Сталь шх9 химический состав

Обновлено: 08.01.2025

По составу и свойствам шарикоподшипниковую сталь можно отнести к группе инструментальных сталей, но по применению она является конструкционной специального назначения [2].

В таблице 1 приведен химический состав некоторых марок шарикоподшипниковой стали: хромистой, хромомарганцевокремнистой и коррозионностойкой; для сравнения также указаны марки некоторых зарубежных производителей.

Проблема недостаточной прокаливаемости и теплостойкости изделий из хромистой и хромомарганцевокремнистой стали в ряде стран решена путём создания их модификаций, содержащих небольшие добавки молибдена, ванадия (на немецких предприятиях сортамент выплавляемой стали содержит марку X90CrMoV18, содержащую некоторое его количество) и вольфрама.

В некоторых странах с целью экономии импортируемого хрома разработано несколько модификаций подшипниковой стали, в которых его снижение компенсируется небольшими добавками молибдена с повышенным содержанием марганца [1].

Высокое содержание углерода в шарикоподшипниковых сталях обуславливает их высокую прочность после термической обработки и стойкость против истирания поверхностная твёрдость определяется концентрацией углерода в мартенсите, поэтому она одинакова для всех шарикоподшипниковых сталей.

Таблица 1 - Химический состав некоторых марок шарикоподшипниковой стали

обычная хромистая сталь (в т.ч. с молибденом)

хромомарганцевокремнистая и хромомарганцевая с Mo

Твёрдость внутренних слоёв металла зависит от глубины прокаливаемости, которая в свою очередь зависит от содержания хрома. Хром замедляет превращение аустенита в перлит и тем самым увеличивает прокаливаемость стали, поэтому, чем крупнее детали подшипников, тем с большим содержанием хрома (0,4. 1,65 %) применяют сталь для их изготовления.

Кроме того, высокая твёрдость карбидов хрома повышает износостойкость стали. Хром увеличивает устойчивость мартенсита против отпуска, уменьшает склонность стали к перегреву и придаёт ей мелкозернистую структуру. Но при высоком содержании хрома (>1,65 %) трудно получить однородную структуру, поэтому содержание хрома в шарикоподшипниковых сталях обычно не превышает 1,65 %.

Марганец, как и хром, увеличивает твёрдость и сопротивляемость стали истиранию. Но одновременно он способствует росту зерна при нагреве, в результате чего при термической обработке может образовываться крупнозернистая структура перегретой стали. Отрицательное влияние на вязкость шарикоподшипниковой стали оказывает кремний. Но марганец и кремний являются раскислителями, и чем выше их содержание, тем полнее раскислена сталь, поэтому присутствие этих элементов в шарикоподшипниковой стали всех марок желательно не более 0,35 %Si и 0,4 %Mn. Исключение составляют стали для изготовления деталей крупных подшипников типа ШХ15СГ. Повышенное содержание марганца и кремния в этой стали объясняется тем, что эти элементы уменьшают критическую скорость закалки, снижая тем самым склонность стали к короблению и тещинообразованию при закалке.

Влияние суммарного содержания легирующих элементов на долговечность подшипниковых сталей

Повышение суммы легирующих до 5 % и выше может быть оправдано только в случаях особых эксплуатационных условий (коррозионная среда, повышенные рабочие температуры и др.), так как оно приводит к увеличению расходов на обрабатываемость и снижению долговечности (рисунок 1) по сравнению с теми же показателями традиционных подшипниковых сталей.

Изменение содержания легирующих элементов оказывает различное влияние на свойства подшипников. Добавка молибдена оказывает положительное влияние на долговечность подшипников.

В Японии были испытаны подшипниковые стали типа ШХ15 с содержанием 1. 1,5 % Si. Долговечность подшипников из этих сталей повышалась, однако они не получили применения из-за плохой обрабатываемости.

Предлагаемая замена стали ШХ15 на сталь с пониженным содержанием хрома (85Cr1Mo) не была осуществлена, несмотря на более короткое время отжига, из-за пониженной (8 мм) прокаливаемости. Эту сталь целесообразно применять там, где требуется улучшенная деформируемость в холодном состоянии.

В настоящее время наиболее полно удовлетворяют требованиям по содержанию вредных включений стали, произведённые методами ЭШП и ВДП. Однако этот металл слишком дорогой и, кроме того, не установлены экономически целесообразные требования по чистоте металла.

Среди вредных для шарикоподшипниковой стали элементов можно выделить фосфор, медь, никель, кислород, водород, азот, олово, свиней, мышьяк.

Фосфор увеличивает склонность стали к образованию крупнозернистой структуры при нагреве, повышает хрупкость и уменьшает прочность на изгиб, что в свою очередь увеличивает чувствительность стали к динамическим нагрузкам и склонность изделий к появлению закалочных трещин. В связи с этим содержание фосфора в металле ограничивают.

Медь, хотя и увеличивает твёрдость, предел прочности и прокаливаемость стали, является нежелательной примесью, так как с повышением содержания меди при горячей механической обработке увеличивается образование поверхностных трещин и надрывов.

Содержание никеля ограничивают в связи с тем, что его присутствие снижает твёрдость стали.

Олово, свинец и мышьяк, а также азот уменьшают сопротивляемость стали выкрашиванию.

Водород отрицательно влияет на качество стали ввиду того, что снижение растворимости его при снижении температуры металла вызывает повышенные локальные давления в металле, приводящие к образованию флокенов.

Сера влияет на свойства шарикоподшипниковой стали не однозначно. Отрицательное влияние сказывается в снижении устойчивости против истирания и усталостном разрушении при выходе на рабочую поверхность сульфидов. Однако образование сульфидной оболочки вокруг сульфидных включений при достаточном содержании серы уменьшает влияние этих включений на концентрацию напряжений и вследствие этого повышает сопротивление усталости. С увеличением отношения концентраций S/O до 3. 5 стойкость подшипников возрастает. Этому способствуют и улучшение качества поверхности вследствие того, что сера улучшает обрабатываемость стали [2]. Некоторыми авторами доказано благоприятное влияние повышенного содержания серы (до 0,15 %) на долговечность и обрабатываемость подшипниковых сталей, хотя стали с таким содержанием серы пока не применяются.

Отдельно следует отметить влияние кислорода на свойства шарикоподшипниковой стали. Вообще его влияние на свойства подшипниковой стали, как и на свойства любой другой спокойной стали, проявляется через неметаллические включения, им формируемые. Неметаллические включения в подшипниковых сталях являются концентраторами напряжений и могут в некоторых случаях являться причиной появления микротрещин, образующихся от повышенной концентрации мозаичных напряжений, резкого охлаждения при закалке и др. [6]. Попадая на поверхность или в подповерхностный слой неметаллические включения при приложении нагрузок разрушаются, выкрашиваются и тем самым формируют очаг зарождения трещины. Вероятность разрушения включений зависит от их деформируемости, поэтому в стали подобного типа следует избегать формирование хрупких недеформируемых включений типа корунда и стремиться к образованию более пластичных частиц, например, силикатов (при равном содержании кислорода, подшипники из кислой мартеновской стали в 2,5 раза долговечнее, чем из электростали, так как в них вместо строчек крупных оксидов были глобули силикатов). Вероятность же попадания включений в поверхностный слой металла зависит от их количетсва, размера и формы, поэтому общее количество неметаллических частиц и их размер должны быть минимальны (учитывая, что количество включений тесно коррелирует с содержанием кислорода - содержание этого элемента также должно быть минимальным), а их форма - глобулярна. В случае когда в стали присутствет большое количество крупных включений, долговечность падает катастрофически: в 100 раз, когда оксидов крупнее 30 мкм стало больше в 10 раз. Чем выше твердость и модуль упругости включения, тем больше концентрация напряжений в нем, а следовательно хуже контактная прочность.

В подшипниковых сталях, полученных по обычной технологии, содержится около 0,005 % О2, 0,01. 0,02 % N2, 0,0001. 0,0005 % Н2. Кислород находится в виде окислов и его количество зависит от технологии раскисления. При вакуумировании содержание кислорода уменьшается до 0,002 %, а при ВДП - до 0,001 %. Целессобразность снижения содержания кислорда проиллюстрирована на рисунке ниже.

Классификация стали

Сталь - деформируемый (ковкий) сплав железа с углеродом (до 2,14%) и другими элементами. Получают, главным образом, из смеси чугуна со стальным ломом в кислородных конвертерах, мартеновских печах и электропечах. Сплав железа с углеродом, содержащий более 2,14% углерода, называют чугуном.

99% всей стали - материал конструкционный в широком смысле слова: включая стали для строительных сооружений, деталей машин, упругих элементов, инструмента и для особых условий работы - теплостойкие, нержавеющие, и т.п. Его главные качества - прочность (способность выдерживать при работе достаточные напряжения), пластичность (способность выдерживать достаточные деформации без разрушения как при производстве конструкций, так в местах перегрузок при их эксплуатации), вязкость (способность поглощать работу внешних сил, препятствуя распространению трещин), упругость, твердость, усталость, трещиностойкость, хладостойкость, жаропрочность.

Для изготовления подшипников широко используют шарикоподшипниковые хромистые стали ШХ15 и ШХ15СГ. Шарикоподшипниковые стали обладают высокой твердостью, прочностью и контактной выносливостью.

Пружины, рессоры и другие упругие элементы работают в области упругой деформации материала. В то же время многие из них подвержены воздействию циклических нагрузок. Поэтому основные требования к пружинным сталям - это обеспечение высоких значений пределов упругости, текучести, выносливости, а также необходимой пластичности и сопротивления хрупкому разрушению (55С2, 60С2А, 50ХФА, 30Х13, 03Х12Н10Д2Т).

Высокопрочные стали имеют высокую прочность при достаточной пластичности (среднеуглеродистая легированная сталь 40ХН2МА), высокой конструктивной прочностью, малой чувствительностью к надрезам, высоким сопротивлением хрупкому разрушению, низким порогом хладноломкости, хорошей свариваемостью.

Классификация сталей и сплавов производится:

  • по химическому составу;
  • по структурному составу;
  • по качеству (по способу производства и содержанию вредных примесей);
  • по степени раскисления и характеру затвердевания металла в изложнице;
  • по назначению.

Химический состав
По химическому составу углеродистые стали делят в зависимости от содержания углерода на следующие группы:

  • малоуглеродистые - менее 0,3% С;
  • среднеуглеродистые - 0,3. 0,7% С;
  • высокоуглеродистые - более 0,7 %С.

Для улучшения технологических свойств стали легируют. Легированной называется сталь, в которой, кроме обычных примесей, содержатся специально вводимые в определенных сочетаниях легирующие элементы (Сr, Ni, Мо, Wo, V, Аl, В, Тl и др.), а также Mn и Si в количествах, превышающих их обычное содержание как технологических примесей (1% и выше). Как правило, лучшие свойства обеспечивает комплексное легирование.

В легированных сталях их классификация по химическому составу определяется суммарным процентом содержания легирующих элементов:

  • низколегированные - менее 2,5%;
  • среднелегированные - 2,5. 10%;
  • высоколегированные - более 10%.

Структурный состав
Легированные стали и сплавы делятся также на классы по структурному составу:

  • в отожженном состоянии - доэвтектоидный, заэвтектоидный, ледебуритный (карбидный), ферритный, аустенитный;
  • в нормализованном состоянии - перлитный, мартенситный и аутенитный.

К перлитному классу относят углеродистые и легированные стали с низким содержанием легирующих элементов, к мартенситному - с более высоким и к аустенитному - с высоким содержанием легирующих элементов.

Классификация стали по содержанию примесей

По качеству, то есть по способу производства и содё примесей, стали и сплавы делятся на четыре группы
Классификация сталей по качеству

Группа S, % Р, %
Обыкновенного качества (рядовые) менее 0,06 менее 0,07
Качественные менее 0,04 менее 0,035
Высококачественные менее 0,025 менее 0,025
Особовысококачественные менее 0,015 менее 0,025

Стали обыкновенного качества

Стали обыкновенного качества (рядовые) по химическому составу -углеродистые стали, содержащие до 0,6% С. Эти стали выплавляются в конвертерах с применением кислорода или в больших мартеновских печах. Примером данных сталей могут служить стали СтО, СтЗсп, Ст5кп.
Стали обыкновенного качества, являясь наиболее дешевыми, уступают по механическим свойствам сталям других классов.

Стали качественные

Стали качественные по химическому составу бывают углеродистые или легированные (08кп, 10пс, 20). Они также выплавляются в конвертерах или в основных мартеновских печах, но с соблюдением более стро-гих требований к составу шихты, процессам плавки и разливки.
Углеродистые стали обыкновенного качества и качественные по степени раскисления и характеру затвердевания металла в изложнице делятся на спокойные, полуспокойные и кипящие. Каждый из этих сортов отличается содержанием кислорода, азота и водорода. Так в кипящих сталях содержится наибольшее количество этих элементов.

Стали высококачественные

Стали высококачественные выплавляются преимущественно в электропечах, а особо высококачественные - в электропечах с электрошлаковым переплавом (ЭШП) или другими совершенными методами, что гарантирует повышенную чистоту по неметаллическим включениям (содержание серы и фосфора менее 0,03%) и содержанию газов, а следовательно, улучшение механических свойств. Это такие стали как 20А, 15Х2МА.

Стали особовысококачественные

Особовысококачественные стали подвергаются электрошлаковому переплаву, обеспечивающему эффективную очистку от сульфидов и оксидов. Данные стали выплавляются только легированными. Их производят в электропечах и методами специальной электрометаллургии. Содержат не более 0,01% серы и 0,025% фосфора. Например: 18ХГ-Ш, 20ХГНТР-Ш.

Классификация стали по назначению

По назначению стали и сплавы классифицируются на конструкционные, инструментальные и стали с особыми физическими и химическими свойствами.

Конструкционные стали

Конструкционные стали принято делить на строительные, для холодной штамповки, цементируемые, улучшаемые, высокопрочные, рессорно-пружинные, шарикоподшипниковые, автоматные, коррозионно-стойкие, жаростойкие, жаропрочные, износостойкие стали.

Строительные стали

К строительным сталям относятся углеродистые стали обыкновенного качества, а также низколегированные стали. Основное требование к строительным сталям - их хорошая свариваемость. Например: С255, С345Т, С390К, С440Д.

Стали для холодной штамповки

Для холодной штамповки применяют листовой прокат из низкоуглеродистых качественных марок стали 08Ю, 08пс и 08кп.

Цементируемые стали

Цементируемые стали применяют для изготовления деталей, работающих в условиях поверхностного износа и испытывающих при этом динамические нагрузки. К цементируемым относятся малоуглеродистые стали, содержащие 0,1-0,3% углерода (такие, как 15, 20, 25), а также некоторые легированные стали (15Х, 20Х, 15ХФ, 20ХН 12ХНЗА, 18Х2Н4ВА, 18Х2Н4МА, 18ХГТ, ЗОХГТ, 20ХГР).

Улучшаемые стали

К улучшаемым сталям относят стали, которые подвергают улучшению - термообработке, заключающейся в закалке и высоком отпуске. К ним относятся среднеуглеродистые стали (35, 40, 45, 50), хромистые стали (40Х, 45Х, 50Х), хромистые стали с бором (ЗОХРА, 40ХР), хромоникелевые, хромокремниемарганцевые, хромоникельмолибденовые стали.

Высокопрочные стали

Высокопрочные стали - это стали, у которых подбором химического состава и термической обработкой достигается предел прочности примерно вдвое больший, чем у обычных конструкционных сталей. Такой уровень прочности можно получить в среднеуглеродистых легированных сталях - таких, как ЗОХГСН2А, 40ХН2МА, ЗОХГСА, 38ХНЗМА, ОЗН18К9М5Т, 04ХИН9М2Д2ТЮ.

Пружинные стали

Пружинные (рессорно-пружинные) стали сохраняют в течение длительного времени упругие свойства, поскольку имеют высокий предел упругости, высокое сопротивление разрушению и усталости. К пружинным относятся углеродистые стали (65, 70) и стали, легированные элементами, которые повышают предел упругости - кремнием, марганцем, хромом, вольфрамом, ванадием, бором (60С2, 50ХГС, 60С2ХФА, 55ХГР).

Подшипниковые стали

Подшипниковые (шарикоподшипниковые) стали имеют высокую прочность, износоустойчивость, выносливость. К подшипниковым предъявляют повышенные требования на отсутствие различных включений, макро- и микропористости. Обычно шарикоподшипниковые стали характеризуются высоким содержанием углерода (около 1%) и наличием хрома (ШХ9, ШХ15).

Автоматные стали

Автоматные стали используют для изготовления неответственных деталей массового производства (винты, болты, гайки и др.)> обрабатываемых на станках-автоматах. Эффективным металлургическим приемом повышения обрабатываемости резанием является введение в сталь серы, селена, теллура, а также свинца, что способствует образованию короткой и ломкой стружки, а также уменьшает трение между резцом и стружкой. Недостаток автоматных сталей - пониженная пластичность. К автоматным сталям относятся такие стали, как А12, А20, АЗО, А40Г, АС11, АС40, АЦ45Г2, АСЦЗОХМ, АС20ХГНМ.

Износостойкие стали

Износостойкие стали применяют для деталей, работающих в условиях абразивного трения, высокого давления и ударов (крестовины железнодорожных путей, траки гусеничных машин, щеки дробилок, черпаки землеройных машин, ковши экскаваторов и др.)- Пример износостойкой стали - высокомарганцовистая сталь 110Г13Л.

Коррозионно-стойкие (нержавеющие) стали

Коррозионно-стойкие (нержавеющие) стали - легированные стали с большим содержанием хрома (не менее 12%) и никеля. Хром образует на поверхности изделия защитную (пассивную) оксидную пленку. Углерод в нержавеющих сталях - нежелательный элемент, а чем больше хрома, тем выше коррозионная стойкость.
Структура для наиболее характерных сплавов этого назначения может быть:

  • ферритно-карбидной и мартенситной (12X13, 20X13, 20Х17Н2, 30X13, 40X13, 95X18 - для слабых агрессивных сред (воздух, вода, пар);
  • ферритной (15X28) - для растворов азотной и фосфорной кислот;
  • аустенитной (12Х18НЮТ) - в морской воде, органических и азотной кислотах, слабых щелочах;
  • мартенситно-стареющей (ЮХ17Н13МЗТ, 09Х15Н8Ю) - в фосфорной, уксусной и молочной кислотах.

Сплав 06ХН28МТ может эксплуатироваться в условиях горячих (до 60°С) фосфорной и серной (концентрации до 20%) кислот.
Коррозионностойкие стали и сплавы классифицируют в зависимости от агрессивности среды, в которой они используются, и по их основному потребительскому свойству на собственно коррозионно-стойкие, жаростойкие, жаропрочные и криогенные.

Коррозионно-стойкие стали

Изделия из собственно коррозионностойких сталей (лопатки турбин, клапаны гидравлических прессов, пружины, карбюраторные иглы, диски, валы, трубы и др.) работают при температуре эксплуатации до 550°С.

Жаропрочные стали

Жаропрочные стали способны работать в нагруженном состоянии при высоких температурах в течение определенного времени и при этом обладают достаточной жаростойкостью. Данные стали и сплавы применяются для изготовления труб, клапанных, паро- и газотурбинных деталей (роторы, лопатки, диски и др.).
Для жаропрочных и жаростойких машиностроительных сталей используются малоуглеродистые (0,1-0,45% С) и высоколегированные (Si, Cr, Ni, Со и др.). Жаропрочные стали и сплавы в своем составе обязательно содержат никель, который обеспечивает существенное увеличение предела длительной коррозионной прочности при незначительном увеличении предела текучести и временного сопротивления, и марганец. Они могут дополнительно легироваться молибденом, вольфрамом, ниобием, титаном, бором, иодом и др. Так, микролегирование бором, а также редкоземельными и некоторыми щелочноземельными металлами повышает такие характеристики, как число оборотов при кручении, пластичность и вязкость при высоких температурах.
Рабочие температуры современных жаропрочных сплавов составляют примерно 45-80% от температуры плавления. Эти стали классифицируют по температуре эксплуатации (ГОСТ 20072-74):
при 400-550°С - 15ХМ, 12Х1МФ, 25Х2М1Ф, 20ХЗМВФ;
при 500-600°С - 15Х5М, 40ХЮС2М, 20X13;
при 600-650°С - 12Х18Н9Т, 45Х14Н14В2М, ЮХЦН23ТЗМР,
ХН60Ю, ХН70Ю, ХН77ТЮР, ХН56ВМКЮ, ХН62МВКЮ.

Жаростойкие стали

Жаростойкие (окалиностойкие) стали обладают стойкостью против химического разрушения поверхности в газовых средах, в том числе серосодержащих, при температурах +550-1200°С в воздухе, печных газах (15X5, 15Х6СМ, 40Х9С2, ЗОХ13Н7С2, 12X17, 15X28), окислительных и науглероживающих средах (20Х20Н14С2, 20Х23Н18) и работают в ненагруженном или слабонагруженном состоянии, так как могут проявлять ползучесть при приложении больших нагрузок. Жаростойкие стали характеризуют по температуре начала интенсивного окисления. Величина этой температуры определяется содержанием хрома в сплаве. Так, при . 15% Cr температура эксплуатации изделий составляет +950°С, а при 25% Cr до +130СГС. Жаростойкие стали также легируют никелем, кремнием, алюминием.

Криогенные стали

Криогенные машиностроительные стали и сплавы (ГОСТ 5632-72) по химическому составу являются низкоуглеродистыми (0,10% С) и высоколегированными (Cr, N1, Mn и др.) сталями аустенитного класса (08Х18НЮ, 12Х18НЮТ, ОЗХ20Н16АГ6, ОЗХ13АП9 и др.). Основными потребительскими свойствами этих сталей являются пластичность и вяз-кость, которые с понижением температуры (от +20 до -196°С) либо не меняются, либо мало уменьшаются, т.е. не происходит резкого уменьшения вязкости, характерного при хладноломкости. Криогенные машиностроительные стали классифицируют по температуре эксплуатации в диапазоне от -196 до -296°С и используют для изготовления деталей криогенного оборудования.

Инструментальные стали

Инструментальные стали по назначению делят на стали для режущих, измерительных инструментов, штамповые стали.

Стали для режущих инструментов

Стали для режущих инструментов должны быть способными сохранять высокую твердость и режущую способность продолжительное время, том числе и при нагреве. В качестве сталей для режущих инструментов применяют углеродистые, легированные инструментальные, быстрорежущие стали.

Углеродистые инструментальные стали

Углеродистые инструментальные стали содержат 0,65-1,32% углерода. Например, стали марок У7, У7А, У13, У13А. К данной группе, помимо нелегированных углеродистых инструментальных сталей, условно относят также стали с небольшим содержанием легирующих элементов, которые не сильно отличаются от углеродистых.

Легированные инструментальные стали

В данную группу сталей входят стали, содержащие легирующие элементы в количестве 1-3%. Легированные инструментальные стали имеют повышенную (по сравнению с углеродистыми инструментальными сталями) теплостойкость - до +300°С. Наиболее широко используют стали 9ХС (сверла, фрезы, зенкеры), ХВГ (протяжки, развертки), ХВГС (фрезы, зенкеры, сверла больших диаметров).

Быстрорежущие стали

Быстрорежущие стали применяют для изготовления различного режущего инструмента, работающего на высоких скоростях резания, так как они обладают высокой теплостойкостью - до +650°С. Наибольшее распространение получили быстрорежущие стали марок Р9, Р18, Р6М5, Р9Ф5, РЮК5Ф5.

Стали для измерительных инструментов

Инструментальные стали для измерительных инструментов (плиток, калибров, шаблонов) помимо твердости и износостойкости должны сохранять постоянство размеров и хорошо шлифоваться. Обычно применяют стали У8. У12, X, 12X1, ХВГ, Х12Ф1. Измерительные скобы, шкалы, линейки и другие плоские и длинные инструменты изготовляют из листовых сталей 15, 15Х. Для получения рабочей поверхности с высокой твердостью и износостойкостью инструменты подвергают цементации и закалке.

Штамповые стали

Штамповые стали обладают высокой твердостью и износостойкостью, прокаливаемостью и теплостойкостью.

Стали для штампов холодного деформирования

Эти стали должны обладать высокой твердостью, износостойкостью и прочностью, сочетающейся с достаточной вязкостью, также должны быть теплостойкими. Например Х12Ф1, Х12М, Х6ВФ, 6Х5ВЗМФС, 7ХГ2ВМ. Во многих случаях для изготовления штампов для холодного деформирования используют быстрорежущие стали.

Стали для штампов горячего деформирования

Эти стали должны иметь высокие механические свойства (прочность и вязкость) при повышенных температурах и обладать износостойкостью, окалиностойкостью, разгаростойкостью и высокой теплопроводностью. Примером таких сталей могут служить стали 5ХНМ, 5ХНВ, 4ХЗВМФ, 4Х5В2ФС, ЗХ2В8Ф, 4Х2В5МФ.

Валковые стали

Данные стали применяют для рабочих, опорных и прочих валков прокатных станов, бандажей составных опорных валков, ножей для холодной резки металла, обрезных матриц и пуансонов. К валковым сталям относят такие марки стали, как 90ХФ, 9X1, 55Х, 60ХН, 7Х2СМФ.

Требования к стали для валков

Высокая прокаливаемость. Для обеспечения высокой закаливаемости необходимо использование таких марок стали, устойчивость переохлажденного аустенита которых в обеих областях превращения, во возможности, достаточна для развития мартенситного превращения при минимальных скоростях охлаждения, например, в масле.

Глубокая прокаливаемость. Прокаливаемость - это глубина закаленного слоя или, другими словами, глубина проникновения мартенсита. Она зависит от химического состава, размеров деталей и условий охлаждения. Легирующие элементы, а также увеличение содержания углерода (0,8%) в стали способствуют увеличению ее прокаливаемости, поэтому необходимую прокаливаемость обеспечивают за счет оптимизации химического состава стали. Для данного типа стали необходима практически сквозная прокаливаемость, так как при этом обеспечивается жесткость валка, без которой затруднительно получение высокой точности проката. Среди элементов, увеличивающих прокаливаемость - кремний и бор.

Высокая износостойкость. Необходима для безаварийной работы стана. При высокой износостойкости образование абразивных частиц износа не происходит, система подшипников работает более надежно.

Высокая контактная прочность. Контактная прочность рабочего слоя валков должна быть выше контактных напряжений, возникающих в процессе прокатки с учетом естественных нагрузок.

Минимальная склонность к деформации и короблению в процессе термической обработки и неизменность размеров в процессе эксплуатации.

Удовлетворительная обрабатываемость при мехобработке, хорошая шлифуемость и полируемость для обеспечения высокой чистоты поверхности валков и, следовательно, высокого качества поверхности прокатываемого материала.

Наши партнёры

Спец-предложение

Предлагаем услуги по оптимизации геометрии разливочной оснастки с целью обеспечения повышения коэффициента использования металла и снижения осевой пористости слитков

Сталь 9ХС инструментальная легированная

Цифра 9 в обозначении марки стали указывает среднюю массовую долю углерода в десятых долях процента, т.е. среднее содержание углерода в стали 9ХС равно 0,90%.
Буква Х в обозначении марки стали, означает, что сталь легирована хромом. Отсутствие цифры после буквы означает, что доля хрома примерно равно 1%.
Буква С в обозначении марки стали, означает, что сталь легирована кремнием. Отсутствие цифры после буквы означает, что доля кремния примерно равно 1%.

Вид поставки

  • Сортовой прокат, в том числе фасонный: ГОСТ 5950-73, ГОСТ 2590-88, ГОСТ 2591-88.
  • Калиброванный пруток ГОСТ 5950-73, ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78.
  • Шлифованный пруток и серебрянка ГОСТ 5950-73, ГОСТ 14955-77.
  • Полоса ГОСТ 5950-73, ГОСТ 4405-75.
  • Поковка и кованая заготовка ГОСТ 5950-73, ГОСТ 1133-71.

Характеристики и применение [1, 2]

Согласно ГОСТ 5950-2000 сталь 9ХС относится к группе сталей используемой в основном для обработки металлов и других материалов в холодном состоянии. Также сталь 9ХС применяется для изготовления ответственных деталей, материал которых должен обладать повышенной износостойкостью, усталостной прочностью при изгибе, кручении, контактном нагружении, а также упругими свойствами, например:

  • сверла,
  • развертки,
  • метчики,
  • плашки,
  • гребенки,
  • фрезы,
  • машинные штампы,
  • клейма для холодных работ.

Сталь 9ХС является хромокремнистой сталью повышенной прокаливаемости. Сталь прокаливается в образцах диаметром до 40 мм при охлаждении в масле и до 25-30 мм при охлаждении в горячих средах.

Из-за влияния кремния она подобно стали ХВСГ сохраняет твердость ≤ 60 HRC после нагрева до 250-250°С.

Другие преимущества стали 9ХС:

Из-за отсутствия карбидной неоднородности сталь 9ХС используют для инструментов, рабочие грани которых расположены ближе к середине прутка (круглые плашки) и для некотопых штампов. Однако ее чаще заменяют сгалыо ХВСГ.

Применение стали 9ХС для изготовления инструментов [1]

Температура критических точек, °С

Химический состав, % (ГОСТ 5950-73)

C Si Mn Cr S P Ni Cu W Mo Ti V
не более
0,85-0,95 1,20-1,60 0,30-0,60 0,95-1,25 0,030 0,030 0,35 0,30 0,20 0,20 0,03 0,15

Химический состав, % (ГОСТ 5950-2000)

Массовая доля, %
C,
углерод
Si,
кремний
Mn,
марганец
Cr,
хром
W,
вольфрам
V,
ванадий
Mo,
молибден
Ni,
никель
0,85-0,95 1,20-1,60 0,30-0,60 0,95-1,25

Твердость HB (ГОСТ 5950-2000)

Марка
стали
Твердость
HB, не более
Диаметр
отпечатка,
мм не менее
9ХС 241 3,9

Твердость HRCэ(HRC) после закалки и закалки с отпуском (ГОСТ 5950-2000)

Твердость изделий из стали 9ХС в зависимости от температуры изотермической закалки и времени выдержки при закалке в расплавленной щелочи [1]

Марка
стали
Температура,
°C
и среда
закалки образцов
Температура
отпуска,
°C
Твердость
HRCэ(HRC)
не менее
9ХС 840-860, масло 63(62)

Технологический процесс изотермического отжига стали 9ХС [1]

Марки
стали
Первый
нагрев
Изотермическая
выдержка
Твердость
Температура,
°C
Выдержка
в час.
Температура,
°C
Выдержка
в час.
9ХС 790-810 1-2 700-720 3-4 197-241

Твердость стали 9ХС после изотермического отжига [2]

Марка
стали
Твердость HB Диаметр
отпечатка, мм
(при D=10 мм,
P=30000 H)
9ХС 196-241 3,9-4,3

Режим обработки стали 9ХС для получения структуры зернистого перлита [2]

Марка
стали
Температура, °C
нагрева изотермической
выдержки
9ХС 770-800 670-720

Температура рекристаллизационного отжига стали 9ХС [3]

Обработка
давление,
после
которой
выполняется
отжиг
Марка
стали
Температура
отжига, °C
Холодная
протяжка
(калибровка)
прутков
9ХС 730

Ориентировочные режимы термической обработки и твердость стали 9ХС [1]

Марка
Стали
Отжиг Закалка Отпуск
Температура
нагрева,
°C
Температура
нагрева,
°C
Охлаждающая
среда
Твердость
HRC
Температура
нагрева,
°C
Твердость
HRC
9ХС 790-810 850-880 Масло 65-61 150-200 64-63
200-300 63-59
300-400 59-54
400-500 54-47
500-600 47-39

Режим закалки стали 9ХС (высокой твердости) [2]

Марка
стали
Температура
закалки, °C
Твердость HRC
при охлаждении
в маслах и горячих средах *
9ХС 865-875 63-64

*Температура 160-180°C для стали 9ХС (повышенной прокаливаемости)

Твердость и толщина азотированного слоя стали 9ХС в зависимости от температуры закалки [2]

Марка
стали
Температура,
°C
Твердость HV Толщина
азотированного
слоя, мм
закалки отпуска
9ХС 875 200 590-630 0,07-0,08
  • Продолжительность процесса 3 часа
  • Температура азотирования 530°C

Твердость стали в зависимости от температуры отпуска

Примечание. Закалка с 840-860 °С в масле.

Температура закалки из межкритичной области и последующего отпуска для уменьшения деформации [2]

Марка
стали
Температура, °C Твердость
HRC
закалки * отпуска
9ХС 745-755 550-600 27-29
755-765 То же 23-25

*Охлаждение как при обычной закалке

Механические свойства

Термообработка Сечение,
мм
σ0,2,
МПа
σв,
МПа
ψ % KCU,
Дж/см 2
Твердость
НВ,
HRCэ
Изотермический отжиг
при 790-810 °С,
выдержка при 710 °С
295-390 590-690 50-60 НВ 197-241
Закалка с 870 °С в масле;
отпуск при:
180-240 °С До 40 78 59-63
450-500 °С* 1 До 30 46-50

* 1 Температура отпуска рекомендуется для цанг и других деталей пружинного типа, а также для нагруженных валов.

Сталь ШХ15 подшипниковая

Согласно ГОСТ 801-78 расшифровка стали марки ШХ15 следующая:

  • Буквой «Ш» в начале маркировки стали указывает, что сталь подшипниковая.
  • Буква «Х» указывает, что сталь легирована хромом.
  • Двухзначное число 15 указывает примерную массовую долю хрома в процентах, для стали ШХ15 примерная массовая доля хрома составляет 1,5%.

  • Сортовой прокат, в том числе фасонный по ГОСТ 801-78, ГОСТ 2590-88, ГОСТ 2591-88.
  • Калиброванный пруток ГОСТ 7417-75.
  • Шлифованный пруток и серебрянка ГОСТ 14955-77.
  • Полоса ГОСТ 103-76.
  • Проволока ГОСТ 4727-83.

Химический состав, % (ГОСТ 801-78)

C Mn Si Cr S P Ni Cu
не более
0,95-1,05 0,20-0,40 0,17-0,37 1,30-1,65 0,020 0,027 0,30 0,25

Характеристики и применение

Сталь ШХ15 применяется для изготовления деталей , от которых требуется высокая твердость, износостойкость и контактная прочность, например:

  • шарики диаметром до 150 мм,
  • ролики диаметром до 23 мм,
  • кольца подшипников с толщиной стенки до 14 мм,
  • втулки плунжеров,
  • плунжеры,
  • нагнетательные клапаны,
  • корпуса распылителей,
  • ролики толкателей

Сталь для производства подшипников качения поставляют:

  • для горячей штамповки деталей — неотожженной,
  • для холодной механической обработки — отожженной.

Применение стали ШХ15 для изготовления деталей подшипников

Марка ГОСТ или ТУ Профиль и вид поставки Применение
ШХ15 ГОСТ 801-60 Горячекатаная и
холоднотянутая
сортовая
сталь
Кольца, тела качения
ГОСТ 800-55 Трубы Кольца
ГОСТ 4727-67 Прутки Кольца, тела качения
ЧМТУ 1-992-70 Прутки Кольца, тела качения

Влияние азотирования на износостойкость стали ШХ15

Марка
стали
Твердость
поверхности HV
Путь
трения, км
Износ
образца, мг
неподвижного вращающегося
ШХ15 780 12,5 16 7,4

ПРИМЕЧАНИЕ. Вращающийся образец из стали ШХ15, которая в состоянии закалки и низкотемпературного отпуска имеет твердость HV780.

Твердость стали ШХ15 после высокочастотной закалки

Твердость после
закалки и
отпуска HRCэ
Достижимая
глубина
63-67 8

Температура нагрева стали ШХ15 для высокочастотной закалки

Марка
стали
Предварительная
термическая
обработка
Температура
нагрева, °C
в печи,
в масле
при высокочастотном
поверхностном нагреве
(охлаждение водянным душем)
и суммарном времени
аустенизации, с
10 3 1
ШХ15 Отжиг 830-850 890-930 920-960 940-980
Улучшение 830-850 850-870 880-920 900-940
Термообработка Сечение, мм σ0,2, МПа σв, МПа δ5, % ψ% KCU,
Дж/см 2
Твердость, не более
не менее
Отжиг при 800 °С,
охл. с печью до
730 °С, затем до
650 °С со скоростью
10-20 град/ч на воздухе
370-410 590-730 15-25 35-55 44 НВ 179-207
Закалка с 810°С в
воде до 200 °С,
затем в масле;
отпуск при 150 °С,
охл. на воздухе
30-60 1670 2160 5 HRCэ 62-65

Механические свойства в зависимости от температуры отпуска

tисп, °С σ0,2, МПа σв, МПа δ5, % ψ% KCU,
Дж/см 2
Твердость
HRCэ HB
Закалка с 840 °С в масле
200 1960-2200 2160-2550 61-63
300 1670-1760 2300-2450 56-58
400 1270-1370 1810-1910 50-52
450 1180-1270 1620-1710 46-48
Закалка с 860 °С в масле
400 1570 15 480
500 1030 1278 8 34 20 400
550 900 1080 8 36 24 360
600 780 930 10 40 34 325
650 690 780 16 48 54 280

Механические свойства в зависимости от температуры испытаний

tисп, °С σ0,2, МПа σв, МПа δ5, % ψ% KCU,
Дж/см 2
Нагрев при 1150 °С и охлаждение до температур испытаний
800 130 35 43
900 88 43 50
1000 59 42 50
1100 39 40 50
Образец диаметром 6 мм и длиной 30 мм, деформированный и отожженный.
Скорость деформирования 16 мм/мин; скорость деформации 0,009 1/с
1000 32 42 61 100
1050 28 48 62 100
1100 20 29 72 100
1150 17 25 61 100
1200 18 22 76 100
Закалка с 830 °С в масле; отпуск при 150 °С, 1,5 ч
25 2550 88
-25 2650 69
-40 2600 64

Предел выносливости при n=10 6

Термообработка Твердость НВ σ-1, МПа
Отжиг 192 333
Закалка с 830 °С; отпуск при 150 °С, охл. в масле 616 804

Теплостойкость

Технологические свойства

Температура ковки, °С: начала 1150, конца 800. Сечения до 250 мм охлаждаются на воздухе, сечения 251-350 мм — в яме.
Свариваемость — способ сварки КТС.
Обрабатываемость резанием — Кv тв.спл = 0,90 и Кv б.ст = 0,36 в горячекатаном состоянии при НВ 202 и σв=740 МПа.
Склонность к отпускной хрупкости — склонна.
Флокеночувствительность — чувствительна.
Шлифуемость — хорошая.

Нормы карбидной неоднородности в подшипниковой стали ШХ15

Сталь,
состояние поставки
Размер
профиля, мм
Баллы карбидной
неоднородности
(не более)
карбидной
полосчатости
карбидной
ликвации
ШХ15,
холоднотянутая
Все размеры 2,0 1,0
ШХ15,
горячекатаная
отожженная
Все размеры 3,0 2,0
ШХ15,
горячекатаная
неотожженная
Все размеры 4,0 3,0
ШХ15,
проволока
5,4
>12
2,0 0,5
1,0

Термообработка

Нагрев под закалку деталей подшипников из стали ШХ15 производят в электропечах сопротивления и соляных ваннах. Учитывая прокаливаемость стали (рис. ниже), устанавливают температуру нагрева 830-860°С для деталей из стали ШХ15 с сечением до 10 мм и свыше 10 мм 840-870°С.

Прокаливаемость стали ШХ15. Распределение твердости по сечению роликов разного диаметра

Величина действительного аустенитного зерна стали ШХ15 после закалки характеризуется кривыми на рис. ниже. Время нагрева зависит от вида оборудования, среды нагрева и толщины сечения.

Зависимость величина зерна аустенита в закаленной стали ШХ15 от исходной структуры и температуры закалки

Охлаждение колец производят в индустриальных маслах с температурой 30-60°С.

Перед отпуском детали должны быть охлаждены до температуры не выше 25°С. Отпуск деталей из стали ШХ15 производят при температуре 150-165°С.

Общую длительность отпуска устанавливают из расчета выдержки при температуре не менее 2 ч для деталей с сечением толщины стенки до 20 мм и 3 ч при сечении толщины стенки 20-50 мм. Содержание остаточного аустенита в сталях ШХ15 должно быть не более величин, указанных в таблице ниже.

Содержание остаточного аустенита в стали ШХ15 в зависимости от режимов термообработки

Процесс нитроцементации колец подшипников проводят в шахтных печах при температуре 860°С, продолжительность выдержки 2-4 ч, глубина нитроцементации при этом от 0,3 до 1,6 мм.

Микроструктура нитроцементованного слоя состоит из скрытокристаллического азотистого мартенсита с равномерно распределенными карбидами.

После нитроцементации значительно увеличивается объем стали ШХ15 по сравнению с объемом закаленной стали. Для компенсации этого увеличения предусматривается изменение припусков на шлифовку. Так, для колец подшипников диаметром от 50 до 200 мм по наружному диаметру уменьшают припуск на 0,1-0,15 мм, а по внутреннему диаметру увеличивают припуск также на 0,1-0,15 мм. Для колец диаметром менее 50 мм и шариков припуск не изменяется.

Инструментальная сталь 9ХС

Инструментальная сталь 9ХС – сплав, из которого создают некоторые строительные инструменты. Также из него делают режущие бытовые и промышленные заготовки. Готовые вещи обладают наивысшей прочностью, устойчивостью к износу и наделены хорошей упругостью. Особенности заключаются в компонентах, входящих в соединение: хром и кремний. Такие добавки придают железу прекрасные технические характеристики.

Сталь 9ХС

Требования и расшифровка маркировки

Любая вещь, поступающая на реализацию, обязана соответствовать государственным стандартам. Эти взыскания были придуманы в Советском Союзе для контроля качества продукции и регулировке технологий производства. И если на сталь 9ХС нанесена аббревиатура ГОСТ, то само государство даёт гарантию на то, что сей экземпляр обладает высшим сортом, и полностью безопасен в использовании.

Чтобы попасть в эту категорию, в химический состав слитка обязаны входить следующие элементы:

  • углерод (С) – 0,85-0,95%;
  • кремний (Si) – 1,2-1,6%;
  • марганец (Mn) – 0,3-0,6%;
  • никель (Ni) – не более 0,35%;
  • сера (S), фосфор (P), титан (Ti) – до 0,03%;
  • хром (Cr) – 0,95-1,25%;
  • молибден (Mo), вольфрам (W) – максимум 0,2%;
  • ванадий (V) – до 0,15%;
  • медь (Cu) – в пределах 0,3%;
  • железо (Fe) – около 94%.

Слиток имеет несколько видов поставки, например, 9ХС ГОСТ 5950-2000 распространяется на кованые прутья или мотки, которые предназначены для производства приборов, используемых в морозных условиях или при температуре свыше 300 °C.

Стандарт 2590-2006 относится к металлу круглого сечения, диаметр которого составляет 0,5-27см. Эксплуатируется подобная продукция в промышленной сфере. Классифицируется вещество по прокатке и длине. 7417-75 распространён на холодный или холоднокатаный металл с круглым сечением 0,3-10см. 8559-75 относится к квадратному калиброванному типу, с размером 3-100 мм. ГОСТ 8560-78 распространяется на шестигранные модели. Вся продукция может выпускаться в мотках с различной поверхностью и плоскостью. Тут всё зависит от пожеланий потребителя. Следует отметить, что при изготовлении разных сортов допускаются некоторые отклонения.

Расшифровка инструментальной стали говорит о её параметрах и качестве. Если разобрать эту разновидность, то первая цифра говорит о количестве углерода (0,9%). Символы ХС означают, что сплав содержит 1,5% хрома и кремния. Из этого можно сделать выводы, что заготовка относится к разряду легированных.

Основные свойства

В соединение листа входит хром, который даёт защиту от ржавчины. Однако для качественной защиты в предмете должно быть не меньше 1,3% вещества. Также инструментальная сталь 9ХС сочетает следующие характеристики:

  • во время отделки не образуются флокены;
  • можно проводить ковку при T=1180 °С;
  • не подходит для сварочных процедур;
  • равномерное распределение карбидов;
  • повышенная теплостойкость.

Свойства Ст9ХС

Такое сырьё отлично подходит для выпуска технических и бытовых лезвий.

В ходе создания применяют руду или утилизированный лом, которые собирают в большие контейнеры и переплавляют. В специальных жаровнях проходит нагрев, после которого все примеси всплывают на поверхность. Подобная методика позволяет получить железо в чистом облике. Далее специалист берёт пробы и добавляет кислород для ускорения процесса. Ну и на последнем этапе добавляются добавки, чтобы добиться необходимых результатов.

Аналоги создают таким же образом, однако, химические компоненты слитка будут немного отличаться.

Из данного металла часто делают ножи, и основные плюсы и минусы можно посмотреть на их примере:

  • Инструмент отличается большой упругостью и устойчивостью к изгибам, что позволяет применять его для нарезки древесины;
  • Режущие признаки лезвия сохранятся на долгий срок;
  • В отожжённом состоянии сплав имеет повышенный порог твёрдости, и его легко прокаливать;
  • Нож не боится высоких температур и завышенной влажности.

Нож из инструментальной стали 9ХС

Нож из инструментальной стали 9ХС

К недостаткам относятся только сложности изготовления: в ходе обработки металл ведёт себя очень капризно, и мастеру нужно постоянно следить за градусами в жаровне. Также состав предмета сильно варьируется, и это отражается на его конечных свойствах.

Особенности термообработки

Происходит это действие путём нагрева с последующим охлаждением, а его задача – получение необходимых атрибутов за счёт изменений во внутренней структуре. К такой операции прибегают на промежуточном либо конечном этапе работ, и с эксплуатацией специальной печи. Время нагрева играет ключевую роль, поскольку из составляющих удаляется углерод, отвечающий за твёрдость объекта.

Свойства 9хс при повышенных температурах

Свойства 9хс при повышенных температурах

Термообработка напрямую влияет на её прочность:

Главное знать, что после прогревания в печи сталь охлаждают в масле, а вещам будет присуща склонность к отпускной хрупкости. В других случаях пускают в дело криогенную обработку, которая ведётся при низких температурах.

Использование сплава

Применение 9ХС встречается в следующих случаях:

  1. Изготовка свёрл. Но применять их можно только для сверления отверстий на мягких объектах, преимущественно древесине. Поскольку инструмент негативно реагирует на высокую скорость вращения и перегрев, то и при работе с мягкой структурой рекомендуется регулировать частоту оборотов.
  2. Цилиндрические развёртки. Их используют для улучшения точности размера отверстий, и удаления шероховатостей. Приспособлением разрешено обрабатывать жерла в чугуне, сплавах со средней жёсткостью, при работе с цветным железом.
  3. Метчики. Они необходимы для нарезки внутренней резьбы, и представлены в образе винта с прямыми или винтовыми канавками. При работе рекомендуется беречь изделие от интенсивных нагрузок.
  4. Клейма для холодных работ. Их эксплуатация распространена на заводах для штамповки готовой продукции.

Все действия с данным материалом должны вестись строго по правилам. В противном случае изделие потеряет все свои положительные качества.

Читайте также: