весьма твёрд и прочен. Перлит обладает ценным сочетанием прочности, твёрдости, пластичности и вязкости. Соотношение между этими фазами в структуре С. определяется главным образом содержанием в ней углерода; различные свойства этих фаз и обусловливают многообразие свойств С. Так, С., содержащая ~0,1% С (в её структуре преобладает феррит), характеризуется большой пластичностью; С. этого типа используется для изготовления тонких листов, из которых штампуют части автомобильных кузовов и др. деталей сложной формы. С., в которой содержится ~0,6% С, имеет обычно перлитную структуру; обладая повышенной твёрдостью и прочностью при достаточной пластичности и вязкости, такая С. служит, например, материалом для ж.-д. рельсов, колёс, осей. Если С. содержит около 1% С, в её структуре наряду с перлитом присутствуют частицы структурно-свободного цементита; эта С. в закалённом виде имеет высокую твёрдость и применяется для изготовления инструмента. Диапазон свойств С. расширяется с помощью легирования , а также термической обработки , химико-термической обработки , термомеханической обработки металла. Так, при закалке С. образуется метастабильная фаза мартенсит ‒ пересыщенный твёрдый раствор углерода в a-железе, характеризующийся высокой твёрдостью, но и большой хрупкостью; сочетая закалку с отпуском , можно придать С. требуемое сочетание твёрдости и пластичности.
Классификация сталей. В современной металлургии С. выплавляют главным образом из чугуна и стального лома. По типу сталеплавильного агрегата (кислородный конвертер, мартеновская печь, электрическая дуговая печь) С. называется кислородно-конвертерной, мартеновской или электросталью. Кроме того, различают металл, выплавленный в основной или кислой (по характеру футеровки) печи; С. при этом называется соответственно основной или кислой (например, кислая мартеновская С.).
По химическому составу С. делятся на углеродистые и легированные. Углеродистая сталь наряду с Fe и С содержит Mn (0,1‒1,0%) и Si (до 0,4%), а также вредные примеси ‒ S и Р; эти элементы попадают в С. в связи с технологией её изготовления (главным образом из шихтовых материалов). В зависимости от содержания С различают низкоуглеродистую (до 0,25% С), среднеуглеродистую (0,25‒0,6% С) и высокоуглеродистую (более 0,6% С) С. В состав легированных сталей , помимо указанных компонентов, входят т. н. легирующие элементы (Cr, Ni, Mo, W, V, Ti, Nb, Zr, Со и др.), которые намеренно вводят в С. для улучшения её технологических и эксплуатационных характеристик или для придания ей особых свойств; легирующими элементами могут служить также Mn (при содержании более 1%) и Si (более 0,8%). По степени легирования (т. с. по суммарному содержанию легирующих элементов) различают низколегированные (менее 2,5%), среднелегированные (2,5‒10%) и высоколегированные (более 10%) С. Легированные С. часто называются по преобладающим в ней компонентам (например, вольфрамовая, высокохромистая, хромомолибденовая, хромомарганцевоникелевая, хромоникелемолибденованадиевая).
По назначению С. делят на следующие основные группы: конструкционные, инструментальные и С. с особыми свойствами. Конструкционные стали применяют для изготовления строительных конструкций, деталей машин и механизмов, судовых и вагонных корпусов, паровых котлов и др. изделий. Конструкционные С. могут быть как углеродистыми (до 0,7% С), так и легированными (основные легирующие элементы ‒ Cr и Ni). Название конструкционной С. может отражать её непосредственное назначение (котельная, клапанная, рессорно-пружинная, судостроительная, орудийная, снарядная, броневая и т.д.). Инструментальные стали служат для изготовления резцов, фрез, штампов, калибров и др. режущего, ударно-штампового и мерительного инструмента. С. этой группы также могут быть углеродистыми (обычно 0,8‒1,3% С) или легированными (главным образом Cr, Mn, Si, W, Mo, V). Среди инструментальных С. широкое распространение получила быстрорежущая сталь . К С. с особыми физическим и химическим свойствами относятся электротехнические стали , нержавеющие стали , кислотостойкие, окалиностойкие, жаропрочные, С. для постоянных магнитов и др. Для многих С. этой группы характерно низкое содержание углерода и высокая степень легирования.
По качеству С. обычно подразделяют на обыкновенные (рядовые), качественные, высококачественные и особо высококачественные. Различие между ними заключается в количестве вредных примесей (S и Р) и неметаллических включений . Так, в некоторых С. обыкновенного качества допускается содержание S до 0,055‒0,06% и Р до 0,05‒0,07% (исключение составляет автоматная сталь , содержащая до 0,3% S и до 0,16% Р), в качественных ‒ не более 0,035% каждого из этих элементов, в высококачественных ‒ не более 0,025%, в особо высококачественных ‒ менее 0,015% S. Сера снижает механические свойства С., является причиной красноломкости , т. е. хрупкости в горячем состоянии, фосфор усиливает хладноломкость ‒ хрупкость при пониженных температурах.
По характеру застывания металла в изложнице различают спокойную, полуспокойную и кипящую С. Поведение металла при кристаллизации обусловлено степенью его раскисленности: чем полнее удалён из С. кислород, тем спокойнее протекает процесс затвердевания; при разливке малораскисленной С. в изложнице происходит бурное выделение пузырьков окиси углерода ‒ С. как бы «кипит». Полуспокойная С. занимает промежуточное положение между спокойной и кипящей С. Каждый из этих видов металла имеет достоинства и недостатки; выбор технологии раскисления и разливки С. определяется её назначением и технико-экономическими показателями производства.
Маркировка сталей. Единой мировой системы маркировки С. не существует. В СССР проведена большая работа по унификации обозначений различных марок С., что нашло отражение в государственных стандартах и технических условиях. Марки углеродистой С. обыкновенного качества обозначаются буквами Ст и номером (Ст0, Ст1, Ст2 и т.д.). Качественные углеродистые С. маркируются двузначными числами, показывающими среднее содержание С в сотых долях процента: 05, 08, 10, 25, 40 и т.д. Спокойную С. иногда дополнительно обозначают буквами сп, полуспокойную ‒ пс, кипящую ‒ кп (например, СтЗсп, Ст5пс, 08кп). Буква Г в марке С. указывает на повышенное содержание Mn (например, 14Г, 18Г). Автоматные С. маркируются буквой А (А12, А30 и т.д.), углеродистые инструментальные С. ‒ буквой У (У8, У10, У12 и т.д. ‒ здесь цифры означают содержание С. в десятых долях процента).
Обозначение марки легированной С. состоит из букв, указывающих, какие компоненты входят в её состав, и цифр, характеризующих их среднее содержание. В СССР приняты единые условные обозначения химического состава С.: алюминий ‒ Ю, бор ‒ Р, ванадий ‒ Ф, вольфрам ‒ В, кобальт ‒ К, кремний ‒ С, марганец ‒ Г, медь ‒ Д, молибден ‒ М, никель ‒ Н, ниобий ‒ Б, титан ‒ Т, углерод ‒ У, фосфор ‒ П, хром ‒ Х, цирконий ‒ Ц. Первые цифры марки обозначают среднее содержание С (в сотых долях процента для конструкционных С. и в десятых долях процента для инструментальных и нержавеющих С.); затем буквой указан легирующий элемент и цифрами, следующими за буквой,‒ его среднее содержание. Например, С. марки 3Х13 содержит 0,3% С и 13% Cr, С. марки 2X17H2 ‒ 0,2% С, 17% Cr и 2% Ni. При содержании легирующего элемента менее 1,5% цифры за соответствующей буквой не ставятся: так, С. марки 12ХН3А содержит менее 1,5% Cr. Буква А в конце обозначения марки указывает на то, что С. является высококачественной, буква Ш ‒ особо высококачественной. Обозначение марки некоторых легированных С. включает букву, указывающую на назначение С. (например, ШХ9 ‒ шарикоподшипниковая С. с 0,9‒1,2% Cr; Э3 ‒ электротехническая С. с 3% Si). С., проходящие промышленные испытания, часто маркируют буквами ЭИ или ЭП (завод «Электросталь»), ДИ (завод «Днепроспецсталь») или ЗИ (Златоустовский завод) с соответствующим очередным номером (ЭИ268). См. также Металлургия , Сталеплавильное производство .
Лит.: Сталеплавильное производство. Справочник, под ред. А. М. Самарина, т. 1‒2, М., 1964; Меськин В. C., Основы легирования стали, 2 изд., М., 1964; Гудремон Э., Специальные стали, пер. с нем., 2 изд., т. 1‒2, М., 1966; Дреге В., Сталь как конструкционный материал, пер. с нем., М., 1967; Гуляев А. П., Чистая сталь, М., 1975.
Сталь в искусстве. В средние века славились арабское оружие и доспехи из С. с плоскими узорами и надписями, выполненными гравированием или насечкой . Эти приёмы декорировки оружейники средневековой Европы дополнили чеканкой , наводкой и полировкой. С 16 в. в отделке часов, научных приборов и инструментов появляется устойчивая к коррозии зеркальная полировка, использование которой послужило стимулом для выпуска бытовых изделий из С. В 18 ‒ начале 19 вв. эстетические свойства С. наиболее ярко раскрылись в изделиях мастеров Тульского оружейного завода (мебель, зеркала, самовары, каминные экраны и т.п.). Как вид народного творчества известна с середины 19 в. златоустовская гравюра на С. В советском искусстве С. нашла применение в облицовке интерьеров, а также в скульптуре (В. И. Мухина, «Рабочий и колхозница», см. илл. ).
Лит.: Тульские «златокузнецы». [Альбом], Л., 1974.
Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .
Маркировка и классификация сталей
Сталь — это сплав железа с углеродом (до 2% углерода). По химическому составу сталь разделяют на:
По качеству сталь разделяют на:
- сталь обыкновенного качества;
- качественную;
- повышенного качества;
- высококачественную.
Сталь углеродистую обыкновенного качества подразделяют на три группы:
- А — поставляемую по механическим свойствам и применяемую в основном тогда, когда изделия из нее подвергают горячей обработке (сварка, ковка и др.), которая может изменить регламентируемые механические свойства (Ст0, Ст1 и др.);
- Б — поставляемую по химическому составу и применяемую для деталей, подвергаемых такой обработке, при которой механические свойства меняются, а уровень их, кроме условий обработки, определяется химическим составом (БСт0, БСт1 и др.);
- В — поставляемую по механическим свойствам и химическому составу для деталей, подвергаемых сварке (ВСт1, ВСт2 и др.).
Сталь углеродистую обыкновенного качества изготовляют следующих марок: Ст0, Ст1кп, Ст1пс, Ст1сп, Ст2кп, Ст2пс, Ст2сп, СтЗкп, СтЗпс, СтЗсп, СтЗГпс, СтЗГсп, Ст4кп, Ст4пс, Ст4сп, Ст5пс, Ст5сп, Ст5Гпс, Стбпс, Стбсп.
Буквы Ст обозначают «Сталь», цифры — условный номер марки в зависимости от химического состава, буквы «кп», «пс», «сп» — степень раскисления «кп» — кипящая, «пс» — полуспокойная, «сп» — спокойная).
Сталь углеродистая качественная конструкционная по видам обработки при поставке делится на:
- горячекатаную и кованую;
- калиброванную;
- круглую со специальной отделкой поверхности, серебрянку.
Легированную сталь по степени легирования разделяют:
- низколегированная (легирующих элементов до 2,5%);
- среднелегированная (от 2,5 до 10%);
- высоколегированная (от 10 до 50%).
В зависимости от основных легирующих элементов различают сталь 14 групп.
К высоколегированным относят:
- коррозионностойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии; межкристаллитной коррозии, коррозии под напряжением и др.;
- жаростойкие (окалиностойкие) стали и сплавы, обладающие стойкостью против химического разрушения в газовых средах при температуре выше 50 °C, работающие в ненагруженном и слабонагруженном состоянии;
- жаропрочные стали и сплавы, работающие в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью.
Сталь легированную конструкционную в зависимости от химического состава и свойств делят:
- качественная;
- высококачественная А;
- особо высококачественную Ш (электрошлакового переплава).
По видам обработки при поставке различают сталь:
- горячекатаная;
- кованая;
- калиброванная;
- серебрянка.
По назначению изготовляют прокат:
- для горячей обработки давлением и холодного волочения (подкат);
- для холодной механической обработки.
2. Классификация углеродистых сталей
Стали подразделяются на углеродистые и легированные. По назначению различают стали конструкционные с содержанием углерода в сотых долях процента и инструментальные с содержанием углерода в десятых долях процента. Наибольший объем сварочных работ связан с использованием низкоуглеродистых и низколегированных конструкционных сталей.
Основным элементом в углеродистых конструкционных сталях является углерод, который определяет механические свойства сталей этой группы. Углеродистые стали выплавляют обыкновенного качества и качественные. Стали углеродистые обыкновенного качества подразделяются на три группы:
- группа А — по механическим свойствам;
- группа Б — по химическому составу;
- группа В — по механическим свойствам и химическому составу.
Изготавливают стали следующих марок:
- группа А — Ст0, Ст1, Ст2, Ст3, Ст4, Ст5, Ст6;
- группа Б — БСт0, БСт1, БСт2, БСт3, БСт4, БСт5, БСт6;
- группа В — ВСт0, ВСт1, ВСт2, ВСт3, ВСт4, ВСт5.
По степени раскисления сталь обыкновенного качества имеет следующее обозначение:
- кп — кипящая,
- пс — полуспокойная,
- сп — спокойная.
Кипящая сталь, содержащая кремния (Si) не более 0,07%, получается при неполном раскислении металла марганцем. Сталь характеризуется резко выраженной неравномерностью распределения вредных примесей (серы и фосфора) по толщине проката. Местная повышенная концентрация серы может привести к образованию кристаллизационных трещин в шве и околошовной зоне. Кипящая сталь склонна к старению в околошовной зоне и переходу в хрупкое состояние при отрицательных температурах.
Спокойная сталь получается при раскислении марганцем, алюминием и кремнием, и содержит кремния (Si) не менее 0,12%; сера и фосфор распределены в ней более равномерно, чем в кипящей стали. Эта сталь менее склонна к старению и отличается меньшей реакцией на сварочный нагрев.
Полуспокойная сталь по склонности к старению занимает промежуточное место между кипящей и спокойной сталью. Полуспокойные стали с номерами марок 1—5 выплавляют с нормальным и с повышенным содержанием марганца, примерно до 1%. В последнем случае после номера марки ставят букву Г (например, БСтЗГпс).
Стали группы А не применяются для изготовления сварных конструкций. Стали группы Б делятся на две категории. Для сталей первой категории регламентировано содержание углерода, кремния марганца и ограничено максимальное содержание серы, фосфора, азота и мышьяка; для сталей второй категории ограничено также максимальное содержание хрома, никеля и меди.
Стали группы В делятся на шесть категорий. Полное обозначение стали включает марку, степень раскисления и номер категории. Например, ВСтЗГпс5 обозначает следующее: сталь группы В, марка СтЗГ, полуспокойная, 5-й категории. Состав сталей группы В такой же, как сталей соответствующих марок группы Б, 2-й категории. Стали ВСт1, ВСт2, ВСтЗ всех категорий и степеней раскисления выпускаются с гарантированной свариваемостью. Стали БСт1, БСт2, БСтЗ поставляют с гарантией свариваемости по требованию заказчика.
Углеродистую качественную сталь выпускают в соответствии с ГОСТ 1060—74. Сталь имеет пониженное содержание серы. Допустимое отклонение по углероду (0,03—0,04%). Стали с содержанием углерода до 0,20%, включительно, могут быть кипящими (кп), полуспокойными (пс) и спокойными (сп). Остальные стали — только спокойные. Для последующих спокойных сталей после цифр, буквы «сп» не ставят.
Углеродистые стали в соответствии с ОСТ 14-1-142—84 подразделяются на три подкласса:
- низкоуглеродистые с содержанием углерода до 0,25%;
- среднеуглеродистые с содержанием углерода (0,25—0,60%);
- высокоуглеродистые с содержанием углерода более 0,60%.
В сварных конструкциях в основном применяют низкоуглеродистые стали.
В сварочном производстве очень важным является понятие о свариваемости различных металлов.
Свариваемостью называется способность металла или сочетания металлов образовывать при установленной технологии сварки соединения, отвечающие требованиям, обусловленным конструкцией и эксплуатацией изделия.
По свариваемости углеродистые стали условно подразделяются на четыре группы:
- I — хорошо сваривающиеся;
- II — удовлетворительно сваривающиеся, т. е. для получения качественных сварных соединений деталей из этих сталей необходимо строгое соблюдение режимов сварки, специальные присадочные материалы, определенные температурные условия, а в некоторых случаях — подогрев, термообработка;
- III — ограниченно сваривающиеся, для получения качественных сварных соединений необходим дополнительный подогрев, предварительная или последующая термообработка;
- IV — плохо сваривающиеся, т. е. сварные швы склонны к образованию трещин, свойства сварных соединений пониженные, стали этой группы обычно не применяют для изготовления сварных конструкций.
Все низкоуглеродистые стали хорошо свариваются существующими способами сварки плавлением. Обеспечение равнопрочности сварного соединения не вызывает затруднений. Швы имеют удовлетворительную стойкость против образования кристаллизационных трещин. Это обусловлено низким содержанием углерода. Однако в сталях, содержащих углерод по верхнему пределу, вероятность возникновения холодных трещин повышается, особенно с ростом скорости охлаждения (повышение толщины металла, сварка при отрицательных температурах, сварка швами малого сечения и др.). В этих условиях, для предупреждения появления трещин, применяют предварительный подогрев до 120—200 °C.
В табл. 1. приведено обозначение химических элементов в марке легированной стали, а в табл 2 — состав некоторых марок сталей. В табл. 3 приведено примерное назначение различных марок сталей.
Таблица 1. Обозначение химических элементов в марке легированной стали
Таблица 2. Массовая доля химических элементов в различных марках стали в %
Материаловедение: сталь
Что такое сталь? Каковы плотность, температура плавления и другие характеристики стали? В чем роль стального проката в производстве, и как объяснить неуклонный рост цен на сталь в последние годы? Обо всем этом и не только – в нашей новой статье.
Сталь – сплав железа (Fe) с углеродом (C). При этом доля углерода в составе мала: до 2,14% в теории и обычно не более 1,5% на практике. Как и в любых других сплавах, в сталях всегда присутствуют примеси (сера, фосфор, кремний), а для улучшения свойств могут вводиться легирующие элементы.
В силу высокой прочности, жесткости, а также из-за дешевизны сталь используется повсеместно и считается ключевым продуктом черной металлургии. Что важно в свете «зеленых» трендов: сталь можно перерабатывать практически бесконечно. По данным Всемирной ассоциации стали, 75% стальных изделий, выпущенных с момента появления мартеновской плавильной печи в 1864 году, до сих пор в обиходе.
Эти железосодержащие сплавы похожи и по составу, и способом получения. Принципиальное различие в доле углерода. Если его меньше 2,14% от состава, то это сталь; если больше – чугун. Во многом отсюда и разница в свойствах. Так, сталь легче в обработке, тверже и прочнее, ее не разбить ударом. Чугун же хрупче, тяжелее, но более теплоемкий (дольше держит тепло) и в отличие от стали подходит для литья, в том числе художественного. Отметим также, что чугун часто используется для передела в сталь.
Отметим, что у стали высокая температура плавления – это не ЦАМ, не свинец и уж тем более не олово, которые можно плавить у себя на кухне. Сами по себе стальные изделия увесистые – в 2,5 раза тяжелее аналогичных алюминиевых (плотность сплавов алюминия – 2400-2900 кг/м³). Ну и очевидное: все черные стали реагируют на магнит. Причем чем меньше в них углерода, тем лучше магнитные свойства.
Все знают: железо и его сплавы ржавеют. Сталь не исключение. Главная причина появления ржавчины – повреждение оксидной пленки. У тех же алюминия, хрома и никеля она тонкая, но плотная и прочная – настолько, что атомы кислорода не в состоянии диффундировать через нее. У сталей же оксидная пленка хоть и плотная, но непрочная и в любых условиях быстро растрескивается.
Для предотвращения окисления и развития ржавчины сталь покрывают химическим способом – например, оцинковкой, погружая заготовку в бак с расплавленным цинком. В этом случае молекулы цинка реагируют с молекулами железа, и на поверхности образуется защитный слой. Для закрепления эффекта его покрывают дополнительными слоями цинка. Идея способа основана на том, что отрицательный потенциал цинка выше, чем у железа, и в такой паре железо будет восстанавливаться, а цинк отважно послужит щитом для коррозии.
Чтобы металлические конструкции не ржавели, применяют стали, легированные хромом (12-20%) и некоторыми другими металлами, такими как никель, титан и молибден. Защита от ржавчины здесь заключается в формировании инертного слоя оксида хрома, способного к самовосстановлению.
Сразу развеем расхожий миф, что нержавеющая сталь якобы не магнитится. По факту это справедливо для хромникелевых и хромомарганцевоникелевых сталей, к которым относится всем известная пищевая нержавейка. В то же время техническая нержавеющая сталь, из которой делают клапаны, фитинги и трубы, на магнит вполне себе реагирует.
Впрочем, термообработка не ограничена одной закалкой. Есть еще как минимум отжиг, нормализация и отпуск. Отжигу сталь подвергают для улучшения обработки (принося в жертву твердость); нормализации – для выравнивания структуры и устранения зернистости. Отпуск нужен для снятия внутренних напряжений и снижения хрупкости (пусть, опять же, и в ущерб твердости). Отметим, что отпуск выполняется после закалки и считается важным этапом термообработки, тогда как без отжига и нормализации зачастую можно обойтись.
В любой марке стали есть примеси, пусть и в микроскопическом количестве. Некоторые, такие как кремний, даже улучшают свойства сплава. Однако вредных примесей больше; среди них сера, фосфор, а также газы: кислород, азот и водород.
• Хром (Cr). Придает износостойкость, способность к закаливанию и устойчивость к коррозии. Стали с содержанием хрома от 12% относят к нержавеющим.
• Марганец (Mn). Может присутствовать в виде примесей. Дополнительная присадка марганца улучшает прокаливаемость стали и нивелирует вредное воздействие серы.
• Молибден (Mo). Одна из главных упрочняющих легирующих добавок в жаропрочных сталях. Доля в составе незначительна: 0,15-0,8%.
• Ванадий (V). С ним сталь становится прочнее и устойчивее к износу. Содержание: 1,0-1,5% в штамповых сталях, 0,2-0,8% в специальных.
Содержат только железо, углерод и примеси. Определяющий элемент – углерод: чем его больше, тем сталь жестче и тверже. Чем меньше – тем сталь пластичней, ударопрочней, удобнее в обработке и сварке.
Легированные – это стали, которые кроме основных компонентов и примесей содержат специально вводимые легирующие добавки. По типу легирования такие стали подразделяют на хромистые, марганцовистые, хромоникелевые, хромо-никель-кремний-марганцовистые и др. По доле легирующих элементов в составе – на низко- (<5% С), средне- (5-10% C) и высоколегированные (>10% C).5%>
Качество стали определяется спецификой производственных процессов, перерабатываемым сырьем, видом плавки и другими факторами. Все это, в свою очередь, напрямую зависит от состава сплава и содержания в нем примесей.
Стали обыкновенного качества. Рядовые углеродистые стали, где углерода менее 0,6%, серы – в диапазоне 0,045-0,060%, фосфора – 0,04-0,07%. Являясь самыми дешевыми, такие стали уступают сталям остальных классов по всем ключевым свойствам.
Качественные стали. Могут быть углеродистыми (марки 08, 10, 15…) или легированными (0,8кп, 10пс…). Нормативы по примесям: серы – не более 0,04%, фосфора – 0,035-0,04%.
Высококачественные стали. Углеродистые или легированные. Содержание примесей: серы – не более 0,02%, фосфора – не более 0,03%. Примеры марок: стали 20А, 15Х2МА.
Особовысококачественные стали. Эти стали только легированные и содержат не более 0,015% серы и не более 0,025% фосфора. Примеры марок: 20ХГНТР-Ш, 18ХГ-Ш.
Идут на изготовление сварных строительных конструкций, узлов механизмов, деталей машин. Могут быть углеродистыми или легированными. Примеры марок: Ст1, Ст2, Ст3; 05, 10, 15; 15Г, 20Х, 45 ХН и др.
Из них делают режущие и ударные инструменты – от лезвия топора и губок плоскогубцев до напильника и сверла. Само собой, такие стали должны быть твердыми, поэтому содержание углерода в них не менее 0,7%. Примеры марок: У7, У8ГА, У10А (У – углеродистая; число – усредненное содержание углерода, выраженное в десятых долях процента; Г – повышенное содержание марганца; А – высококачественная сталь).
По большому счету, это те же конструкционные стали, но со специфическим составом, особым способом производства или обработки. Нержавеющие, жаропрочные, электротехнические, кислотостойкие стали – все они относятся к специальным.
Речь о том, сколько кислорода было выведено из жидкого металла при производстве стали и сколько его по итогу осталось. В целом: чем меньше в сплаве остается кислорода, тем чище состав и однородней структура.
Кипящие стали (кп). Раскисляются только марганцем. Обычно это низкоуглеродистые стали с большим количеством оксидов углерода – отсюда просадка в прочности и пластичности. Как следствие, кипящие стали склонны к разрушению, растрескиванию, плохо свариваются и поэтому идут в ход лишь в простых конструкциях. Из плюсов: кипящая сталь самая дешевая.
Спокойные стали (сп). Раскисляются в плавильных печах и ковшах алюминием, марганцем, кремнием. В отличие от кипящих, спокойные стали стабильны: содержат мало остаточного кислорода и затвердевают спокойно, без выделения газообразных примесей. Применение: конструкции ответственного назначения.
Полуспокойные стали (псп). Частично насыщенные кислородом стали, раскисляемые марганцем и алюминием. Всегда углеродистые. Среднепрочные, применяются в строительстве.
Нет более неудобного вопроса, чем «сколько стоит сталь»? Во-первых, какая и где – на бирже или у местных трейдеров металлопроката? Во-вторых, эта статья написана в марте 2022 года, когда экономику России (да и других стран мира) засосало в турбулентную фазу. Мы можем лишь констатировать, что в ближайшие год-два стоимость стали будет расти. Причем расти кратно, если сравнивать с допандемийным уровнем. Связано это с несколькими причинами:
• Первая волна коронавируса, во время которой приостанавливался сбор лома и ограничивалась работа сталеплавильных заводов. К осени 2020 года из-за лавины отложенного спроса и промедления трейдеров это привело к общемировому дефициту стали.
• Конфликт России с Украиной, последующие санкции, разрыв производственных и логистических цепочек. Это уже ускорило девальвацию рубля, а в перспективе может привести и к гиперинфляции, если конфликт окажется затяжным.
• Зеленые тренды в соответствии с определенными ООН целями в области устойчивого развития (ЦУР). Страны, включая мировую фабрику под названием Китай, уже сокращают выплавку стали ради снижения углеродного следа. Это в каком-то смысле парадоксально, ведь именно сталь – один из важнейших материалов для производства ветрогенераторов и электрокаров, так агрессивно насаждаемых на Западе.
В России фурнитуру для входных и межкомнатных дверей производят по большей части из низкоуглеродистой конструкционной стали. Одна из самых ходовых марок – Ст3 и ее аналоги. Из ее листов изготавливают дверные петли, корпуса и планки замков, розетки дверных ручек, задвижки и, например, крепеж. Подчеркнем: мы говорим о видимых элементах конструкции. Для тех же петельных подшипников есть инструментальные подшипниковые стали (например, ШХ-15). Для возвратных пружин в ручках и замках – средне- и высокоуглеродистая пружинная сталь.
(+) Прочность и антивандальность. Сталь крепче цветных металлов вроде алюминия, латуни и ЦАМ и дольше пилится. Вспомните корпуса гаражных навесных замков – там сплошь и рядом либо сталь, либо чугун.
(+) Дешевизна. Просто приценитесь, сколько стоят стальные дверные петли, а сколько – аналогичные по размерам латунные. Подсказка: первые дешевле в 3-5 раз.
(+) Магнитные свойства. Благодаря этому мы имеем счастье пользоваться такими чудесами инженерной мысли, как магнитные защелки и магнитные дверные стопоры.
(-) Низкие литейные качества. Снова обратимся к дверным петлям. В то время как латунные петли получают литьем под давлением, стальные – гибкой и штамповкой. Отсюда «побочные эффекты»: заметные швы и стыки, зазоры от 2 мм, неровные края, несоразмерность.
(-) Коррозия. Антикоррозийное покрытие рано или поздно повредится, и изделие начнет ржаветь. Кто-то возразит: но как же, есть же, скажем, дверные ручки из нержавеющей стали. А мы и не спорим. Но именно в России в частном секторе они не в ходу из-за дороговизны и ограниченности дизайна, продиктованной опять же низкими литейными качествами.
(-) Вес. Если вы подбираете небольшой и удобный в переноске навесной замок для багажа или противоугонного троса, то, возможно, есть смысл предпочесть алюминий. При одинаковых габаритах алюминиевый замок окажется в 2,5 раза легче стального. Тем более что упрочнение тела замка в данном случае неоправданно: в маленьких замках куда проще перекусить дужку, чем водить пилой по корпусу.
О стали. Немного.
Сталь (от нем. Stahl) — сплав железа с углеродом (и другими элементами). Содержание углерода в стали от 0,1 до 2,14 %. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость.
Учитывая, что в сталь могут быть добавлены легирующие элементы, сталью называется содержащий не менее 45 % железа сплав железа с углеродом и легирующими элементами (легированная, высоколегированная сталь).
Стали с высокими упругими свойствами находят широкое применение в машинно и приборостроении. В машиностроении их используют для изготовления рессор, амортизаторов, силовых пружин различного назначения, в приборостроении — для многочисленных упругих элементов: мембран, пружин, пластин реле, сильфонов, растяжек, подвесок.
Пружины, рессоры машин и упругие элементы приборов характеризуются многообразием форм, размеров, различными условиями работы. Особенность их работы состоит в том, что при больших статических, циклических или ударных нагрузках в них не допускается остаточная деформация. В связи с этим все пружинные сплавы, кроме механических свойств, характерных для всех конструкционных материалов (прочности, пластичности, вязкости, выносливости), должны обладать высоким сопротивлением малым пластическим деформациям. В условиях кратковременного статического нагружения сопротивление малым пластическим деформациям характеризуется пределом упругости, при длительном статическом или циклическом нагружении — релаксационной стойкостью.
Существует множество способов классификации сталей, таких как по назначению, по химическому составу, по качеству, по структуре.
По назначению стали делятся на множество категорий, таких как конструкционные стали, коррозионно стойкие (нержавеющие) стали, инструментальные стали, жаропрочные стали, криогенные стали.
По химическому составу стали делятся на углеродистые и легированные; в том числе по содержанию углерода — на низкоуглеродистые (до 0,25 % С), среднеуглеродистые (0,3—0,55 % С) и высокоуглеродистые (0,6—2 % С); легированные стали по содержанию легирующих элементов делятся на низколегированные — до 4 % легирующих элементов, среднелегированные — до 11 % легирующих элементов и высоколегированные — свыше 11 % легирующих элементов.
Стали, в зависимости от способа их получения, содержат разное количество неметаллических включений. Содержание примесей лежит в основе классификации сталей по качеству: обыкновенного качества, качественные, высококачественные и особо высококачественные.
По структуре сталь разделяется на аустенитную, ферритную, мартенситную, бейнитную и перлитную. Если в структуре преобладают две и более фаз, то сталь разделяют на двухфазную и многофазную.
Плотность: 7700—7900 кг/м³ (7,7 до 7,9 г/см³).
Удельный вес: 75500—77500 Н/м³ (7700—7900 кгс/м³ в системе МКГСС).
Удельная теплоёмкость при 20 °C: 462 Дж/(кг·°C) (110 кал/(кг·°C)).
Температура плавления: 1450—1520 °C.
Удельная теплота плавления: 84 кДж/кг (20 ккал/кг, 23 Вт·ч/кг).
Коэффициент теплопроводности при температуре 100 °C
Хромоникельвольфрамовая сталь 15,5 Вт/(м·К)
Хромистая сталь 22,4 Вт/(м·К)
Молибденовая сталь 41,9 Вт/(м·К)
Углеродистая сталь (марка 30) 50,2 Вт/(м·К)
Углеродистая сталь (марка 15) 54,4 Вт/(м·К)
Предел прочности стали при растяжении:
сталь для конструкций 373—412 МПа
сталь кремнехромомарганцовистая 1,52 ГПа
сталь машиностроительная (углеродистая) 314—785 МПа
сталь рельсовая 690—785 МПа
Суть процесса переработки чугуна на сталь состоит в уменьшении до нужной концентрации содержания углерода и вредных примесей — фосфора и серы, которые делают сталь хрупкой и ломкой. В зависимости от способа окисления углерода существуют различные способы переработки чугуна на сталь: конверторный, мартеновский и электротермический.
Передельный или литейный чугун в расплавленном или твердом виде и железосодержащие изделия, полученные прямым восстановлением (губчатое железо), составляют вместе с металлическими отходами и ломом исходные материалы для производства стали. К этим материалам добавляются некоторые шлакообразующие добавки, такие как известь, плавиковый шпат, раскислители (например, ферромарганец, ферросилиций, алюминий) и различные легирующие элементы. Процессы производства стали делятся на два основных способа, а именно: конвертерный процесс, в котором расплавленный передельный чугун в конвертере рафинируют от примесей, продувая его кислородом, и подовый процесс, для осуществления которого используются мартеновские или электрические печи. Конвертерные процессы не требуют внешнего источника тепла. Они применяются в том случае, когда загрузка состоит главным образом из расплавленного передельного чугуна. Окисление некоторых элементов, присутствующих в чугуне (например, углерода, фосфора, кремния и марганца), обеспечивает достаточно тепла, чтобы удерживать сталь в жидком состоянии и даже переплавить добавленный лом. Эти процессы включают в себя такие, при которых чистый кислород вдувается в расплавленный металл (процессы Линца-Донавица: ЛД или ЛДАС, ОБМ, ОЛП, Калдо и другие), и такие процессы, ныне уже устаревшие, при которых используется воздух, иногда обогащенный кислородом (томасовский и бессемеровский процессы). Подовые процессы, однако, требуют внешнего источника тепла. Они применяются, когда исходным материалом служит твердая шихта (например, отходы или лом, губчатое железо и твердый передельный чугун).
Двумя основными процессами в этой категории являются мартеновский процесс, при котором нагрев осуществляется при сжигании мазута или газа, и сталеплавильные процессы в дуговых или индукционных печах, где нагрев осуществляется электричеством. Для производства некоторых видов стали могут быть последовательно использованы два различных процесса (дуплекс-процесс). Например, процесс плавки может начаться в мартеновской печи, а закончиться в электропечи; или же сталь, расплавленная в электропечи, может быть слита в специальный конвертер, где обезуглероживание завершается путём вдувания кислорода и аргона в жидкую ванну (процесс, используемый, например, для производства коррозионностойкой стали).
Возникло много новых процессов производства сталей специального состава или со специальными свойствами. Эти процессы включают дуговой переплав в вакууме, электронно-лучевую плавку и электрошлаковый переплав. Во всех этих процессах сталь получается из переплавляемого электрода, который при плавлении начинает капать в кристаллизатор. Кристаллизатор может быть изготовлен цельным или его днище может быть отъемным для того, чтобы затвердевшую отливку можно было вынуть снизу. Жидкая сталь, полученная вышеописанными процессами, с дальнейшим рафинированием или без него, сливается в ковш. На этом этапе в неё могут быть добавлены легирующие элементы или раскислители. Процесс также можно провести в вакууме, что обеспечивает снижение содержания газообразных примесей в стали. Стали, полученные этими процессами, подразделяются в соответствии с содержанием в них легирующих элементов на "нелегированные стали" и "легированные стали" (коррозионностойкие стали или другие виды). Далее они подразделяются в соответствии с их индивидуальными свойствами, например, на автоматную сталь, кремнистую электротехническую сталь, быстрорежущую сталь или кремнемарганцовистую сталь.
Зависимость свойств от состава и структуры:
Свойства сталей зависят от их состава и структуры, которые формируются присутствием и процентным содержанием следующих составляющих.
Углерод — элемент, с увеличением содержания которого в стали увеличивается её твёрдость и прочность, при этом уменьшается пластичность.
Кремний и марганец (в пределах 0,5 … 0,7 %) существенного влияния на свойства стали не оказывают. Эти элементы вводятся в большинство углеродистых и низколегированных марок сталей во время операции раскисления (сначала — ферромарганец, затем — ферросилиций, как дешевые раскисляющие ферросплавы).
Сера является вредной примесью, образует с железом химическое соединение FeS (сернистое железо). Сернистое железо в сталях образует с железом эвтектику с температурой плавления 1258 К, которая обусловливает ломкость материала при обработке давлением с подогревом. Указанная эвтектика при термической обработке расплавляется, в результате чего между зернами теряется связь с образованием трещин. Кроме этого, сера уменьшает пластичность и прочность стали, износостойкость и коррозионную стойкость.
Фосфор также является вредной примесью, т. к. придает стали хладноломкость (хрупкость при пониженных температурах). Это объясняется тем, что фосфор вызывает сильную внутрикристаллическую ликвацию. Однако существует группа сталей с повышенным содержанием фосфора, так называемые — "автоматные стали", металлоизделия из которых легко поддаются обработке резанием (например, болты, гайки и пр. на револьверных токарных станках-полуавтоматах).
Феррит — железо с объемноцентрированной кристаллической решеткой. Сплавы на его основе обладают мягкой и пластичной микроструктурой.
Цементит — карбид железа, химическое соединение с формулой Fe3C, наоборот, придаёт стали твёрдость. При появлении в структуре заэвтектоидной стали свободного цементита (при С более 0,8 %) пропадает четкая связь между содержанием углерода и комплексом механических свойств: твердостью, ударной вязкостью и прочностью.
Перлит — эвтектоидная (мелкодисперсная механическая смесь) смесь двух фаз — феррита и цементита, содержит 1/8 цементита (точнее — согласно правилу "рычага", если пренебречь растворимостью углерода в феррите при комнатной температуре — 0,8/6,67) и поэтому имеет повышенную прочность и твёрдость по сравнению с ферритом. Поэтому доэвтектоидные стали гораздо более пластичны, чем заэвтектоидные.
Стали содержат до 2,14 % углерода. Фундаментом науки о стали как сплава железа с углеродом является диаграмма состояния сплавов железо-углерод — графическое отображение фазового состояния сплавов железа с углеродом в зависимости от их химического состава и температуры. Для улучшения механических и других характеристик сталей применяют легирование. Главная цель легирования подавляющего большинства сталей — повышение прочности за счет растворения легирующих элементов в феррите и аустените, образования карбидов и увеличения прокаливаемости. Кроме того, легирующие элементы могут повышать устойчивость против коррозии, термостойкость, жаропрочность и др. Такие элементы, как хром, марганец, молибден, вольфрам, ванадий, титан образуют карбиды, а никель, кремний, медь, алюминий карбидов не образуют. Кроме того, легирующие элементы уменьшают критическую скорость охлаждения при закалке, что необходимо учитывать при назначении режимов закалки (температуры нагрева и среды для охлаждения). При значительном количестве легирующих элементов может существенно измениться структура, что приводит к образованию новых структурных классов по сравнению с углеродистыми сталями.
Сталь в исходном состоянии достаточно пластична, её можно обрабатывать путём деформирования: ковать, вальцевать, штамповать. Характерной особенностью стали является её способность существенно изменять свои механические свойства после термической обработки, сущность которой заключается в изменении структуры стали при нагреве, выдержке и охлаждении, согласно специальному режиму. Различают следующие виды термической обработки:
отжиг;
нормализация;
закалки;
отпуск.
Чем богаче сталь на углерод, тем она твёрже после закалки. Сталь с содержанием углерода до 0,3 % (техническое железо) практически закаливанию не поддается.
Химико-термическая обработка сталей в дополнение к изменениям в структуре стали также приводит к изменению химического состава поверхностного слоя путём добавления различных химических веществ до определенной глубины поверхностного слоя. Эти процедуры требуют использования контролируемых систем нагрева и охлаждения в специальных средах. Среди наиболее распространённых целей, относящихся при использовании этих технологий, является повышение твёрдости поверхности при высокой вязкости сердцевины, уменьшение сил трения, повышения износостойкости, повышения устойчивости к усталости и улучшения коррозионной стойкости. К этим методам относятся:
Цементация © увеличивает твёрдость поверхности мягкой стали из-за увеличения концентрации углерода в поверхностных слоях.
Азотирование (N), как и цементация, увеличивает поверхностную твёрдость и износостойкость стали.
Цианирование и нитроцементация (N + C) — это процесс одновременного насыщения поверхности сталей углеродом и азотом. При цианировании используют расплавы солей, имеющих в своем составе группу NaCN, а при нитроцементации — смесь аммиака с газами, которые имеют в составе углерод (СО, СН4 и др.). После цианирования и нитроцементации проводят закаливание и низкий отпуск.
Сульфатирование (S) — насыщение поверхности серой улучшает приработки трущихся поверхностей деталей, уменьшается коэффициент трения.
Читайте также: