Сталь стойкая к фосфорной кислоте
AISI 304 L используется там, где компоненты требуют прочной сварки с сопротивлением межкристаллитной коррозии. Эти компоненты могут использоваться без последующей обработки шва, независимо от толщины.
Основные характеристики
- хорошее общее сопротивление коррозии
- очень хорошая защита от МКК
- пригодность к криогенным приложениям
- отличная свариваемость
AISI 304 L имеет более низкое содержание углерода по сравнению с AISI 304, что улучшает ее сопротивление межкристаллитной коррозии в сварных швах и зонах медленного охлаждения.
Химический состав (% к массе)
стандарт | марка | C | Si | Mn | P | S | Cr | Ni |
---|---|---|---|---|---|---|---|---|
ASTM A240 | AISI 304L | ≤0,030 | ≤0,75 | ≤2,0 | ≤0,045 | ≤0,030 | 18,00 - 20,00 | 8,00 - 12,00 |
Механические свойства
Механические свойства при высоких температурах
Физические свойства
Физические свойства | Условные обозначения | Единица измерения | Температура | Значение |
---|---|---|---|---|
Плотность | d | - | 4°C | 7.93 |
Температура плавления | °C | 1420 | ||
Удельная теплоемкость | c | J/kg.K | 20°C | 500 |
Тепловое расширение | k | W/m.K | 20°C | 15 |
Средний коэффициент теплового расширения | α | 10 -6 .K -1 | 20-100°C 20-200°C 20-400°C | 16.0 16.5 17.5 |
Электрическое удельное сопротивление | ρ | Ωmm 2 /m | 20°C | 0.73 |
Магнитная проницаемость | μ | в 0,8 kA/m | 20°C | 1.015 |
Модуль упругости | E | MPa x 10 3 | 20°C | 200 |
Сопротивление коррозии
AISI 304 Lимеет хорошее общее сопротивление влажной коррозии и особенно рекомендована там, где есть риск межкристаллитной коррозии.
AISI 304 Lимеет хорошую устойчивость к большинству пищевых продуктов и многочисленным химическим средам:
- разбавленные щелочные растворы в температуре окружающей среды,
- разбавленные органические кислоты в температуре окружающей среды,
- нейтральные или щелочные соляные растворы без галоидного соединения,
- большинство органических сред.
Кислотные среды
Cплавы AISI 304 и AISI 304 L устойчивы к умеренно агрессивным органическим кислотам, например, уксусной и растворам фосфорной кислоты. Однако в более агрессивных средах типа кипящих растворов соляной или серной кислот сплавы теряют коррозионностойкость.
Кипящая 50-процентная каустика (щелочь) - также слишком агрессивная среда для этих сплавов.
Устойчивость к коррозии в кипящих химикалиях
Кипящая среда | Состояние металла | Скорость коррозии (мм/год) |
---|---|---|
20%-ая уксусная кислота | Обычный металл Сваренный | |
45%-ая муравьиная кислота | Обычный металл Сваренный | 0.4 0.5 |
10%-ая сульфаминовая кислота | Обычный металл Сваренный | 1.3 1.4 |
1%-ая соляная кислота | Обычный металл Сваренный | 2.2 3.6 |
20%-ая фосфорная кислота | Обычный металл Сваренный | - - |
65%-ая азотная кислота | Обычный металл Сваренный | 0.2 0.2 |
10%-ая серная кислота | Обычный металл Сваренный | 16.8 22.3 |
50%-ая гидроокись натрия | Обычный металл Сваренный | 1.8 2.2 |
Межкристаллитная коррозия
Причиной незащищенности аустенитных нержавеющих сталей в диапазоне температур 425°C - 820°C является осаждение карбидов хрома на границах зерен. Такие стали "сенсибилизируются" и становятся подверженными межкристаллитной коррозии в агрессивных окружающих средах.
Именно поэтому сталь AISI 304L с низким содержанием углерода предпочтительна для изделий, в которых материал после сварки подвергается воздействию агрессивных сред. «Низкий углерод» увеличивает время, необходимое для осаждения «вредных» карбидов хрома, но не прекращает реакцию их осаждения на длительное время в данном диапазоне температур.
Тест на МКК (Межкристаллитную коррозию)
ASTM A 262 Оценочные испытания | Состояние металла | Скорость коррозии (мм/год) |
---|---|---|
Practice B (Метод B) (гептагидрат сульфата железа - Серная кислота) | Обычный | 0.5 |
Сваренный | 0.5 | |
Practice E (Метод E) (пентагидрат сульфата меди - Серная кислота) | Обычный | Без трещин |
Сваренный | Без трещин | |
Practice A (Метод A) (Травление щавелевой кислотой) | Обычный | Ступенчатая структура |
Сваренный | Ступенчатая структура |
Растрескивание (Крекинговая Коррозия) под напряжением
Из всех аустенитных нержавеющих сталей марки AISI 302, AISI 304, AISI 304L наиболее восприимчивы к коррозионному растрескиванию (SCC) при подвергании напряжению в галоидных соединениях благодаря относительно низкому содержанию в них никеля.
- присутствие ионов галоидного соединения (вообще хлоридов),
- остаточные напряжения при растяжении,
- температуры свыше 50°C.
Напряжения могут возникнуть из-за деформации сплава в холодном состоянии во время формования, или ротационной вытяжки, или в процессе сварки, из-за возникновения напряжения от смены тепловых циклов. Уровни напряжения могут быть снижены путем отжига или термической обработки после деформации в холодном состоянии.
Сварка
- Сталь легко свариваемая.
- После сварки термическая обработка не требуется.
- Сварные швы должны быть механически или химически очищены от окалины, затем пассивированы.
Формовка
AISI 304L, являясь чрезвычайно прочной, упругой и пластичной, с легкостью находит множество применений. Типичные действия включают изгиб, формирование контура, волочение, ротационную вытяжку и т.д. В процессе формовки можно использовать те же машины и, чаще всего, те же инструменты, что и для углеродистой стали, но здесь требуется на 50-100% больше силы. Это связано с высокой степенью упрочнения при формовке аустенитной стали, что в некоторых случаях является отрицательным фактором.
число Эриксена характеристика обрабатываемости листового металла давлением | LDR предельный коэффициент вытяжки |
---|---|
11.5 (мм) | 2.00-2.05 (мм) |
Свойства стали по гибкости аналогичны AISI 304
Обработка
Отжиг
Диапазон температуры отжига 1050°C ± 25°C сопровождается последующим быстрым охлаждением на воздухе или в воде. После отжига необходимо травление и пассивирование.
Отпуск
Для AISI 304L - 450-600 °C в течение одного часа с небольшим риском сенситизации.
Выбор материала проточной части
Поверхностное разрушение металла под действием внешней среды называется коррозией.
Чистое железо и низколегированные стали неустойчивы против коррозии в атмосфере, в воде и многих других средах, так как образующаяся пленка окислов недостаточно плотна и не изолирует металл от химического воздействия среды. Некоторые элементы повышают устойчивость стали против коррозии, и таким образом можно подобрать сталь, практически не подвергающуюся разрушению в данной среде.
При введении таких легирующих элементов происходит скачкообразное повышение коррозионной стойкости. К примеру, введение в сталь более 12% хрома (Cr) делает ее коррозионностойкой в атмосфере и во многих других промышленных средах. Стали содержащие менее 12% Cr, практически в столь же большой степени подвержены коррозии, как и железо. Стали содержащие 12-14% Cr, ведут себя как благородные металлы: обладая положительным электрохимическим потенциалом, они не ржавеют и не окисляются на воздухе, в воде, в ряде кислот, солей и щелочей.
Хромистые нержавеющие стали
Хромистые нержавеющие стали применяют трех типов: 13, 17 и 27% Cr в зависимости от требований имеют различное содержание углерода.
Стали с более 17% Cr имеют иногда небольшие добавки титана и никеля, которые вводят для улучшения механических свойств. Помимо этого стали с таким содержанием хрома обладают высокой коррозионной стойкостью вплоть до температуры 900 ºС.
Стали с содержанием хрома 13% более распространенные и наименее дорогостоящие, их применяют для бытовых назначений и в технике. Эти стали хорошо поддаются сварке. Сплавы с низким содержанием углерода пластичны, с высоким - обладают высокой твердостью и повышенной прочностью, из них изготавливают детали повышенной прочности и износоустойчивости (хирургический инструмент, подшипники, пружины и другие детали, работающие в активной коррозионной среде).
Аустенитные стали
Введение достаточного количества никеля (Ni) в хромистую сталь обеспечивает лучшую механическую прочность, делает сталь более коррозионностойкой и не хладноломкой. Нержавеющие стали с 18% Cr и 10% Ni получили наиболее широкое распространение в машиностроении.
Для того, чтобы повысить сопротивление коррозии в кислотах в сталь вводят молибден и медь, особенно молибден с медью при одновременном увеличении содержания никеля. При необходимости, чтобы иметь еще и высокие механические свойства вводят титан и алюминий.
Более высокую коррозионную стойкость имеют никеливые сплавы типа хастеллой 80% Ni и 20% Mo (сплавы НИМО) с дополнительным легированием.
Титан
Титан (Ti) имеет высокую удельную прочность, благодаря чему сплавы на его основе получили широкое применение в технике, особенно в тех областях, где важное значение имеет масса (авиация, ракетостроение и др.). Титан обладает высокой коррозионной стойкостью в большом количестве агрессивных сред, превосходя зачастую в этом отношении нержавеющую сталь. Поэтому проще перечислить среды, в которых титан растворяется: например, плавиковая, соляная, серная, ортофосфорная, щавелевая и уксусная кислоты.
Высокая коррозионная стойкость титана обусловлена образованием на поверхности плотной защитной оксидной пленки. Если эта пленка не растворяется в окружающей среде, то можно считать, что титан в ней абсолютно стоек. Например, морская вода за 4000 лет растворит слой титана толщиной 30 - 40 микрон (1 микрон равен 10-4 см). Если же оксидная пленка растворима в данной среде, то применение в ней титана недопустимо.
Тугоплавкие металлы
К тугоплавким относят металлы: ванадий, вольфрам, гафний, молибден, ниобий, тантал, технеций, титан, хром, цирконий, - температура плавления которых выше температуры плавления железа (1539 ºС), кроме металлов платиновой и урановой групп и некоторых редкоземельных.
Следует отметить, что при высоких температурах все тугоплавкие металлы являются кислотостойкими. При этом наиболее сильно выделяется тантал. Ниобий и молибден по коррозионной стойкости превосходят сплавы на основе железа или никеля, однако уступают танталу.
Применение таких материалов целесообразно в средах, в которых другие материалы не обладают коррозионной стойкостью. К таким средам относятся неорганические крепкие кислоты при повышенных температурах, а так же некоторые промышленные среды.
Несмотря на высокую стоимость металлов по сравнению с такими коррозионностойкимиматериалами, как высоколегированная нержавеющая сталь или хастеллой, применение сплавов тугоплавких металлов оправдано, так как вследствие высокой стойкости возможно эксплуатировать химические установки практически весь срок без замены приборов.Коррозионная стойкость нержавеющих сталей в некоторых кислотах.Прии комнатной температуре высокой стойкостью в этой кислоте обладают все
Коррозионная стойкость нержавеющих сталей в некоторых кислотах
Серная кислота
При 70ºС хромоникелевые стали нестойки даже в кислотах слабой концентрации, но примерно до 5% H2SO4 могут работать стали с добавлением молибдена и меди.
Однако последние разрушаются в кипящей серной кислоте до концентрации 30%. В этих случаях следует применять сплавы типа хастеллой, а при концентрации выше 30% в кипящей серной кислоте могут работать лишь тугоплавкие металлы.
Фосфорная кислота
При комнатной температуре любой концентрации устойчивы аустенитные стали, хромистые нет. В горячей кислоте устойчивы стали с добавками молибдена и меди до концентрации 25%, в кипящей - хастеллой до 50%, а при более высокой устойчивы лишь тугоплавкие металлы.
В соляной кислоте устойчивы стали с добавлением молибдена или меди при комнатной температуре и до концентрации 5%.
Коррозионная стойкость металлов и сплавов при нормальных условиях
Данная таблица коррозионной стойкости предназначена для составления общего представления о том, как различные металлы и сплавы реагируют с определенными средами.
Рекомендации не являются абсолютными, поскольку концентрация среды, ее температура, давление и другие параметры могут влиять на применимость конкретного металла и сплава.
На выбор металла или сплава также могут оказывать влияние экономические соображения.
Условные обозначения:
А - обычно не корродирует,
В - коррозия от минимальной до незначительной,
С - не подходит
Стали и материалы стойкие к кислотным средам
Нержавеющие стали относятся к наиболее перспективным конструкционным материалам. Они незаменимы в современной жизни и применяются все шире — от столовых приборов и кастрюль до сложного оборудования в пищевой, химической промышленности, медицине и т.д. Гигиенические преимущества нержавеющей стали основаны на том, что влияние ее на питьевую воду исключено, при концентрации в воде хлорида или бромида до 200 мг/л рекомендуют использовать нержавеющую сталь с содержанием молибдена. В электрохимическом ряду напряжений нержавеющая сталь имеет более высокий потенциал, чем медь и оцинкованная сталь. Широкое применение в пищевой промышленности связано с ее нейтральными вкусовыми показателями и, благодаря высококачественной поверхности, нержавеющая сталь ведет себя нейтрально относительно микробиологического влияния. Это значит, что рост микроорганизмов не перемещается на поверхность из нержавеющей стали (по сравнению с поверхностями из органических материалов), а бактерии, грибки и т.п. не имеют шансов развиться на ее поверхности, что определяет высокую популярность «пищевого» применения нержавеющей стали.
Однако при использовании замечательных свойств нержавеющих сталей надо иметь в виду, что при технологической обработке их «поведение» весьма отличается от простых углеродистых сталей. Это объясняется особенностями их метастабильной аустенитной структуры, использование свойств которой требует учета ряда особенностей. Некоторые характеристики этих сталей на ознакомительном уровне для потребителя описывает настоящая статья с целью подчеркнуть то отличие, что в углеродистых (обычных, «черных») сталях в основном используются свойства стабильных структур сплава, а в нержавеющих сталях – свойства метастабильных (немагнитных) структур. Перенос технологических стереотипов от «черных» на нержавеющие стали могут превратить последние в «ржавеющие».
Предлагаем следующие рекомендации по свойствам и назначению нержавеющих и кислотостойких сталей, выбранные из нормативной и технической литературы.
Жаропрочность и химическая стойкость нержавеющих сталей достигается за счет введения в сталь хрома. Чем больше в стали хрома, тем выше ее сопротивляемость окислению. При 13% и выше хром образует сплошную тонкую прочную пленку окислов, защищающую сталь от коррозии.
Последующий нагрев стали Х18Н9 до температуры свыше 6000, а также холодная механическая обработка аустенитной стали приводит к частичному распаду аустенита, сталь приобретает магнитность. Указанный нагрев вызывает выделение хромовых карбидов, они делают близлежащие зоны металла малохромистыми и потому коррозионно малостойкими.
Так как выделение карбидов идет в основном по границе зерен, то сталь приобретает склонность к интеркристаллической коррозии. Сильно прокорродированная сталь делается совершенно хрупкой, ломается при изгибе и теряет обычный металлический звук при ударе. Этим объясняется и «ножевая» коррозия вблизи сварочных швов. Для предупреждения склонности к интеркристаллической коррозии к нержавеющей стали добавляют небольшое количество титана, ниобия. Эти элементы, образуя более прочные карбиды TiC, NbC, чем хром и железо, связывают углерод и оставляют весь хром в растворе и тем самым устраняют интеркристаллическую коррозию.
Нержавеющие стали хорошо сопротивляются действию органических кислот, слабых минеральных кислот, а также азотной кислоты. Серная и соляная кислоты растворяют эти стали. Из всех нержавеющих сталей наиболее стойкими является хромоникелевые чисто аустенитные стали, которые традиционно выпускаются в виде проката следующих марок: 08Х18Н10 (аналог — AISI 304 по стандарту США), 12Х18Н10Т (AISI 321), 12Х17 (AISI 430).
В «Справочнике металлиста» (т.3 со ссылкой на ГОСТ 5632) указано следующее назначение сталей.
12Х17 – кислотостойка, окалиностойка. Оборудование азотнокислотных заводов (башни, теплообменники для горячих газов и горячей кислоты, баки, трубопроводы ии пр.). Оборудование кухонь, столовых, консервных заводов. Предметы домашнего обихода.
08Х18Н9 – кислотостойка. Конструкционный материал для самолетов; поплавки гидросамолетов. В архитектуре – материал для отделки зданий. Немагнитные части аппаратуры управления.
04-12Х18Н10Т – кислотостойка, не подвержена интеркристаллитной коррозии, жаропрочна до 600 град. С. В азотной промышленности – башни, баки, трубопроводы. Автоклавы, мешалки в лакокрасочной промышленности. Аппаратура для переработки молока, бидоны, фляги. Бродильные баки , бочки чаны пивоваренных заводов. Посуда для пищи, оборудование для кухонь и консервных заводов. Насосы и аппаратура для работы в кислотных шахтных водах. Патрубки и коллекторы выхлопной системы авиамоторов.
Х18Н12М2Т и Х18Н12М3Т — кислотостойки, не подвержены интеркристаллитной коррозии, жаропрочны до 800 град. С. Аппараты и детали, устойчивые против сернистой, кипящей фосфорной, муравьиной и уксусной кислот, против горячих растворов белильной извести и сульфатного щелока, выпускные клапаны моторов.
Для многих целей достаточной жаропрочностью обладает сталь Х18Н9Т. Такая сталь (имеющая при комнатной температуре σв=60 кг/мм2) при 6500 выдерживает тысячечасовую нагрузку около 10 кг/мм2 и при 7000 – сточасовую нагрузку 10 кг/мм2. При 8000 эта сталь выдерживает 100 час. под напряжением в 5 кг/мм2. Аустенитная сталь Х14Н14В с 2% W, 0.4% Мо и 0,4% С еще боле жаропрочна и выдерживает при 7000 100 час. под напряжением в 12 кг/мм2 и при 8000 100 час. под напряжением в 6-7 кг/мм2. Очень высокими значениями прочности при высоких температурах обладает аустенитная сталь Х16Н25М6 (при 0,1% С и 0,4% N), выдерживающая при 7000 100 час. при 20 кг/мм2 и при 8000 100 час. при 8 кг/мм2.
Во всех жаропрочных аустенитных сталях, помимо аустенита, имеется какая-нибудь упрочняющая фаза – карбиды титана, хрома, вольфрама или вольфрамиды и молибдениды железа и т. п. Заметно повышает прочность стали молибден в количестве нескольких десятых долей процента вследствие общего измельчения структуры и выделения дисперсных частиц карбида молибдена. Эти стали применяются для котельных труб.
Возможность распада аустенита, с одной стороны, и выпадения карбидов, с другой, усложняют процессы термообработки нержавеющей стали. В сталях, содержащих более 18% Сr, помимо карбидов, может выделяться богатая хромом σ-фаза, вызывающая хрупкость стали.
Не забудем отметить уникальные свойства нержавеющих сталей как кровельного материала. Из нержавеющей стали сооружают практически «вечную» кровлю с гарантией стойкости — не менее 50 – 100 лет. Особенно впечатляет покрытие «под золото» нитридом титана на полированный нержавеющий лист, которое все шире применяют для кровли «золотых» куполов (например, одна из нових церквей г. Києва возведена «на воде» у речного вокзала), крестов, перил и т.д. Нитрид титана повышает корозионную стойкость и износостойкость стали. Если раньше технически возможно было выполнить ионно-плазменное покрытие лишь мелких деталей (зубне коронки, корпуса часов), то сейчас успешно покрывают кровельные листы с габаритами 1х2м до (500 кв. м. листа в месяц) и кресты высотой 1,6м.
Сталь стойкая к фосфорной кислоте
Для производства синтетических неметаллических материалов (пластмассы, стеклопластики, стекловолокно и т. д.), удобрений, а также других химических продуктов аппаратура, установки и машины работают в агрессивных кислотных средах, чаще в серной, соляной, азотной или фосфорной кислотах и их смесях разной концентрации и при разных температурах.
Рассмотренные в предыдущем параграфе нержавеющие стали оказываются недостаточно стойкими в перечисленных средах и других средах высокой агрессивности.
Для эксплуатации в этих средах следует применять более легированные стали и сплавы, называемые кислотостойкими.
Увеличение стойкости в кислотах (общая коррозия) дает присадка в аустенитные стали молибдена и особенно молибдена с медью при
одновременном увеличении содержания никеля (стали типа см. табл. 76).
При необходимости иметь и высокую кислотостойкость (на уровне стали и высокие механические свойства рекомендуется к применению сплав Последние два элемента вызывают интерметаллидное упрочнение [выделение дисперсных фаз типа
Более высокую коррозионную стойкость имеют никелевые сплавы, так называемый хастеллой типа (их еще иногда называют сплавами с дополнительным легированием.
Наиболее высокой стойкостью в кислотах обладают тугоплавкие металлы (молибден, ниобий, тантал).
Сравнительные данные о коррозионной стойкости перечисленных сплавов и тугоплавких металлов приведены на рис. 353.
Рис. 353. Склонность к коррозии различных металлов в кипящей серной кислоте
Рассмотрим коррозионную стойкость разных сплавов в различных средах.
Серная кислота. При комнатной температуре высокой стойкостью в этой кислоте обладают все аустенитные нержавеющие стали (хромистые типа нестойки). Примерно при аустенитные хромоникелевые стали нестойки даже в кислотах слабой концентрации, но примерно до могут работать аустенитные стали с добавлением молибдена и меди (стали , см. табл. 76). В кипящей серной кислоте до концентрации примерно все стали, в том числе и сталь нестойки. В этих случаях следует применять сплавы типа хастеллой, а при концентрации от до в кипящей серной кислоте могут работать лишь тугоплавкие металлы (рис. 353).
Фосфорная кислота. При комнатной температуре любой концентрации аустенитные стали устойчивы, хромистые нет.
В горячей ( фосфорной кислоте устойчивы лишь сталь (до концентрации 5 %), в кипящей — лишь хастеллой (до концентрации а при более высокой устойчивы лишь тугоплавкие металлы.
Соляная кислота. При комнатной температуре устойчива только сталь но лишь в разбавленной кислоте (
В кипящей кислоте концентрацией до может работать сплав хастеллой и до любой концентрации — тугоплавкие металлы.
Состав некоторых сплавов типа хастеллой приведен в табл. 79.
Таблица 79. (см. скан) Химический состав сплавов типа хастеллой, %
Все сплавы хастеллой содержат дополнительно легированы кобальтом, иногда и другими элементами. Эти сплавы должны иметь минимальное содержание углерода, так как он вызывает межкристаллитную коррозию и в этих сплавах, причем других средств борьбы с коррозией в этих сплавах, кроме снижения в них содержания углерода, нет. Вредное влияние оказывает загрязнение сплавов железом и кремнием Свистунова).
Кроме высоких коррозионных свойств, сплавы хастеллой обладают и высокими механическими свойствами при высокой прочности, что делает их ценным конструкционным материалом.
AISI 316, 316L, 316Ti
Все эти значения относятся только к AISI 316 и AISI 316 Ti. Для AISI 316L значения не приводятся, т.к. её прочность заметно уменьшается при температуре выше 425 °C.
Сопротивление на разрыв при повышенных температурах (AISI 316, AISI 316Ti)
Температура (°C) | 600 | 700 | 800 | 900 | 1000 |
---|---|---|---|---|---|
Сопротивление на разрыв (при растяжении), Н/мм 2 | 460 | 320 | 190 | 120 | 70 |
Максимальные рекомендуемые температуры эксплуатации
Температура образования окалины:
Непрерывное воздействие 925°C
Прерывистые воздействия 870°C
Физические свойства (AISI 316L)
Физические свойства | Условные обозначения | Единица измерения | Температура | Значение |
---|---|---|---|---|
Плотность | d | - | 4°C | 8.0 |
Температура плавления | °C | 1440 | ||
Удельная теплоемкость | c | J/kg.K | 20°C | 500 |
Тепловое расширение | k | W/m.K | 20°C | 15 |
Средний коэффициент теплового расширения | α | 10 -6 .K -1 | 20-100°C 20-300°C 20-500°C | 16.0 17.0 18.0 |
Электрическое удельное сопротивление | ρ | Ωmm 2 /m | 20°C | 0.75 |
Магнитная проницаемость | μ | в 0.80 kA/m | 20°C | 1.005 |
Модуль упругости | E | MPa x 10 3 | 20°C | 200 |
Общая Коррозия
Стали марок AISI 316, 316L являются наиболее стойкими из всех нержавеющих сталей 300-ой серии к атмосферным и другим умеренным типам коррозии. Все среды, в которых рекомендуется применять стали 300-ой серии, не представляют опасности для молибденсодержащих сортов. Одно известное исключение - азотная кислота, которая служит для них сильным окислителем.
AISI 316 является значительно более стойкими к серной кислоте, чем любые другие хром-никельсодержащие марки. При температурах около 50 °C AISI 316 стойка к этой кислоте в концентрации до 5 процентов. В температурах до 40°C и выше 60°C эта марка имеет превосходное сопротивление более высоким концентрациям. В местах конденсации сернистых газов она является намного более стойкой, чем другие типы. Однако следует тщательно следить за безопасной концентрацией.
Содержание молибдена в стали AISI 316 обеспечивает сопротивление окислению в большинстве применяемых окружающих средах. Как показывают лабораторные исследования, сплав обеспечивает превосходное сопротивление кипению 20%-ой фосфорной кислоты. Он также широко используется в горячих органических и жирных кислотах, поэтому часто применяется в изготовлении и обработке некоторых продуктов и фармацевтических изделий.
AISI 316 и AISI 316L могут одинаково хорошо применяться в средах, где существует риск возникновения межкристаллитной коррозии. Использование низкоуглеродистой AISI 316L предпочтительно в деталях, при изготовлении которых применяется сварка.
Степень защиты металла в кислотных средах
Температура, °C | 20 | 80 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Концентрация, % к массе | 10 | 20 | 40 | 60 | 80 | 100 | 10 | 20 | 40 | 60 | 80 | 100 |
Серная кислота | 0 | 1 | 2 | 2 | 1 | 0 | 2 | 2 | 2 | 2 | 2 | 2 |
Азотная кислота | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 |
Фосфорная кислота | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 1 | 2 |
Муравьиная кислота | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
0 - высокая степень защиты - Скорость коррозии менее чем 100 мкм/год
1 - частичная защита - Скорость коррозии от 100 до 1000 мкм/год
2 - нет защиты - Скорость коррозии более чем 1000 мкм/год
Атмосферные воздействия
Сравнение AISI 316 с другими металлами в различных атмосферах
(Скорость коррозии рассчитана при 5-летнем воздействии).
Окружающая среда | Скорость коррозии (мкм/год) | ||
---|---|---|---|
AISI 316 | Алюминий-3S | Углеродистая сталь | |
Сельская | 0.0025 | 0.025 | 5.8 |
Морская | 0.0076 | 0.432 | 34.0 |
Индустриальная Морская | 0.0051 | 0.686 | 46.2 |
Коррозионностойкость в кипящих химикалиях для AISI 316L
Кипящая среда | Скорость коррозии (мм/год) |
---|---|
20%-ая уксусная кислота | 0.003 |
45%-ая муравьиная кислота | 0.531 - 0.594 |
1%-ая соляная кислота | 0.024 - 1.615 |
10%-ая щавелевая кислота | 1.130 - 1.224 |
20%-ая фосфорная кислота | 0.015 - 0.027 |
10%-ая сульфаминовая кислота | 3.030 - 3.155 |
10%-ая серная кислота | 16.137 - 16.718 |
10%-й бисульфат натрия | 1.427 - 1.816 |
50%-ая гидроокись натрия | 1.971 - 2.169 |
Питтинговая коррозия
Сопротивление 316 сталей к питтинговой коррозии в присутствии хлорида увеличено более высоким содержанием хрома(Сr), молибдена(Мо), и азота (N). Относительная мера питтингостойкости определяется параметром, вычисляемым как PREN = Cr+3.3Mo+16N. PREN для сталей AISI 316 и AISI 316L(PREN=24.2) выше, чем для AISI 304 (PREN=19.0), что отражает лучшую питтингостойкость за счет присутствия молибдена.
Как показано в таблице ниже, лучшую стойкость к питтинговой коррозии обеспечивает более высокое содержание молибдена в сплаве.
CCCT (Критическая Температура Щелевой Коррозии) и CPT (Критическая Температура Питтинговой Коррозии) скоррелированы с PREN.
Сталь марки AISI 304 может сопротивляться питтинговой (щелевой) коррозии в воде, содержащей приблизительно до 100 ppm хлоридов, в то время как для AISI 316 и AISI 317 этот показатель составляет до 2000 и 5000 ppm хлоридов, соответственно.
Хотя эти сплавы использовались в морской воде (19 000 ppm хлоридов), они не рекомендуются для такого использования. Для применения в морской воде разработан сплав с 6.2 % Мо и 0.22 % N. Однако применение этих марок в аэрозольной морской среде (фасады зданий около океана) и загрязненной городской среде (крыши, дымоходы) возможно.
Марка | Композиция | PREN 1 | CCCT 2 (°C) | CPT 3 (°C) | ||
---|---|---|---|---|---|---|
Cr | Mo | N | ||||
AISI 304 | 18.0 | - | 0.06 | 19.0 | - | |
AISI 316 | 16.5 | 2.1 | 0.05 | 24.2 | 15 | |
AISI 904L | 20.5 | 4.5 | 0.05 | 36.2 | 20 | 40 |
- 1 Pitting Resistance Equivalent — Эквивалент Сопротивления питтинговой коррозии, включая азот, PREN =Cr+3.3Mo+16N
- 2 Critical Crevice Corrosion Temperature — Критическая Температура Щелевой Коррозии, CCCT, в соответствии с ASTM G-48B (6%FeCl3 в течение 72 часов, с щелями)
- 3 Critical Pitting Temperature — Критическая Температура Питтинговой Коррозии, CPT, в соответствии с ASTM G-48A (6%FeCl3 в течение 72 часов)
Содержание углерода в AISI 316 может вызвать сенсибилизацию от теплового режима в местах сварных швов и зонах их термического влияния. По этой причине использование низкоуглеродистой стали AISI 316L предпочтительно в деталях, при изготовлении которых применяется сварка. «Низкий углерод» увеличивает время, необходимое для осаждения «вредных» карбидов хрома, но не прекращает реакцию их осаждения на длительное время в данном диапазоне температур.
ASTM A 262 Оценочные испытания | Состояние металла | Скорость коррозии (мм/год) | |
---|---|---|---|
AISI 316 | AISI 316 L | ||
Practice B (Метод B) (гептагидрат сульфата железа - Серная кислота) | Обычный | 0.9 | 0.7 |
Сваренный | 1.0 | 0.6 | |
Practice E (Метод E) (пентагидрат сульфата меди - Серная кислота) | Обычный | Без трещин на изгибе | Без трещин |
Сваренный | Незначительные трещины на сварном шве (недопустимо) | Без трещин | |
Practice A (Метод A) (Травление щавелевой кислотой) | Обычный | Расслоение ступенчатое | Расслоение ступенчатое |
Сваренный | Глубокое растрескивание (недопустимо) | Расслоение ступенчатое |
Аустенитные сплавы под воздействием напряжения восприимчивы коррозионному растрескиванию (SCC) в галоидных соединениях. Хотя 316-е сплавы несколько более стойкие к SCC из-за содержания молибдена, они все равно являются весьма восприимчивыми.
- присутствие ионов галоидного соединения (вообще хлоридов);
- остаточные напряжения при растяжении;
- температуры свыше 50 °C.
Напряжения могут возникнуть из-за деформации сплава в холодном состоянии во время формования, или ротационной вытяжки, или в процессе сварки, из-за возникновения напряжения от смены тепловых циклов.
Уровни напряжения могут быть снижены путем отжига или термической обработкой после деформации в холодном состоянии.
Низкоуглеродистый материал AISI 316L - лучший выбор при эксплуатации при воздействии напряжений, которые способствуют возникновению межкристаллитной коррозии.
Скорость растрескивания в зависимости от условий окружающей среды
- Сталь легко свариваемая
- После сварки термическая обработка не требуется
- Сварные швы должны быть механически или химически очищены от окалины, затем пассивированы
AISI 316/316L, являясь чрезвычайно прочной, упругой и пластичной, с легкостью находит множество применений. Типичные действия включают изгиб, формирование контура, волочение, ротационную вытяжку и т.д. В процессе формовки можно использовать те же машины и, чаще всего, те же инструменты, что и для углеродистой стали, но здесь требуется на 50-100% больше силы. Это связано с высокой степенью упрочнения при формовке аустенитной стали, что в некоторых случаях является отрицательным фактором.
число Эриксена характеристика обрабатываемости листового металла давлением | LDR предельный коэффициент вытяжки |
---|---|
11.0-11.5 (мм) | 2.00-2.05 (мм) |
Читайте также: