Сталь у10 механические свойства

Обновлено: 08.01.2025

На данной страничке приведены технические, механические и остальные свойства, а также характеристики стали марки У10.

У10 - классификация и применение марки

Классификация материала: Сталь инструментальная углеродистая

Применение: инструмент, работающий в условиях, не вызывающих разогрева режущей кромки: метчики ручные, рашпили, надфили, пилы для обработки древесины, матрицы для холодной штамповки, гладкие калибры, топоры.

У10 - химический состав материала в процентном соотношении

У10 - механические свойства при температуре 20°

У10 - технологические свойства

У10 - зарубежные аналоги

У10 - pасшифровка обозначений, сокращений, параметров материала

Механические свойства :
s в- Предел кратковременной прочности , [МПа]
s T- Предел пропорциональности (предел текучести для остаточной деформации), [МПа]
d 5- Относительное удлинение при разрыве , [ % ]
y - Относительное сужение , [ % ]
KCU- Ударная вязкость , [ кДж / м 2 ]
HB- Твердость по Бринеллю , [МПа]

Физические свойства :
T - Температура, при которой получены данные свойства , [Град]
E- Модуль упругости первого рода , [МПа]
a - Коэффициент температурного (линейного) расширения (диапазон 20 o - T ) , [1/Град]
l - Коэффициент теплопроводности (теплоемкость материала) , [Вт/(м·град)]
r - Плотность материала , [кг/м 3 ]
C- Удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)]
R- Удельное электросопротивление, [Ом·м]

Свариваемость :
без ограничений- сварка производится без подогрева и без последующей термообработки
ограниченно свариваемая- сварка возможна при подогреве до 100-120 град. и последующей термообработке
трудносвариваемая- для получения качественных сварных соединений требуются дополнительные операции: подогрев до 200-300 град. при сварке, термообработка после сварки - отжиг

Внимание! Вся приведённая информация о У10 носит ознакомительный характер. Все интересующие Вас характеристики необходимо уточнять у специалистов.

У10А инструмент, работающий в условиях, не вызывающих разогрева режущей кромки: метчики ручные, рашпили, надфили, пилы для обработки древесины, матрицы для холодной штамповки, гладкие калибры, топоры.

У11А метчики ручные, рашпили, надфили, пилы для обработки древесины, матрицы для холодной штамповки, топоры, калибры простой формы и пониженных классов точности

У12 режущие инструменты, работающие в условиях, не вызывающих разогрева режущей кромки: метчики ручные, метчики машинные мелкоразмерные, плашки для круппов, развертки мелкоразмерные, надфили, измерительный инструмент простой формы: гладкие калибры, скобы.

У11 метчики ручные, рашпили, надфили, пилы для обработки древесины, матрицы для холодной штамповки, топоры, калибры простой формы и пониженных классов точности

У12А режущие инструменты, работающие в условиях, не вызывающих разогрева режущей кромки: метчики ручные, метчики машинные мелкоразмерные, плашки для круппов, развертки мелкоразмерные, надфили, измерительный инструмент простой формы: гладкие калибры, скобы.

У13А инструменты повышенной износостойкости, работающие при умеренных и значительных давлениях без разогрева режущей кромки

У13 инструменты повышенной износостойкости, работающие при умеренных и значительных давлениях без разогрева режущей кромки

У7 инструмент, который работает в условиях, не вызывающих разогрева рабочей кромки: зубила, долота, бородки, молотки, лезвия ножниц для резки металла, топоры, колуны, стамески, плоскогубцы комбинированные, кувалды.

У7А инструмент, который работает в условиях, не вызывающих разогрева рабочей кромки: зубила, долота, бородки, молотки, лезвия ножниц для резки металла, топоры, колуны, стамески, плоскогубцы комбинированные, кувалды.

У8 для инструмента, работающего в условиях, не вызывающих разогрева режущей кромки: фрез, зенковок, топоров, стамесок, долот, пил продольных и дисковых, накатных роликов, кернеров, отверток, комбинированных плоскогубцев, боковых кусачек.

У8ГА для производства пружинной ленты

У8Г для производства пружинной ленты

У8А для инструмента, работающего в условиях, не вызывающих разогрева режущей кромки: фрез, зенковок, топоров, стамесок, долот, пил продольных и дисковых, накатных роликов, кернеров, отверток, комбинированных плоскогубцев, боковых кусачек.

У9 инструмент, работающий в условиях, не вызывающих разогрева кромки: инструмент для обработки дерева, слесарно-монтажный инструмент, калибры простой формы и пониженных классов точности.

У9А инструмент, работающий в условиях, не вызывающих разогрева кромки: инструмент для обработки дерева, слесарно-монтажный инструмент, калибры простой формы и пониженных классов точности.

Сталь 10

Расшифровка марки стали 10: цифра 10 означает, что это конструкционная сталь и в среднем в марке содержится 0,10% углерода, а остальные примеси незначительны.

Особенности конструкционной стали марки 10: среди различных методов механико-термической обработки, направленных на получение оптимальной субструктуры, обеспечивающей повышение сопротивления ползучести и жаропрочности металлов и сплавов, наибольший эффект улучшения свойств железа и стали получен в результате так называемой многократной механико-термической обработки (ММТО). Последняя заключается в многократном деформировании металла растяжением на полную длину площадки текучести, чередующемся со старением при 100-200° С (для железа и его сплавов). ММТО снижает скорость ползучести стали 10 при 400° С на несколько порядков и значительно повышает кратковременную прочность (предел текучести в 2,5 раза, предел прочности на 65-70%) в сравнении с отожженным состоянием.

Наблюдаемые эффекты авторы объясняют созданием в результате ММТО стабильной дислокационной структуры благодаря последовательному блокированию атмосферами Коттрелла приграничных дислокационных скоплений высокой плотности, возникающих после каждого цикла обработки.

В связи с эффективным влиянием ММТО на сопротивление ползучести и механические свойства ОЦК металлов было исследовано изменение сопротивления микропластическим деформациям углеродистой стали после этой обработки.

ММТО проводили на цилиндрических образцах при растяжении и сжатии, а также при растяжении на листовых образцах толщиной 0,5 мм. Из последних затем вырезали образцы для релаксационных испытаний при чистом изгибе. Помимо режима ММТО с промежуточным старением при 200° С в качестве оптимального, была исследована эффективность ММТО с дополнительным дорекристаллизационным отжигом при различных температурах.

В сравнении с исходным состоянием после трехкратной деформации на площадке текучести с промежуточным старением при 200° С существенно повышаются предел упругости и предел текучести (до 60%) при незначительном увеличении предела прочности (на 6%).

Наибольшее повышение предела упругости наблюдается после дополнительного отжига образцов при 300° С (для стали 10) и 370° С (для стали 35). При этом предел упругости возрастает почти в 2 раза по сравнению со значениями после ММТО. Пределы текучести и прочности не изменяются. Повышение температуры дополнительного отжига после ММТО до 500° С приводит к понижению предела упругости в сравнении с оптимальными значениями.

Рекомендуемые значения вытяжки при прокатке алюминиевых сплавов
Марка сплава Величина коэффициента вытяжки при прокатке
катанки мелкосортной ааготопки среднесортной заготовки прутков
в обжимных клетях в промежуточных клетях в отделочных клетях в обжимных клетях в промежуточных клетях
Ал 1.40 — 1.80 1.28 — 1.55 1.18 — 1.35 1.38 — 1.75 1.15 — 1.30 1.18 — 1.35 1.15 — 1.30
Ад 1.38 — 1.75 1.22 — 1.45 1.18 — 1.35 1.30 — 1.60 1.15 — 1.30 1.18 — 1.35 1.12 — 1.25
АМц 1.35 — 1.70 1.22 — 1.45 1.18 — 1.35 1.28 — 1.35 1.15 — 1.30 1.18 — 1.35 1.12 — 1.25
АМг 1.30 — 1.60 1.20 — 1.40 1.15 — 1.30 1.25 — 1.50 1.12 — 1.25 1.15 — 1.30 1.10 — 1.20
Д18п 1.28 — 1.55 1.20 — 1.40 1.12 — 1.25 1.22 — 1.45 1.12 — 1.25
Д3п 1.25 — 1.50 1.20 — 1.40 1.10 — 1.20 1.20 — 1.40 1.12 — 1.25
Д1п 1.25—1.50 1.20—1.40 1.10 — 1.20 1.20 — 1.40 1.12 — 1.25
Д16 1.20 — 1.40 1.18 — 1.35 1.08 — 1.15 1.18 — 1.35 1.10 — 1.20
В65 1.28 — 1.55 1.20 — 1.40 1.12 — 1.25 1.22 — 1.45 1.12 — 1.25
Изменение механических свойств сталей 10 и 35 после ММТО и низкотемпературного отжига (образцы из листа толщиной 0,5 мм)
Режим обработки Напряжения, кгс мм 2 δ, %
σ изг 0.001 σ0.2 σВ
Исходное состояние (отжиг при 860° C) 10.3 / 15.8 21.0 / 28.5 32.9 / 45.7 16 / 24.5
Трехкратное деформирование на полную площадку текучести без промежуточного старения — / 11.0 — / 39.0 — / 45.7 — / 24.5
Трехкратное деформирование на площадку текучести с промежуточным старением при 200° C по 2 ч 16.7 / 16.4 32.9 / 40.3 36.8 / 48.5 19.6 / 12
То же + отжиг при 300° C — 7 ч 28.1 / — 33.8 / — 35.5 / — 14 / —
То же, что 3, + отжиг при 370° C — 7 ч — / 33.3 — / 46.4
То же, что 3, + отжиг при 400° C — 7 ч 23.6 / — 32.3 / — 35.5 / — 15 / —
То же, что 3, + отжиг при 500° C — 7 ч 14.6 / — 16.4 30.8 / — 40 34.2 / — 46.5 14 / — 21

Примечание. В числителе приведены значения напряжений для стали 10, в знаменателе - для стали 35.

Исследование релаксационной стойкости методом свободного изгиба показало, что образцы, подвергнутые ММТО, обладают более низкой релаксационной стойкостью при 150° С, чем в исходном состоянии (после отжига). Дополнительный отжиг образцов после ММТО при 300-500° С позволяет резко повысить релаксационную стойкость сталей 10 и 35. Падение напряжений в образцах за 3000 ч после дополнительного отжига при 400° С для стали 10 и при 500° С для стали 35 уменьшается в 10-30 раз в сравнении с образцами после ММТО без дополнительного отжига. При этом максимальная релаксационная стойкость получена при несколько более высоких температурах дополнительного отжига после ММТО, чем максимальные значения предела упругости.

Полученные экспериментальные данные позволяют предположить, что низкая релаксационная стойкость образцов после ММТО связана с недостаточной стабильностью тонкой структуры металла. Дополнительный дорекристаллизационный отжиг после ММТО позволяет более полно стабилизировать структуру и, таким образом, резко повысить сопротивление металла микропластическим деформациям при кратковременном и длительном нагружениях.

Исследование амплитудно-зависимого внутреннего трения подтвердило это предположение.

После дополнительного отжига понижается фон внутреннего трения и величина критической амплитуды. Для стали 10 величина последней составляет:

после отжига при 860° С 4.3 * 10 -5
после отжига и трехкратного нагружения с промежуточным старением при 200° С 4.6 * 10 -5
после отжига, трехкратного нагружения с промежуточным старением при 200° С и отдыха при 350° С 7 ч 5.0 * 10 -5

Более низкий фон внутреннего трения и большая величина критической амплитуды деформации после дополнительного отжига образцов свидетельствуют о том, что получена более стабильная дислокационная структура, чем после ММТО (без дополнительного отжига).

Известно, что при деформационном упрочнении металлов проявляется эффект Баушингера, заключающийся в снижении сопротивления течению при перемене направления деформирования.

Для оценки зависимости свойств от направления деформации в процессе ММТО были исследованы свойства углеродистой стали при растяжении после упрочнения как растяжением, так и сжатием, т. е. испытания образцов проводили в направлении, соответствующем и противоположном деформированию при упрочнении.

Полученные экспериментальные данные свидетельствуют о сильной зависимости свойств образцов сталей 35 и 10 после ММТО от соответствия направлений деформаций при упрочнении и испытании. После трехкратной деформации растяжением на площадке текучести с промежуточным старением при 200° С пределы упругости и текучести возрастают более чем в 1,5 раза в сравнении с исходным состоянием. После трехкратной деформации сжатием также с промежуточным старением при 200° С предел упругости и механические свойства образцов из стали 35 практически остаются без изменения, а предел упругости образцов из стали 10 понижается в сравнении с исходным состоянием.

Промежуточное старение при ММТО (при 200° С) мало изменяет указанную зависимость свойств от соответствия направлений деформаций при упрочнении и испытании. Эта зависимость одинаково четко проявляется на образцах после трехкратной деформации без промежуточного старения и с промежуточным старением.

Проведение дополнительного отжига после ММТО, стабилизируя тонкую структуру, а также снимая локальные перенапряжения в микрообъемах и их направленность, частично ликвидирует указанную зависимость свойств от соответствия направлений деформаций при упрочнении и испытании. В связи с этим после упрочнения при ММТО с дополнительным отжигом значительно повышаются предел упругости и релаксационная стойкость в сравнении с образцами без дополнительного отжига.

Таким образом, исследования показали, что посредством ММТО можно значительно повысить сопротивление стали микропластическим деформациям при кратковременном и длительном нагружениях. Однако в отличие от режима ММТО, являющегося оптимальным для повышения характеристик жаропрочности, усталости и статической прочности, режим ММТО для повышения сопротивления микропластическим деформациям должен быть откорректирован в направлении дальнейшего повышения степени стабильности структуры металла. В частности, для сталей 10 и 35 проведение после ММТО дополнительного отжига при 300-500° С позволяет более полно стабилизировать тонкую структуру и значительно повысить характеристики сопротивления микропластическим деформациям металла.

По-видимому, для получения высоких показателей сопротивления микропластическим деформациям недостаточно обеспечить только блокирование дислокационных скоплений, возникающих при ММТО с промежуточным старением при 100-200° С, а необходимо произвести перераспределение дислокаций в этих скоплениях в энергетически более выгодные положения посредством более полного отдыха.

Сталь У10, У10А инструментальная углеродистая

Инструментальная сталь У10 (У10А) относится к группе сталей пониженной прокаливаемостии. Стали данной группы должны закаливаться в воде, а инструмент из этой стали имеет, как правило, незакаленную сердцевину. Закалка в воде требует принятия мер против сильного коробления, т.е. при конструировании инструмента следует избегать острых углов и резких переходов сечений [2].

Сталь У10, У10А применяется при изготовлении инструмента, работающего в условиях, не вызывающих разогрева режущей кромки:

  • метчики ручные,
  • рашпили,
  • надфили,
  • пилы для обработки древесины,
  • матрицы для холодной штамповки,
  • гладкие калибры,
  • топоры,
  • для холоднокатаной термообработанной ленты толщиной от 2,5 до 0,02 мм, предназначенной для изготовления плоских и витых пружин и пружинящих деталей сложной конфигурации, клапанов, щупов, берд, ламелей, двоильных ножей, конструкционных мелких деталей, в т.ч. для часов и т.д.

Сталь У10 не применяется для изготовления инструмента подвергающихся сильным ударам.

Примерное назначение инструментальной нелегированной стали У10, У10А (ГОСТ 1435-99)

  • Для игольной проволоки.
  • Для изготовления инструментов, работающих в условиях, не вызывающих
    разогрева режущей кромки.
  • Для обработки дерева: ручных поперечных и столярных пил, машинных
    столярных пил, спиральных сверл.
  • Для штампов холодной штамповки (вытяжных, высадочных, обрезных и
    вырубных) небольших размеров и без резких переходов по сечению.
  • Для калибров простой формы и пониженных классов точности.
  • Для накатных роликов, напильников, слесарных шаберов и др.
  • Для напильников, шаберов.
  • Для холоднокатаной термообработанной ленты толщиной от 2,5 до 0,02 мм, предназначенной для изготовления плоских и витых пружин и пружинящих деталей сложной конфигурации, клапанов, щупов, берд, ламелей двоильных ножей, конструкционных мелких деталей, в том числе для часов, и т. д. (лента выпускается по ГОСТ 2283, ГОСТ 21996 и ряду специальных технических условий)

Согласно ГОСТ Р 51015-79 сталь У10А применяется для изготовления клинков ножей хозяйственного и специального назначения используемых в быту, промышленности и на предприятиях общественного питания. Однако следует учитывать, что для ножей используемых в пищевой промышлености предпочтительно использовать коррозионноустойчивые стали.

Для высадки мягких металлов, выполняемых с небольшими давлениями, применяют сталь У10 для штампов диаметром до 30 мм сохраняющих при закалке мягкую сердцевину.

Химический состав, % (ГОСТ 1435-99)

Марка
стали
C Si Mn S P
не более
У10 0,95-1,09 0,17-0,33 0,17-0,33 0,028 0,030
У10А 0,95-1,09 0,17-0,33 0,17-0,28 0,018 0,025

Фазовый состав

Температура критических точек, °С [3]

Ac1 Acm Ar1 Mн
730 800 700 210

Условия проведения предварительной термической обработки сталей У10А, У10 [4]

  • Отжиг с непрерывным охлаждением и сфероидизацию рекомендуется производить в шахтных и камерных печах. Продолжительность выдержки после прогрева всей садки до температуры отжига 2-3 ч.
  • Изотермический отжиг целесообразен для печей непрерывного действия (конвейерных и толкательных). В этом случае время нагрева до заданной температуры рассчитывают в зависимости от толщины нагреваемого слоя заготовок по допустимому удельному времени нагрева 1,0 мин/мм. Продолжительность выдержки после прогрева всей садки до температуры отжига 1-2 ч. Изотермическая выдержка при охлаждении 1-2 ч.
  • Сфероидизация (маятниковый отжиг) применяют для получения структуры зернистого перлита. Продолжительность выдержки на каждой ступени 0,5-1,0 ч.
  • Высокий отпуск следует применять: для снятия наклепа после холодной пластической деформации (так называемый рекристаллизационный отжиг); для снятия внутренних напряжений от обработки резанием, предшествующей закалке; перед повторной закалкой изделий, имеющих пониженную твердость после термообработки. Продолжительность выдержки при высоком отпуске 2-3 ч * .
  • Нормализацию применяют для измельчения зерна перегретой стали и для устранения цементитной сетки. Нагрев при нормализации можно производить в печах и соляных ваннах. Продолжительность выдержки при нагреве в печах 20-30 мин * , при нагреве в соляных ваннах — равняется расчетной выдержке для нагрева под закалку [5].
  • Улучшение применяют для получения повышенной чистоты поверхности при обработке резанием в тех случаях, когда сталь в отожженном состоянии имеет твердость ˂ НВ 183. Закалку и высокий отпуск при улучшении рекомендуется производить с нагревом в печах. Продолжительность выдержки при нагреве под закалку 20-30 мин * , при высоком отпуске 2-4 ч * .

Термическая обработка сталей У10А, У10

* После прогрева всей садки до заданной температуры.

  • a) Отжиг с непрерывным охлаждением
  • б) Изотермический отжиг
  • в) Сфероидизация (маятниковый отжиг)
  • г) Высокий отпуск
  • д) Нормализация
  • е) Улучшение

Ориентировочная температура термической обработки и твердость стали У10 в отожженном состоянии [6]

Температура
отжига °C
Тведость
после
отжига HB
(не более)
Температура
закалки °C
760-780 °C 197 770-800 °C

Закалка [2]

Температура закалки заэвтектойдной стали У10А лежит в интервале между Ac3 и Ac1. Структура стали в закаленном состоянии состоит из мартенсита и избыточных (вторичных) карбидов. Оптимальная температура закалки около 800 °C.

В закаленной стали тетрагональность мартенсита и внутренние напряжения создают значительную хрупкость, поэтому после закалки отпуск является обязательной операцией

Рекомендуемые температуры нагрева (в °С) стали У10А для поверхностной закалки (охлаждение водяным душем) [7]

Марка
стали
Исходная
структура
Предварительная
термическая
обработка
Температура
нагрева
в печи в °С
Скорость нагрева в град/сек
30 — 60 100 — 200 400 — 500
Продолжительность нагрева в сек
2 — 4 1,0 — 1,5 0,5 — 0,8
Температура нагрева т.в.ч. выше Ac1
У10А Пластинчатый
перлит или сорбит
(+ цементит)
Нормализация или
улучшение
760-780 780-820 800-860 820-900

Температура рекристаллизационного отжига стали [7]

Обработка давлением,
после которой
выполняется отжиг
Марка
стали
Температура
отжига
в °С
Холодная протяжка
(калибровка) прутков
У10 700

Ориентировочные режимы отжига инструментальных сталей У10, У10А для улучшения обрабатываемости при резании [7]

Температура
нагрева
в °С
Охлаждение Диаметр
отпечатка
по Бринелю
в мм
760-780 С печью по 50°
в час до температуры 500 °С,
а затем на воздухе
≥4,3

ПРИМЕЧАНИЕ. Для улучшения обрабатываемости инструментальных сталей применяется также высокий отпуск при температуре 650-680 °С.

Твердость углеродистых марок стали после отпуска [7]

Влияние обработки холодом на свойства стали У10 [7]

Температура
закалки
в °С
Температура
обработки
холодом
в °С
Приращение
твердости
HRC
Изменение
длины в %
780 0 1,5

Механические свойства проката сечением 0,1-4,0 мм (ГОСТ 2283-79)

Состояние поставки σ0,2, МПа,
не более
δ5, %,
не менее
Лента холоднокатаная:
отожженная 750 10
нагартованная 750-1200
нагартованная,
класс прочности Н1
750-900
нагартованная,
класс прочности НЗ
1050-1200
Лента отожженная высшей категории качества 700 13

Истинные обобщеные механические характеристики отожженной стали при 20 °C [8]

ПРИМЕЧАНИЕ. При всех видах деформации разрушение вязкое.

Твердость термически обработанной (после отжига или высокого отпуска)
металлопродукции из стали У10, У10А, кроме проката для сердечников, и твердость образцов после закалки (ГОСТ 1435-99)

Марка стали Твердость термически
обработанной металлопродукции
Твердость образцов
после закалки в воде
НВ,
не более
Диаметр
отпечатка, мм,
не менее
Температура
закалки, °С
HRC, (HRC),
не менее
У10, У10А 212 4,15 770-800 63 (62)

Твердость стали в зависимости от температуры отпуска [9]

tотп, °С Твердость HRCэ
160-200 63-65
200-300 57-63
300-400 49-57
400-500 40-49

ПРИМЕЧАНИЕ. Закалка с 760-780 °С в воде.

Механические свойства в зависимости от температуры испытания [9]

tисп, °C σв, МПа δ5, % ψ %
700 105 50 87
800 90 52 100
900 55 59 100
1000 29 70 100
1100 18 78 100
1200 16 86 100

ПРИМЕЧАНИЕ. Образец диаметром 5 мм и длиной 25 мм деформированный и отожженный; скорость деформирования 10 мм/мин; скорость деформации 0,007 1/с

Сталь 10 конструкционная углеродистая качественная

Цифра 10 обозначает, что среднее содержание углерода в стали составляет 0,10%.

Вид поставки

  • Сортовой прокат, в том числе фасонный: ГОСТ 1050-88, ГОСТ 2590-88, ГОСТ 2591-88, ГОСТ 2879-88, ГОСТ 8509-93, ГОСТ 8510-86, ГОСТ 8240-89, ГОСТ 8239-89.
  • Калиброванный пруток ГОСТ 10702-78, ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78.
  • Шлифованный пруток и серебрянка ГОСТ 10702-78, ГОСТ 14955-77.
  • Лист толстый ГОСТ 1577-93, ГОСТ 19903-74.
  • Лист тонкий ГОСТ 16523-89.
  • Лента ГОСТ 6009-74. ГОСТ 10234-77.
  • Полоса ГОСТ 1577-93, ГОСТ 103-76, ГОСТ 82-70.
  • Проволока ГОСТ 17305-91, ГОСТ 5663-79.
  • Трубы ГОСТ 8731-74, ГОСТ 8732-78, ГОСТ 8733-74, ГОСТ 8734-75, ГОСТ 10705-80, ГОСТ 10704-91, ГОСТ 1060-83, ГОСТ 5654-76, ГОСТ 550-75.

Характеристики и описание

Сталь 10 относится к конструкционным малоуглеродистым нелегированным качественным сталям и характеризуется высокими пластическими свойствами и применяется преимущественно для изготовления изделий холодной штамповкой, высадкой и волочением.
Для повышения прочности и улучшения обрабатываемости низкоуглеродистая сталь марок 10 подвергается нормализации с температуры 930-950° С.

Назначение

Детали, работающие при температуре от -40 до 450 °С, к которым предъявляются требования высокой пластичности. После ХТО — детали с высокой поверхностной твердостью при невысокой прочности сердцевины.

Температура критических точек, °С

Химический состав, % (ГОСТ 1050-88)

C Si Mn Cr S Р Cu Ni As
не более
0,07-0,14 0,17-0,37 0,35-0,65 0,15 0,04 0,035 0,25 0,25 0,08

Химический состав, % (ГОСТ 1050-2013)

Марка
стали
Массовая доля элементов, %
C Si Mn P S Cr Ni Cu
не более
10 0,07-0,14 0,17-0,37 0,35-0,65 0,030 0,035 0,15 0,30 0,30

Износостойкость цементованной стали 10

Характеристика
термической
обработки
Твердость
по Виккерсу HV
Износ, мг
образца бронзового
вкладыша
Цементация на глубину 1,5 мм,
закалка при 780°С,
отпуск при 170°С
782 4,0 3,0

Механические свойства

Механические свойства при повышенных температурах

tисп., °С σ0,2, МПа σв, МПа δ5, % Ψ, % KCU, Дж/см 2
20 260 420 32 69 221
200 220 485 20 55 176
300 175 515 23 55 142
400 170 355 24 70 98
500 160 255 19 63 78

ПРИМЕЧАНИЕ. Нормализация при 900-920 °С, охл. на воздухе.

Предел выносливости

ПРИМЕЧАНИЕ. σ 400 1/1000 = 108 МПа, σ 400 1/100000 = 78 МПа, σ 450 1/10000 = 69 МПа, σ 450 1/100000 = 44 МПа

Ударная вязкость KCU

ПРИМЕЧАНИЕ. Пруток диаметром 35 мм.

Технологические свойства

Температура ковки, °С: начала 1300, конца 700. Охлаждение на воздухе.
Свариваемость — сваривается без ограничений, кроме деталей после химикотермической обработки. Способы сварки: РДС, АДС под флюсом и газовой защитой, КТС.
Обрабатываемость резанием — Kv тв.спл = 2,1 и Kv б.ст. = 1,6 в горячекатаном состоянии при НВ 99-107 и σв = 450 МПа.
Флокеночувствительность — не чувствительна.
Склонность к отпускной хрупкости — не склонна.

Читайте также: