Сталь в таблице менделеева обозначение
По древней традиции, корни которой тянутся к средним векам, все химические элементы получали свои названия на латинском языке; эта традиция не нарушается и в наше время. В начале XIX столетия для химических элементов были предложены сокращенные буквенные обозначения, которыми служили или одна начальная буква латинских названий элементов, или, значительно чаще, две буквы, начальная и одна из последующих. Так образовались современные знаки (символы) химических элементов, получившие впоследствии международное признание.
Русские названия химических элементов в большинстве представляют собой их латинские названия с измененными окончаниями в соответствии с особенностями нашего языка. Но вместе с тем можно назвать много элементов, которые имеют на русском языке особые названия, отличные от латинских. Этими названиями служат или коренные русские слова, например железо (Fe), медь (Сu), ртуть (Hg), или перевод латинского названия элемента на русский язык, например водород (Н), кислород (О). Для того, чтобы в этих случаях можно было понять происхождение символов, следует сопоставить их с латинскими названиями соответствующих элементов, указанными в табл. 2-16.
Попутно в примечаниях к таблице указываются те особые названия и обозначения химических элементов, которые применяются в научной литературе ряда зарубежных стран.
Латинское название элемента
Примечания к таблице:
1) Жансен и независимо от него Локьер в 1868 г. обнаружили в спектре солнца неизвестные до того времени линии; этот новый элемент был назван гелием, так как предполагалось, что он находится только на солнце. Через 27 лет Рамзаи и Клив обнаружили те же линии в спектре нового газа, полученного ими при анализе минерала клевеита; название гелий для этого элемента было сохранено.
2) Еще в конце XVIII в. было известно, что при действии серной кислоты на плавиковый шпат выделяется особая кислота, которая разъедает стекло. В 1810 г. Ампер показал, что эта кислота подобна соляной и является соединением с водородом некоторого неизвестного элемента, который он назвал фтором. В чистом виде фтор удалось получить Муассану только в 1886 г.
3) Окись магния была известна давно, ее исследовал Блэк еще в 1775 г. Деви в 1808 г. пытался получить металлический магний, но в чистом виде металл получить ему не удалось.
4) Двуокись титана была получена лабораторным путем еще в конце XVIII в., Берцелиус получал титан, но не вполне чистый. Более чистый металлический титан был получен Грегор, затем Муассаном.
5) Сернистые соединения мышьяка былп известны в древнее время.
6) В начале XIX в. была получена смесь ниобия и тантала, которая рассматривалась как новый элемент; ему было присвоено название колумбий. В Америке и Англии ниобий до сих пор носит название колумбий.
7) В виде окиси церий был получен в 1803 г.
8) Долгое время смесь празеодима и неодима считалась отдельным элементом, который назывался дидием (Di).
9) Как особый металл платина была описана в 1750 г.; до 1810 г. единственным местом добычи платины была Колумбия. Затем платина была найдена в других местах, в том числе на Урале, который до настоящего времени является наиболее богатым источником ее получения.
10) Двуокись урана, полученная впервые еще в 1789 г., была принята вначале за новый элемент. Металлический уран был получен впервые в 1842 г., его радиоактивные свойства были открыты только в 1896 г.
_______________
Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, - М.: 1960.
Маркировка легирующих элементов в нержавеющих сталях
Еще в школе, сидя на уроках химии, все мы помним таблицу на стене класса или химической лаборатории. Эта таблица содержала классификацию всех известных человечеству химических элементов, тех фундаментальных компонентов, из которых состоит Земля и вся Вселенная. Тогда мы и подумать не могли, что таблица Менделеева бесспорно является одним из величайших научных открытий, который является фундаментом нашего современного знания о химии.
Периодическая система химических элементов Д. И. Менделеева
На первый взгляд, ее идея выглядит обманчиво просто: организовать химические элементы в порядке возрастания веса их атомов. Причем в большинстве случаев оказывается, что химические и физические свойства каждого элемента сходны с предыдущим ему в таблице элементом. Эта закономерность проявляется для всех элементов, кроме нескольких самых первых, просто потому что они не имеют перед собой элементов, сходных с ними по атомному весу. Именно благодаря открытию такого свойства мы можем поместить линейную последовательность элементов в таблицу, очень напоминающую настенный календарь, и таким образом объединить огромное количество видов химических элементов в четкой и связной форме. Разумеется, сегодня мы пользуемся понятием атомного числа (количества протонов) для того, чтобы упорядочить систему элементов. Это помогло решить так называемую техническую проблему «пары перестановок», однако не привело к кардинальному изменению вида периодической таблицы.
В периодической таблице Менделеева все элементы упорядочены с учетом их атомного числа, электронной конфигурации и повторяющихся химических свойств. Ряды в таблице называются периодами, а столбцы группами. В первой таблице, датируемой 1869 годом, содержалось всего 60 элементов, теперь же таблицу пришлось увеличить, чтобы поместить 118 элементов, известных нам сегодня.
Периодическая система Менделеева систематизирует не только элементы, но и самые разнообразные их свойства. Химику часто бывает достаточно иметь перед глазами Периодическую таблицу для того, чтобы правильно ответить на множество вопросов (не только экзаменационных, но и научных).
The YouTube ID of 1M7iKKVnPJE is invalid.
Предисловие
Таблица Менделеева или периодическая таблица химических элементов — это представленный в виде таблицы свод химических элементов, которые расположены по возрастанию атомного номера. В каждой ячейке таблицы Менделеева так же есть обозначение элемента, его атомная масса, принадлежность к определенной группе обозначенная цветом, а так же иногда указывается электронная конфигурация. Структура таблицы показывает периодических характер химических свойств элементов. Она имеет 7 строк, которые называются периодами, и столбцы, которые называются группами. Именно столбцы объединяют элементы со схожими химическими свойствами. Например, щелочные металлы, щелочно-земельные металлы, галогениды, благородные газы и т.д. Так же имеется четыре прямоугольные области, которые объединяют элементы со схожим электронным строением их атомов.
На данный момент открыто 118 химических элементов, которые завершили заполнение семи строк таблицы. Первые 94 элемента были найдены в природе, хотя некоторые в очень маленьких количествах, а вот остальные синтезированы искусственно в физических лабораториях или вообще при ядерных взрывах. В настоящее время ученые-физики продолжают попытки синтезировать 119 элемент и более тяжелые, теоретически возможность этих элементов была доказана ранее — они начнут восьмой ряд периодической таблицы Менделеева. Кроме того, все элементы имеют так называемые изотопы, которые так же в большом количестве были синтезированы в лабораториях и обнаружены в природе. Наиболее известный пример — тяжелая вода, где водород с атомным весом 1 заменяет его изотоп дейтерий (вес 2) или тритий (вес 3).
Структура периодической таблицы используется для нахождения взаимосвязи между свойствами различных элементов и их соединений, а так же для прогноза этих свойств в том числе еще не открытых соединений.
Первую известную таблицу Менделеев опубликовал в 1869 году, которая демонстрировала периодический характер свойств известных на тот момент элементов. Так же Менделеев дал предсказания по свойствам не открытых на тот момент элементов и большинство его предсказания оказались близки к верным. В последующем с открытием других элементов расширялись и теоретические знания, стали появляться всё более точные теоретические математические модели для объяснения и предсказания свойств элементов.
Современная таблица Менделеева теперь широко используется для анализа химических реакций и вообще широко используется как в химии так и физике. Однако, много споров ведется относительно того на сколько оптимален тот или иной вид таблицы (их несколько десятков), а так же размещения некоторых элементов.
Как была открыта медь
Такие металлы как медь, золото, серебро и олово были известны людям очень давно. Так как с медью легко работать, она использовалась древнейшими известными культурами уже 10000 лет назад. Пик популярности использования меди приходится начиная с 5 и заканчивая 3 тысячелетием до Нашей Эры. Это время в некоторых регионах принято называть «медным веком». Из этого металла изготавливались как орудия труда, так и украшения. На территории современного Ирана был найден медный кулон возраст которого приблизительно оценивается в 8700 год до Нашей Эры. Так же медь является первым металлом, который научились легировать с помощью олова и мышьяка до бронзы. В связи с этим открытием, которое произошло вероятно около 3 тысячелетия до Нашей Эры, началась так называемая эпоха «Бронзового века». Эта эпоха продлилась ориентировочно до первого тысячелетия до Нашей эры.
Затем производство меди и его обработка набирала уже значительные обороты. К началу новой эпохи мировое производство меди ориентировочно варьировалось в пределах 15 тонн в год. В первом тысячелетии Нашей Эры уже производились массивные сооружения из меди и его сплавов. В пример можно поставить бронзовую статую Будды храма Нара в Японии. По историческим сведениям ее отлили в 749 году. Для сооружения 16-ти метровой конструкции понадобилось 400 тонн сырья. Научное открытие самого металла можно присудить немецкому ученому Готфриду Осанну. Он изобрел порошковую металлургию, которую использовал на меди в 1830 году. В ходе своих испытаний он описал и определил атомный вес этого химического элемента.
Читайте: Никель как химический элемент таблицы Менделеева
Введение
Каждый химический элемент в таблице Менделеева имеет свой уникальный атомный номер (Z), который равен числу протонов в его атомном ядре. У каждого атома в ядре может быть разное число нейтронов и поэтому атом одного элемента может иметь разную массу — такие «варианты» одного атома отличающиеся по массе называют изотопами. Например, самые распространенные изотопы урана U235 и U238, но на самом деле изотопов известно восемь на данный момент с атомными массам от 233 до 240. Изотопы в таблице не разделяются, в ней указывается самый распространенный природный изотоп или для атомов, которые стабильных изотопов не имеют, указывается наиболее стабильный (долгоживущий).
В общепринятой периодической таблице (см. выше) химические элементы указываются в порядке возрастания атомного номера Z. Новая строка (период) начинается тогда, когда начинает заполняться новая электронная оболочка атома.
Столбцы (группы) определяются электронной конфигурацией атома. Элементы с одинаковым чистом электронов на валентном электронном уровне попадают в одни и те же группы. Элементы находящиеся в одной группе как правило имеют схожие химические свойства.
Первые 94 элемента встречаются в природе в свободном и связанном виде либо только в виде составе соединений, остальные же синтезированы в лабораториях. Некоторые элементы, например, франций (Fr) был зафиксирован только в виде излучения (получено всего 300 тыс. атомов). Другие элементы выше 94 получены так же в очень малых количествах.
Расшифровка хим элементов состава стали
Займемся расшифровкой свойств химических элементов для того, чтобы понять, какое влияние оказывают химические элементы на свойства стали.
- С – углерод. Углерод в составе стали необходим для увеличения прочности и твердости. Чем углерода больше, тем прочнее и тверже сталь. Если в составе углеродистой металлопродукции присутствует более 0,4 % углерода, то при отрицательной температуре, от нуля градусов и ниже, сталь становится, менее надежна, и более хрупка.
- Si – кремний. Если кремний присутствует в металле в диапазоне 0,3%-0,4%, то он повышает прочность металла, а так же предел текучести, но уменьшается пластичность (уменьшается способность металла к вытяжке). Если его содержание в стали более 0,4%, то уменьшается свариваемость и стойкость к коррозии. Если кремния менее 0,3 %, пластичность металла не снижается. Кремний особенно упрочняет сталь в нержавеющем прокате — он придает ему повышение коррозионной стойкости, износостойкость и повышение упругости.
- Mn – марганец. Если его в металле более 0,8 %, то он увеличивает прочность, упругость и износостойкость, но уменьшает теплопроводность, пластичность и свариваемость. Если его менее 0,8 %, то он не оказывает никакого существенного влияния на сталь. Так же если марганца в составе много, то можно увидеть в металлопродукции красноватый цвет (цвет марганцовки), поэтому невооруженным взглядом можно понять много ли марганца в металле или нет.
- P – фосфор. Это вредная примесь. Если в составе более 1% Si, то фосфор вытесняется и уменьшается. Если фосфора не более 0,04%, то понижается порог хладноломкости и увеличивается риск появления трещин. Если фосфора более 0,04%, то зерна феррита становятся крупнее и склонность металла к перегреву увеличивается. Чем больше в составе Si (кремния) и Al (алюминия), тем меньше отрицательного воздействия (в особенности, уменьшается степень нагрева).
- S – сера. Является постоянной примесью. Она негативно влияет на ударную вязкость, свариваемость и качество поверхности металлопродукции. В горячем состоянии сера приводит к снижению пластичности. Марганец уменьшает влияние вредных свойств серы.
- Cr – хром. Повышает термическую прочность стали, увеличивает стойкость к коррозии и окислению.
- Ni – никель. Улучшает вязкость стали и усталой прочности. В комбинации с хромом и молибденом он улучшает термическую прочность. Защищает от коррозии. Облагораживает поверхность.
- Cu – медь. Увеличивает коррозионную сопротивляемость стали. Она повышает прочностные характеристики и уменьшает ударную вязкость и пластичность стали.
- As – мышьяк. В количестве от 0,1-0,16% увеличивает коррозионную стойкость. В составе стали он аналогичен фосфора, но негативное воздействие его меньше. В качественных сталях допускается присутствие мышьяка не более 0,08%.
- N – азот. Является присадкой, которая позволяет снизить содержание в стали никеля, хрома и марганца. Повышает предел текучести. Способен измельчать зерно феррита (ем меньше зерно, тем меньше способность к перегреву).
- Al – алюминий. Изолирует металл от окисления воздухом, оказывает антикоррозионные свойства. Улучшает прочность, пластичность и упругость.
- Mo – молибден. Придает стали большую твердость. Уменьшает отпускную хрупкость. Повышает вязкость при низкой температуре. Увеличивает стойкость к высокой температуре.
- Ti – титан. Повышает твердость, пластичность и устойчивость к коррозии. По прочности превосходит все химические элементы в составе стали.
Выбрать лист стальной Вы можете на нашем сайте!
Или позвонив нам на по телефону: +
Металлы, металлоиды и неметаллы
По своим физико-химическим свойствам все элементы можно разделить на три основные категории — металлы, металлоиды и неметаллы.
Металлы — это как правило блестящие высоко теплопроводные твёрдые вещества способные плавиться при нагревании и образовывать друг с другом сплавы, а так же образовывать ионные и ковалентные соединения с неметаллами.
Неметаллы — это как правило бесцветные либо цветные твёрдые, жидкие или газообразные вещества. Неметаллые образуют соединения друг с другом при помощи ковалентных связей.
Металлоиды — это вещества, которые могут проявлять в определенных условиях как металлические свойства, так и неметаллические.
Металлы и неметаллы могут быть дополнительно классифицированы на подкатегории, которые видны в таблице в строках слева направо. Так металлы подразделяются на химически очень активные щелочные металлы, чуть менее активные щелочно-земельные, характерные переходные металлы и химически достаточно инертные постпереходные металлы.
Неметаллы подразделяются на многоатомные неметаллы, при этом они ближе к металлоидам т.к. иногда проявляют металлические свойства, на галогениды и инертные газы. Доля неметаллов среди всех элементов небольшая — их 19 из 118 известных элементов.
На самом же деле такое подразделение даже внутри каждой категории весьма условно и на этих условных границах есть большое «перекрытие». Например, бериллий относится к щелочно-земельным элементам, но его амфотерность и склонность образовывать ковалентные соединения позволяют относить его к постпереходным металлам. Радон относится к благородным газам, но образует ряд ионных соединений характерных для металлов. Поэтому существуют и другие типы разделения элементов на группы, например, по минералогическим признакам или кристаллическим структурам соединений.
Периодический закон
Существуют две формулировки периодического закона химических элементов: классическая и современная.
Классическая, в изложении его первооткрывателя Д.И. Менделеева: свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величин атомных весов элементов.
Современная: свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов (порядкового номера).
Графическим изображением периодического закона является периодическая система элементов, которая представляет собой естественную классификацию химических элементов, основанную на закономерных изменениях свойств элементов от зарядов их атомов. Наиболее распространёнными изображениями периодической системы элементов Д.И. Менделеева являются короткая и длинная формы.
Щелочные и щелочно-земельные металлы
Эти две категории очень похожи друг на друга, но щелочно-земельные металлы менее химически активны. Все они образуют основные оксиды. Для них характерна низкая механическая прочность, все щелочные металлы легко режутся ножом, очень высокая химическая активность (например, калий, и тем более рубидий могут воспламеняться прямо на воздухе, а с водой реагировать со «взрывом» — реакиция идет настолько быстро, что раздаётся хлопок). Магний и бериллий более твёрдые и гораздо менее реакционно способные, поэтому они используются иногда в чистом виде или в виде сплавов (магний-алюминиевый сплав очень важен в авиационной отрасли, например).
Переходные металлы
У этой группы очень широкий спектр физических и химических свойств. Например, температура плавления у ртути -38,8 ºC, а у иттрия 1795 ºC. Так же в очень широком диапазоне находится твёрдость, плотность, химическая активность (например, благородный металл золото очень химически инертен, а цинк наоборот весьма реакционно способен и по этому показателю ближе к щелочно-земельным элементам). Металлы этой группы — основа всех промышленных производств и сфер жизни. Они применяются во всех отраслях промышленности — от конструкционных материалов до микроэлектронной промышленности.
Неметаллы (реакционные)
При нормальных условиях бор, углерод, фосфор, сера, селен — твёрдые вещества различных цветов. Каждое их них имеет различные формы кристаллической решетки (аллотропные модификации), например красный, желтый, черный, белый фосфор, которая очень сильно влияет на их химическую активность (например, графит гораздо менее активен обычного угля) и физические свойства (алмаз самое твердое вещество в природе и это прозрачный материал, а графит хрупкий, мягкий, непрозрачный).
Азот и кислород — газы. При этом азот достаточно химически инертен, кислород напротив является очень активным окислителем.
Галогениды имеют разные физические свойства (фтор, хлор — газы, бром — жидкость, иод — твердое вещество). Астат получен только в крайне малых количествах как и теннессин, их свойства изучены плохо. Химически галогениды — очень сильные окислители (фтор самый сильный в Таблице Менделеева). С металлами образуют как правило соли с ионной решеткой, а с водородом очень сильные кислоты. С неметаллами так же образуют множество многоатомных соединений как правило с ковалентными связями.
Неметаллы (инертные газы)
Крайне химически пассивные вещества. Первое соединение ксенона XePtF6 было синтезировано в 1962 году, а соединения неона и гелия до сих пор неизвестны. Тем не менее инертные газы играют огромную роль в различных отраслях промышленности, медицине, при подводных погружениях и т.д.
P.S.: Интересно, что название «Таблица Менделеева» известна в основном только в России, а в остальном мире она называется чаще всего просто «Периодическая таблица».
P.P.S.: Статья будет дополняться и корректироваться.
Интересные факты
Так как применение меди очень широкое, соответственно и интересных фактов связанных с медью достаточно. Стоит начать с того, что цена на чистую медь на мировом рынке не такая уж и маленькая. В 2014 году 1 тонна меди на мировом рынке оценивалась в 7000 американских долларов. В связи с такой высокой ценой увеличилось количество краж медных предметов. Например в Германии железнодорожная кампания Deutsche Bahn AG понесла убытков на 14 миллионов евро из-за воровства медных заземляющих железнодорожных кабелей.
Еще одним интересным моментом является то, что первые изобретенные человеком зеркала изготавливались именно из меди. Медь натиралась(полировалась) до такой степени, пока не было видно отбражение на поверхности меди. Так же в области применения стоит отметить, что большая часть монет произведенных по всему миру содержит в своем составе медь. Еще одним интересным фактом является то, что медь как железо и алюминий могут подвергаться вторичной переработке без потери своих свойств.
Так же можно отметить и биологическую составляющую меди. В больших количествах она является токсичной, а в малых — неотъемлемая часть существования организма человека. В различных состояниях в человеческом организме содержится около 150 мг меди. Суточная доза потребления меди является нормальной для человека весом 75 кг равной 2 мг.
Маркировка и классификация сталей
Сталь — это сплав железа с углеродом (до 2% углерода). По химическому составу сталь разделяют на:
По качеству сталь разделяют на:
- сталь обыкновенного качества;
- качественную;
- повышенного качества;
- высококачественную.
Сталь углеродистую обыкновенного качества подразделяют на три группы:
- А — поставляемую по механическим свойствам и применяемую в основном тогда, когда изделия из нее подвергают горячей обработке (сварка, ковка и др.), которая может изменить регламентируемые механические свойства (Ст0, Ст1 и др.);
- Б — поставляемую по химическому составу и применяемую для деталей, подвергаемых такой обработке, при которой механические свойства меняются, а уровень их, кроме условий обработки, определяется химическим составом (БСт0, БСт1 и др.);
- В — поставляемую по механическим свойствам и химическому составу для деталей, подвергаемых сварке (ВСт1, ВСт2 и др.).
Сталь углеродистую обыкновенного качества изготовляют следующих марок: Ст0, Ст1кп, Ст1пс, Ст1сп, Ст2кп, Ст2пс, Ст2сп, СтЗкп, СтЗпс, СтЗсп, СтЗГпс, СтЗГсп, Ст4кп, Ст4пс, Ст4сп, Ст5пс, Ст5сп, Ст5Гпс, Стбпс, Стбсп.
Буквы Ст обозначают «Сталь», цифры — условный номер марки в зависимости от химического состава, буквы «кп», «пс», «сп» — степень раскисления «кп» — кипящая, «пс» — полуспокойная, «сп» — спокойная).
Сталь углеродистая качественная конструкционная по видам обработки при поставке делится на:
- горячекатаную и кованую;
- калиброванную;
- круглую со специальной отделкой поверхности, серебрянку.
Легированную сталь по степени легирования разделяют:
- низколегированная (легирующих элементов до 2,5%);
- среднелегированная (от 2,5 до 10%);
- высоколегированная (от 10 до 50%).
В зависимости от основных легирующих элементов различают сталь 14 групп.
К высоколегированным относят:
- коррозионностойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии; межкристаллитной коррозии, коррозии под напряжением и др.;
- жаростойкие (окалиностойкие) стали и сплавы, обладающие стойкостью против химического разрушения в газовых средах при температуре выше 50 °C, работающие в ненагруженном и слабонагруженном состоянии;
- жаропрочные стали и сплавы, работающие в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью.
Сталь легированную конструкционную в зависимости от химического состава и свойств делят:
- качественная;
- высококачественная А;
- особо высококачественную Ш (электрошлакового переплава).
По видам обработки при поставке различают сталь:
- горячекатаная;
- кованая;
- калиброванная;
- серебрянка.
По назначению изготовляют прокат:
- для горячей обработки давлением и холодного волочения (подкат);
- для холодной механической обработки.
2. Классификация углеродистых сталей
Стали подразделяются на углеродистые и легированные. По назначению различают стали конструкционные с содержанием углерода в сотых долях процента и инструментальные с содержанием углерода в десятых долях процента. Наибольший объем сварочных работ связан с использованием низкоуглеродистых и низколегированных конструкционных сталей.
Основным элементом в углеродистых конструкционных сталях является углерод, который определяет механические свойства сталей этой группы. Углеродистые стали выплавляют обыкновенного качества и качественные. Стали углеродистые обыкновенного качества подразделяются на три группы:
- группа А — по механическим свойствам;
- группа Б — по химическому составу;
- группа В — по механическим свойствам и химическому составу.
Изготавливают стали следующих марок:
- группа А — Ст0, Ст1, Ст2, Ст3, Ст4, Ст5, Ст6;
- группа Б — БСт0, БСт1, БСт2, БСт3, БСт4, БСт5, БСт6;
- группа В — ВСт0, ВСт1, ВСт2, ВСт3, ВСт4, ВСт5.
По степени раскисления сталь обыкновенного качества имеет следующее обозначение:
- кп — кипящая,
- пс — полуспокойная,
- сп — спокойная.
Кипящая сталь, содержащая кремния (Si) не более 0,07%, получается при неполном раскислении металла марганцем. Сталь характеризуется резко выраженной неравномерностью распределения вредных примесей (серы и фосфора) по толщине проката. Местная повышенная концентрация серы может привести к образованию кристаллизационных трещин в шве и околошовной зоне. Кипящая сталь склонна к старению в околошовной зоне и переходу в хрупкое состояние при отрицательных температурах.
Спокойная сталь получается при раскислении марганцем, алюминием и кремнием, и содержит кремния (Si) не менее 0,12%; сера и фосфор распределены в ней более равномерно, чем в кипящей стали. Эта сталь менее склонна к старению и отличается меньшей реакцией на сварочный нагрев.
Полуспокойная сталь по склонности к старению занимает промежуточное место между кипящей и спокойной сталью. Полуспокойные стали с номерами марок 1—5 выплавляют с нормальным и с повышенным содержанием марганца, примерно до 1%. В последнем случае после номера марки ставят букву Г (например, БСтЗГпс).
Стали группы А не применяются для изготовления сварных конструкций. Стали группы Б делятся на две категории. Для сталей первой категории регламентировано содержание углерода, кремния марганца и ограничено максимальное содержание серы, фосфора, азота и мышьяка; для сталей второй категории ограничено также максимальное содержание хрома, никеля и меди.
Стали группы В делятся на шесть категорий. Полное обозначение стали включает марку, степень раскисления и номер категории. Например, ВСтЗГпс5 обозначает следующее: сталь группы В, марка СтЗГ, полуспокойная, 5-й категории. Состав сталей группы В такой же, как сталей соответствующих марок группы Б, 2-й категории. Стали ВСт1, ВСт2, ВСтЗ всех категорий и степеней раскисления выпускаются с гарантированной свариваемостью. Стали БСт1, БСт2, БСтЗ поставляют с гарантией свариваемости по требованию заказчика.
Углеродистую качественную сталь выпускают в соответствии с ГОСТ 1060—74. Сталь имеет пониженное содержание серы. Допустимое отклонение по углероду (0,03—0,04%). Стали с содержанием углерода до 0,20%, включительно, могут быть кипящими (кп), полуспокойными (пс) и спокойными (сп). Остальные стали — только спокойные. Для последующих спокойных сталей после цифр, буквы «сп» не ставят.
Углеродистые стали в соответствии с ОСТ 14-1-142—84 подразделяются на три подкласса:
- низкоуглеродистые с содержанием углерода до 0,25%;
- среднеуглеродистые с содержанием углерода (0,25—0,60%);
- высокоуглеродистые с содержанием углерода более 0,60%.
В сварных конструкциях в основном применяют низкоуглеродистые стали.
В сварочном производстве очень важным является понятие о свариваемости различных металлов.
Свариваемостью называется способность металла или сочетания металлов образовывать при установленной технологии сварки соединения, отвечающие требованиям, обусловленным конструкцией и эксплуатацией изделия.
По свариваемости углеродистые стали условно подразделяются на четыре группы:
- I — хорошо сваривающиеся;
- II — удовлетворительно сваривающиеся, т. е. для получения качественных сварных соединений деталей из этих сталей необходимо строгое соблюдение режимов сварки, специальные присадочные материалы, определенные температурные условия, а в некоторых случаях — подогрев, термообработка;
- III — ограниченно сваривающиеся, для получения качественных сварных соединений необходим дополнительный подогрев, предварительная или последующая термообработка;
- IV — плохо сваривающиеся, т. е. сварные швы склонны к образованию трещин, свойства сварных соединений пониженные, стали этой группы обычно не применяют для изготовления сварных конструкций.
Все низкоуглеродистые стали хорошо свариваются существующими способами сварки плавлением. Обеспечение равнопрочности сварного соединения не вызывает затруднений. Швы имеют удовлетворительную стойкость против образования кристаллизационных трещин. Это обусловлено низким содержанием углерода. Однако в сталях, содержащих углерод по верхнему пределу, вероятность возникновения холодных трещин повышается, особенно с ростом скорости охлаждения (повышение толщины металла, сварка при отрицательных температурах, сварка швами малого сечения и др.). В этих условиях, для предупреждения появления трещин, применяют предварительный подогрев до 120—200 °C.
В табл. 1. приведено обозначение химических элементов в марке легированной стали, а в табл 2 — состав некоторых марок сталей. В табл. 3 приведено примерное назначение различных марок сталей.
Таблица 1. Обозначение химических элементов в марке легированной стали
Таблица 2. Массовая доля химических элементов в различных марках стали в %
Расшифровка маркировок сталей, правила обозначения
Сталь — это сплав железа с углеродом (до 2% углерода). По химическому составу сталь разделяют на:
Обозначения легирующих элементов
Для того чтобы по маркировке стали узнать качественный и количественный состав, для легирующих элементов используют буквенные обозначения. В основном, русские буквы соответствуют названиям элементов, хотя встречаются исключения, поскольку есть элементы, которые начинаются с одинаковых букв. Таблица легирующих элементов выглядит следующим образом.
Обозначение легирующих элементов в сталях
В | Вольфрам | Б | Ниобий |
К | Кобальт | Е | Селен |
М | Молибден | Р | Бор |
Н | Никель | Ф | Ванадий |
Т | Титан | Ц | Цирконий |
Х | Хром | Ю | Алюминий |
Г | Марганец | А | Азот |
Д | Медь | С | Кремний |
Как видно из таблицы, в ней присутствуют два неметалла – кремний и азот, а углерода нет. Наличие углерода подразумевается в составе любой стали, поэтому в обозначении указывается лишь его содержание
Классификация углеродистых сталей
Таблица 1. Обозначение химических элементов в марке легированной стали
Элемент | Условное обозначение | |
в таблице Менделеева | в марке стали | |
Марганец | Мп | Г |
Кремний | Si | С |
Хром | Сг | X |
Никель | Ni | Н |
Молибден | Мо | М |
Вольфрам | W | В |
Селен | Se | Е |
Алюминий | Al | Ю |
Титан | Тi | Т |
Ниобий | Mb | Б |
Ванадий | V | Ф |
Кобальт | Со | К |
Медь | Сu | А |
Бор | В | р |
Цирконий | Zr | Ц |
Таблица 2. Массовая доля химических элементов в различных марках стали в %
ТАБЛИЦА МЕНДЕЛЕЕВА - периодическая система химических элементов
Таблица Менделеева (периодическая система химических элементов) - это такая таблица, в которой классифицируются химические элементы по различным свойствам в зависимости от заряда их атомного ядра. Таблица является графическим изображением периодического закона, который открыл Дмитрий Иванович Менделеев в 1869 году. Изначальный вариант этой таблицы 1869 - 1871 гг. и устанавливал зависимость свойств элементов от их атомной массы. На данный момент элементы сводятся в двумерную таблицу, в которой каждый столбец - это группа, определяющая основные физико-химические свойства, а строки - это периоды, схожие друг с другом. Наиболее распространены 2 формы таблицы: короткая и длинная.
ТАБЛИЦА МЕНДЕЛЕЕВА
Периодическая таблица Менделеева в классическом варианте (или короткая форма), основана на параллелизме степеней окисления химических элементов главных и побочных подгрупп. В каждой ячейке таблицы указан символ элемента, порядковый номер, относительная атомная масса, и название элемента.
Порядковый номер элемента - это число равное числу протонов в ядре атома и числу электронов, которые вращаются вокруг него.
Чтобы посмотреть все свойства конкретного химического элемента нужно перейти по ссылке нажав на символ элемента в таблице.
Периодическая система химических элементов Д.И. Менделеева
Расшифровка периодической системы химических элементов Д.И. Менделеева:
Номер группы (для большинства элементов) – общее число валентных электронов (электронов внешнего энергетического уровня, а также предпоследнего d-подуровня, если он застроен не полностью).
Число элементов в периоде – максимальная емкость соответствующего энергетического уровня:
2 элемента (1s 2 )
18 элементов (5s 2 4d 10 5p 6 )
8 элементов (2s 2 2p 6 )
32 элемента (6s 2 4f 14 5d 10 6p 6 )
8 элементов (3s 2 3p 6 )
18 элементов (4s 2 3d 10 4p 6 )
Построение периодов – в начале: два s-элемента, в конце: шесть р- элементов. В четвертом и пятом периодах между ними помещается по десять d-элементов, а в шестом и седьмом к ним добавляются четырнадцать f-элементов (формы электронных орбиталей).
В периоде – свойства химических элементов различаются между собой, т.к. электронные конфигурации валентных электронов их атомов различны.
В подгруппе – свойства элементов сходны между собой, т.к. электронные конфигурации валентных электронов их атомов сходны.
Причина периодичности свойств химических элементов заключается в периодической повторяемости сходных электронных конфигураций внешних энергетических уровней.
Формы электронных орбиталей (электронные семейства)
Классификация химических элементов по электронным конфигурациям их атомов (электронные орбитали)
внешний (n) s-подуровень
внешний (n) р-подуровень
предвнешний (n–1 ) d-подуровень
(n-2)f 1–14 (n-1)d 1–10 ns 1–2
третий снаружи (n–2) f-подуровень
Графическое изображение орбиталей
Свойства элементов таблицы Менделеева
Металлы – элементы главных подгрупп с числом валентных электронов от 1 до 3 (подгруппы IA, IIA, IIIА, кроме элемента бора), а также германий, олово, свинец, сурьма, висмут и полоний.
Неметаллы – бор и элементы главных подгрупп с числом валентных электронов от 4 до 7 (подгруппы IVA, VA, VIA, VIIA) кроме германия, олова, свинца, сурьмы, висмута и полония.
Переходные элементы – элементы побочных подгрупп (IB-VIIB); в виде простых веществ ведут себя как металлы.
Благородные газы – элементы подгруппы VIIIA, полностью застроенные энергетические подуровни s 2 p 6 , для гелия s 2 .
Галогены – элементы подгруппы VII(a) таблицы Менделеева, реагируют со всеми простыми веществами, кроме некот. неметаллов, являются энергичными окислителями, к ним относят F, Cl, Br, I, At, Ts.
Лантанойды – 15 элементов III группы 6-го периода, металлы с атомными номерами 57–71. Все они имеют стабильные изотопы, кроме прометия.
Актинойды – 15 радиоактивных элементов III группы 7-го периода с атомными номерами 89–103.
Свойства элементов в подгруппах закономерно изменяются сверху вниз:
В периодах с увеличением порядкового номера элемента прослеживается следующая закономерность:
Все элементы таблицы Менделеева, исключая гелий, неон и аргон, образуют кислородные соединения, которые изображены общими формулами под каждой группой в порядке возрастания степени окисления элементов: R2O, RO, R2O3, RO2, R2O5, RO3, R2O7, RO4, где R - обозначает элемент группы.
Элементы главных подгрупп, начиная с IV группы, образуют газообразные водородные соединения: RH4, RH3, RH2, RH. Соединения RH4 имеют нейтральный характер; RH3 – слабоосновной; RH2 – слабокислый; RH – сильнокислый характер.
История открытия периодического закона Менделеевым Д.И.
Самый важный вклад в систематизацию химических элементов внёс русский выдающийся химик Дмитрий Иванович Менделеев, автор труда "Основы химии", который в марте 1869 года представил Русскому химическому обществу (РХО) периодический закон химических элементов, изложенный в нескольких основных положениях.
В 1871 году Менделеев в итоговой статье «Периодическая законность химических элементов» дал формулировку Периодического закона: "Свойства элементов, а потому и свойства образуемых ими простых и сложных тел стоят в периодической зависимости от атомного веса". Тогда же Менделеев придал своей периодической таблице классический вид (короткая таблица, смотрите ниже).
В современном изложении периодический закон химических элементов звучит так: "Свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов (порядкового номера)."
Периодическая таблица элементов Менделеева длинная форма
Длинная форма таблицы Менделеева (или длиннопериодная форма) состоит из 18 групп с лева на право от щелочных металов до благородных газов. считается официальной версией с 1989 года.
Таблица Менделеева для печати в хорошем качестве скачать
Вы можете скачать таблицу Менделеева на выбор короткую или длинную форму в цветном и черно-белом цвете, для этого откройте по ссылке ниже изображение и сохраните его себе на компьютер.
____________
Источник информации:
1. Большой химический справочник / А.И.Волков, — М.: 2005.
2. Большая энциклопедия химических элементов. Периодическая таблица Менделеева / И.А.Леенсон. — Москва : 2014.
Читайте также: