Сталь по химическому составу
Сталь - это сплав железа и углерода с другими элементами, содержание углерода в нём не более 2,14%.
Наиболее общая характеристика - по химическому составу сталь различают:
углеродистую сталь (Fe – железо, C – углерод, Mn – марганец, Si — кремний, S – сера, P – фосфор). По содержанию углерода делится на низкоуглеродистую, среднеуглеродистую и высокоуглеродистую. Углеродистая сталь предназначена для статически нагруженного инструмента.
легированную сталь - добавляются легирующие элементы: азот, бор, алюминий, углерод, фосфор, кобальт, кремний, ванадий, медь, молибден, марганец, титан, цирконий, хром, вольфрам, никель, ниобий.
По способу производства и содержанию примесей сталь различается:
сталь обыкновенного качества ( углерода менее 0,6%) - соответствует ГОСТ 14637, ГОСТ 380-94. Ст0, Ст1, Ст2, Ст3, Ст4, Ст5,Ст6. Буквы «Ст» обозначают сталь обыкновенного качества, цифры указывают на номер маркировки в зависимости от механических свойств. Является наиболее дешёвой сталью, но уступает по другим качествам.
качественная сталь ( углеродистая или легированная ) - ГОСТ 1577, содержание углерода обозначается в сотых долях % - 08, 10, 25, 40, дополнительно может указываться степень раскисления и характер затвердевания. Качественная углеродистая сталь обладает высокой пластичностью и повышенной свариваемостью.
Низкоуглеродистые качественные конструкционные стали характеризуются невысокой прочностью и высокой пластичностью. Из листового проката стали 08, 10, 08кп изготавливают детали для холодной штамповки. Из сталей 15, 20 делают болты, винты, гайки, оси, крюки,шпильки и другие детали неответственного назначения.
Среднеуглеродистые качественные стали (ст 30, 35, 40, 45, 50, 55) используют после нормализации и поверхностной закалки для изготовления таких деталей, которые обладают высокой прочностью и вязкостью сердцевины (оси, винты, втулки и т. д.)
Стали 60 — стали 85 обладают высокой прочностью, износостойкостью, упругими свойствами. Из них изготавливают крановые колёса, прокатные валки, клапаны компрессоров, пружины, рессоры и т.д.
высококачественная — сложный химический состав с пониженным содержанием фосфора и серы — по ГОСТу 19281.
Также сталь делится по применению :
а) строительная сталь — углеродистая обыкновенного качества. Обладает отличной свариваемостью. Цифра обозначает условный номер состава стали по ГОСТу. Чем больше условный номер, тем больше содержание углерода, тем выше прочность стали и ниже пластичность.
Ст0-3 — для вторичных элементов конструкций и неответственных деталей (настилы, перила, подкладка,шайбы)
Ст3 используют для несущих и ненесущих элементов сварных и несварных конструкций и деталей, которые работают при положительных температурах. ГОСТ 380-88.
Стандартом качества предусмотрена сталь с повышенным количеством марганца (Ст3Гсп/пс, ст5Гсп/пс).
б) конструкционная сталь — ГОСТ 1050
Углеродистые качественные конструкционные стали используются в машиностроении, для сварных, болтовых конструкций, для кровельных работ, для изготовления рельсов, железнодорожных колёс, валов, шестерен и других деталей грузоподъёмников.Ц ифры в маркировке означают содержание углерода в десятых долях процента.
Ст20 — малонагруженные детали, такие как валики, копиры, упоры,
Ст35 — испытывающие небольшие напряжения (оси, тяги, рычаги, диски, траверсы, валы),
Ст45 (ст40Х) — требующие повышенной прочности (валы, муфты, оси, зубчатые рейки)
Конструкционные легированные стали используют для гусениц тракторов, изготовления пружин, рессор, осей, валов, автомобильных деталей, деталей турбин и др.
в) инструментальная сталь — применяется для режущего инструмента, быстрорежущая сталь для холодного и горячего деформирования материла, для измерительных инструментов, на производство молотков, долот, стамесок, резцов, свёрлов, напильников, бритв, рашпилей.
У7, У8А (цифра- десятые доли процента по содержанию углерода). Углеродистые стали выпускают качественными и высококачественными. Буква «А» означает высококачественную углеродистую инструментальную сталь.
г) легированная сталь — универсальная сталь, содержащая специальную примесь. Содержание кремния более 0,5%, марганца более 1%. ГОСТ 19281-89. Если содержание легирующего элемента превышает 1 - 1,5%, то оно указывается цифрой после соответствующей буквы.
низколегированная сталь — где легирующих элементов до 2,5% (09Г2С, 10ХСНД, 18ХГТ). Низколегированную сталь можно использовать в условиях крайнего севера, от -70 град С. Низколегированную сталь отличает большая прочность за счёт более высокого предела текучести,что важно для ответственных конструкций.
среднелегированная (2,5 -10%),
высоколегированная (от 10 до 50%)
Сталь 09Г2С применяется для паровых котлов, аппаратов и ёмкостей, работающих под давлением и температурой от минус 70, до плюс 450град; её используют для ответственных листовых сварных конструкций в химическом и нефтяном машиностроении, судостроении.
Сталь 10ХСНД используют для сварных конструкций химического машиностроения, фасонных профилей в сдостроении, вагоностроении.
18ХГТ применяют для деталей, работающих на больших скоростях при высоком давлении и ударных нагрузках.
д) сталь особого назначения — сталь с особыми физическими свойствами. Она применяется в электротехничсеской промышленности и точном судостроении.
На свариваемость стали влияет степень её раскисления. По степени раскисления сталь классифицируется:
спокойная сталь (ст3сп) — полностью раскисляется с минимальным содержанием шлаком и неметаллических примесей,
полуспокойная сталь (ст3пс) — по характеристикам качества схожа со спокойной сталью,
кипящая сталь (08кп) — неокисленная сталь с высоким содержанием неметаллических примесей. ГОСТ 1577.
В зависимости от нормируемых характеристик , сталь подразделяют на категории: 1, 2, 3, 4, 5. Категории обозначают химический состав, механические свойства при растяжении, ударную вязкость)
Например, категория 1 — химический состав не нормируемый, категория 3 — нормируется ударная вязкость при температуре +20. Для марки ст0 не нормируется ни химический состав, ни предел текучести.
Классификация стали по химическому составу
По химическому составу сталь подразделяют на углеродистую и легированную. Углеродистые стали разделяют по содержанию углерода на:
· малоуглеродистые: менее 0,3 % углерода;
· среднеуглеродистые: 0,3-0,7 % углерода;
· высокоуглеродистые: более 0,7 % углерода.
Легированные стали разделяют по общему содержанию легирующих элементов на:
· низколегированные: менее 2,5 %;
· высокоуглеродистые: более 10,0%.
Классификация стали по способу производства и качеству (содержанию вредных примесей) К вредным примесям в сталях относят серу S и фосфор P.
В зависимости от их содержания стали разделяют на:
· стали обыкновенного качества (рядовые): до 0,06% S, до 0,07% P;
· качественные стали: до 0,04% S, до 0,035% P;
· особовысококачественные стали: до 0,015% S, до 0,025% P.
· Сталь обыкновенного качества (или рядовая сталь) выплавляется чаще всего в больших мартеновских печах, конвертерах и разливается в сравнительно крупные слитки Способ изготовления во многом предопределяет состав, строение и свойства этой стали. Стали высококачественные выплавляются преимущественно в электропечах, Классификация стали по назначению
· Конструкционные стали принято делить на строительные, для холодной штамповки, цементируемые, улучшаемые, высокопрочные, рессорно-пружинные, шарикоподшипниковые, автоматные, коррозионно-стойкие, жаростойкие, жаропрочные, изно-состойкие стали.
· К строительным сталям относятся углеродистые стали обыкновенного качества, а также низколегированные стали. Основное требование к строительным сталям - их хорошая свариваемость.
· Для холодной штамповки применяют листовой прокат из низкоуглеродистых качественных
· Цементируемые стали применяют для изготовления деталей, работающих в условиях поверхностного износа и испытывающих при этом динамические нагрузки.
· Высокопрочные стали - это стали, у которых подбором химического состава и термической обработкой достигается предел прочности примерно вдвое больший, чем у обычных конструкционных сталей. Такой уровень прочности можно получить в среднеуглеродистых легированных сталях
· Пружинные (рессорно-пружинные) стали сохраняют в течение длительного времени упругие свойства, поскольку имеют высокий предел упругости, высокое сопротивление разрушению и усталости. К пружинным относятся углеродистые стали (65, 70) и стали, легированные элементами, которые повышают предел упругости - кремни-ем, марганцем, хромом, вольфрамом, ванадием
· Подшипниковые (шарикоподшипниковые) стали имеют высокую прочность, износоустойчивость, выносливость. К подшипниковым предъявляют повышенные требования на отсутствие различных включений, макро- и микропористости. Обычно шарикоподшипниковые стали характеризуются высоким содержанием углерода (около 1%) и наличием хрома
· Износостойкие стали применяют для деталей, работающих в условиях абразивного трения, высокого давления и ударов (крестовины железнодорожных путей, траки гусеничных машин, щеки дробилок, черпаки землеройных машин, ковши экскаваторов и др.).
· Коррозионностойкие стали и сплавы классифицируют в зависимости от агрессивности среды, в которой они используются, и по их основному потребительскому свойству на собственно коррозионно-стойкие, жаростойкие, жаропрочные
· Изделия из собственно коррозионностойких сталей (лопатки турбин, клапаны гидравлических прессов, пружины, карбюраторные иглы, диски, валы, трубы и др.) работают при температуре эксплуатации до 550°С.
· Жаропрочные стали способны работать в нагруженном состоянии при высоких температурах в течение определенного времени и при этом обладают достаточной жаростойкостью. Данные стали и сплавы применяются для изготовления труб, клапанных, паро- и газотурбинных деталей (роторы, лопатки, диски и др.).
· Жаростойкие (окалиностойкие) стали обладают стойкостью против химического разрушения поверхности в газовых средах, в том числе серосодержащих, при температурах +550-1200°С в воздухе, печных газах.
· Инструментальные стали по назначению делят на стали для режущих, измерительных инструментов, штамповые стали.
· Стали для режущих инструментов должны быть способными сохранять высокую твердость и режущую способность продолжительное время, том числе и при нагреве. В качестве сталей для режущих инструментов применяют углеродистые, легированные инструментальные, быстрорежущие стали.
· Штамповые стали обладают высокой твердостью и износостойкостью, прокаливаемостью и теплостойкостью.
Билет 26 Цветные металлы в чистом виде обычно применяются редко, чаще используют различные сплавы. Из числа сплавов цветных металлов в машиностроении наибольшее значение имеют легкие сплавы – алюминия, магния и титана, а также медь и ее сплавы, сплавы на основе никеля, сплавы для подшипников (баббиты), материалы для полупроводников и высокопрочные сплавы на основе тугоплавких металлов.
АЛЮМИНИЙ Для алюминия и его сплавов характерна большая удельная прочность, близкая к значениям для среднелегированных сталей. алюминий и его сплавы хорошо поддаются горячей и холодной деформациям, точечной сварке, а специальные сплавы можно сваривать плавлением и другими видами сварки. Чистый алюминий хорошо сопротивляется коррозии, так как на его поверхности образуется плотная пленка оксидов Al2O3. Добавки железа и кремния повышают прочность алюминия, но снижают пластичность и устойчивость против коррозии. Чистый алюминий применяется для кабелей и электропроводящих деталей, но в основ-ном алюминий используется для изготов-ления сплавов.
МАГНИЙ Малая плотность магния и его сплавов в сочетании с высокой удельной прочностью и рядом физико-химических свойств делает их ценными для применения в различных областях машиностроения: автомобильной, приборостроении, самолетостроении, космической, радиотехнике и других. В горячем состоянии магниевые сплавы хорошо поддаются различным видам обработки давлением – прессованию, ковке, прокатке.
ТИТАН Титан обладает высокими механическими свойствами, высокой удельной прочностью при комнатных и криогенных температурах, а также хорошей коррозионной стойкостью Механические свойства титана сильно зависят от содержания примесей. Так небольшие количества кислорода, азота и углерода повышают твердость и прочность, но при этом значительно уменьшаются пластичность и коррозионная стойкость, ухудшается свариваемость и штампуемость. Особенно вреден водород, который образует по границам зерен тонкие пла-стины гидридов, сильно охрупчивающих металл. Для особо ответственных деталей применяют наиболее чистый титан.
МЕДЬ Наиболее характерными свойствами чистой меди являются высокие значения электропроводности, теплопроводности и стойкость против атмосферной коррозии. В связи с высокой пластичностью чистая медь хорошо деформируется в горячем и холодном состояниях. В процессе холодной деформации медь наклепывается и упрочняется; восстановление пластичности достигается рекристаллизационным отжигом при 500…600ºС в восстановительной атмо-сфере, так как медь легко окисляется при нагреве. Чистая медь применяется для проводников электрического тока, различных теплообменников, водоохлаждаемых изложниц, поддонов, кристаллизаторов. Чистая медь имеет низкую прочность и жидкотекучесть, плохо обрабатывается резанием, поэтому более широкое применение нашли сплавы на ее основе. При сохранении высоких показателей электро- и теплопроводности коррозионной стойкости сплавы меди обладают хорошими механическими, технологическими и антифрикционными свойствами. Для легирования меди в основном применяют цинк, олово, алюминий, бериллий, кремний, марганец и никель. Повышая прочность сплавов, эти легирующие элементы практически не снижают пластичность, цинк, олово, алюминий даже увеличивают ее.
ЛАТУНЬ Латунями называют медноцинковые сплавы. При дополнительном введении в сплав добавок алюминия, свинца, олова, кремния и других элементов получают специальные латуни. Практическое применение находят латуни, содержание цинка в которых не превышает 49%. При более высокой концентрации цинка значительно ухудшается механические свойства сплава.
БРОНЗА Хуй знает че с этой бронзой, обозначается он буквами "Бр" вот и все, что можно объяснить доступным языком, а химические формулы и заумные слова тольео похоронят тебя на экзамене. Вот такие дела удачи )
Билет 35 Пластмассы
Пластмассы - искусственные материалы. Обязательным компонентом является связка. В качестве связки используются: синтетические смолы; эфиры, целлюлоза. Некоторые пластмассы состоят только из одной связки (полиэтилен, фторопласты, органическое стекло). Вторым компонентом является наполнитель (порошкообразные, волокнистые, сетчатые вещества органического или неорганического происхождения). Наполнители повышают механические свойства, снижают усадку при прессовании полуфабриката, придают материалу необходимые свойства. Для повышения эластичности и облегчения обработки в пластмассу добавляют пластификаторы (олеиновая кислота, стеарин, дибутилфторат . ). Исходная композиция может содержать: отвердители (амины); катализаторы (перекиси) процесса отвердения; красители. Основой классификации пластмасс служит химический состав полимера: По характеру связующего вещества, различают термопластичные (термопласты) и термореактивные пластмассы. Термопласты получают на основе термопластичных полимеров. Они удобны для переработки (при нагревании пластифицируются), имеют низкую объемную усадку (не более 4%), отличаются большой упругостью, малой хрупкостью. Термореактивные пластмассы после отверждения и перехода в термостабильное состояние отличаются хрупкостью, могут дать усадку до 15%. Поэтому в состав этих пластмасс вводят усиливающие наполнители.
По виду наполнителя, различают пластмассы: порошковые (карболиты) - с наполнителем в виде древесной муки, графита, талька . Волокнистые - с наполнителем из: очесов хлопка и льна (волокниты); стеклянных нитей (стекловолокниты); асбеста (асбоволокниты). Слоистые - с листовым наполнителем: бумажные листы (гетинакс); хлопчатобумажные ткани, стеклоткани, асбестовые ткани (текстолит, стеклотекстолит, асботекстолит). Г азонаполненные - с воздушным наполнителем (пенопласты, поропласты). Особенностями пластмасс являются: малая плотность; низкая теплопроводность; большое тепловое расширение; хорошие электроизоляционные свойства; высокая химическая стойкость; хорошие технологические свойства
Билет 27 Паянием называют процесс, жесткого соединения металлических деталей путем расплавления присадочного материала припоя, имеющего температуру плавления более низкую, чем температура плавления основного металла. Соединение с помощью припоя основано на взаимном растворении и диффузии основного металла и припоя. Такой процесс протекает наиболее благоприятно, если основной металл и припой имеют химическое и физическое сродство. Прочность соединения припоем зависит от величины поверхностей, соединяемых пайкой, чистоты этих поверхностей, зазора между дета-лями, структуры образовавшегося паечного шва, а затем и устойчивости к коррозии основного сплава и припоя.Уменьшение линейных размеров изделия особенно заметно при соединении нескольких деталей, когда суммарная усадка припоя в паечных швах может достигать размеров, при которых конструкция оказывается заметно укороченной и часто непригодной. Поверхность металлов, соединяемых пайкой, необходимо тщательно очистить от окислов и загрязнений, препятствующих процессу диффузии и растворению металлов. Флюс. Он защищает спаиваемые поверхности и очищает их от окислов, препятствующих диффузии припоя в основной металл. Спаиваемый металл с припоем может давать ,различные виды соединений: твердый раствор, химическое соединение, механическая смесь. Лучшим видом спайки является такая, при которой формируется структура припоя типа твердого раствора. Она происходит между металлами, обладающими наибольшим физико-химическим сродством. Примером может быть паяние меди латунью, золота— золотыми припоями. Структуры типа химического соединения (паяние меди оловом) и механической смеси (паяние стали золотом) не обеспечивают высокой прочности и антикоррозийной устойчивости.
1) Подготовка поверхности (очистка от жиров и прочей хуетни)
2) Выравнивание (подгонка по поверхности)
3) Защита места пайки флюсом.
4) Лужение (покрытие тонким слоем частей спаиваемых)
5) Прогревание до плавления
8) Очистка пайного шва от излишковприпоя флюса и др.
Твердая плавка(медь железо) очень близки к латунным Для пайки твердого припоя с температурой плавления 1000градусов используют гранники (пояльники с открытым пламенем) Флюсы применяют на основе борной кислоты и ее соли
Билет 28 28 . Мартеновский способ производства стали
Мартеновское производство возникло в 1864 г., когда П.Мартен построил первую регенеративную (использующую теплоту отходящих газов) печь, давшую годную литую сталь из твердой шихты. В России первая мартеновская печь была построена в 1869 г. А.А.Износковым на Сормовском заводе. Вплоть до 90-х годов мартеновские печи использовались для производства стали лишь с завалкой твердой шихты и работали по так называемому скрап-процессу. Разработка технологии рудного процесса на жидком чугуне была осуществлена в Украине братьями А.М. и Ю.М.Горяиновыми; они же внедрили плавку по этой технологии в 1894 г. на Александровском заводе в Екатеринославле (ныне Днепропетровский завод им. Г. И. Петровского). В мартеновской печи осуществляется передел загруженной в нее шихты: твердого или жидкого чугуна, стального и чугунного лома с использованием железной руды, окалины, кислорода, флюсов и ферросплавов — в сталь заданного состава, при этом получается побочный продукт плавки — мартеновский шлак. Мартеновская печь
Верхняя часть мартеновской печи (рис. 1) состоит из рабочего пространства (ограниченного ванной4, передней стеной 9, задней стеной 8, сводом 5 ) и головок, расположенных с обоих концов рабочего пространства. В передней стене находятся загрузочные окна 6, через которые с рабочей площадки загружается шихта, берутся пробы и ведется наблюдение за плавкой. Подина печи имеет наклон к задней стене, в которой находится отверстие для выпуска готовой стали, разделываемое перед выпуском. Через каналы 1, 2, 3 и 7 головок подается газ (топливо) и окислительное дутье и отводятся продукты горения. Нижняя часть печи состоит из двух пар шлаковиков, двух пар регенераторов, подземных каналов с перекидными клапанами и дымового борова, соединенного с дымовой трубой или котлом — утилизатором. Шлаковики и регенераторы расположены попарно и симметрично по обе стороны печи. Сечение через воздушный шлаковик 11 и газовый шлаковик 10 сделано в одной плоскости с сечением рабочего пространства, а сечение через воздушный регенератор 12 и газовый регенератор 13 — в другой плоскости: шлаковики находятся под головками, а регенераторы под рабочей площадкой. Регенераторы служат для нагрева воздуха и горючего газа, поступающих в рабочее пространство при температуре 1000—1150°. Необходимость нагрева вызвана тем, что в рабочем пространстве должна быть обеспечена температура до 1700° и более, если же предварительного нагрева дутья и газа не производить, то температура в печи будет недостаточна для нагрева и последующего плавления мягкой стали. Камеры регенераторов заполнены насадкой в виде решетчатой кладки из огнеупорного кирпича. Регенераторы работают попарно и попеременно: в то время как одна пара нагревает дутье и газ, другая аккумулирует (запасает) теплоту отходящих продуктов горения; по охлаждении регенераторов до нижнего предела либо по достижении верхнего предела нагрева регенераторов, аккумулирующих теплоту, происходит перемена направления движения газов посредством перекидки клапанов. Шлаковики расположены между головками и регенераторами; они служат для собирания пыли и капель шлака, которые выносятся продуктами горения. Для нагрева мартеновских печей, работающих на машиностроительных заводах, применяется также жидкое топливо (мазут). Мазут в рабочее пространство вводится с помощью форсунки и распыляется струей воздуха или пара под давлением 5—8ати. Печи, работающие на мазуте, оборудуются только двумя регенераторами (и соответственно двумя шлаковиками) для подогрева окислительного дутья по одному с каждой стороны. Мартеновские процессы и печи разделяют на основные и кислые в зависимости от характера процесса и, соответственно, материала футеровки подины и стен. Плавка стали на шихте, содержащей фосфор и серу в количестве, превышающем допустимое в готовой стали, производится основным процессом, т.е. под основным шлаком и в печах с основной футеровкой. Ванна основных печей футеруется обожженным доломитом или магнезитом. Для кладки свода рабочего пространства, головок и стен шлаковиков применяют магнезитохромитовый кирпич, имеющий высокую стойкость. В небольших печах, а также при отсутствии магнезитохромитового кирпича, свод печей делается из динасового кирпича. Для плавки стали под кислым шлаком применяются кислые печи с футеровкой из динасового кирпича и кварцевого песка. Помимо стационарных мартеновских печей, применяются также качающиеся мартеновские печи. Верхняя часть качающейся печи опирается на систему роликов. Между торцовыми стенками рабочего пространства и головками имеются небольшие щели, обеспечивающие возможность поворота корпуса печи. Посредством поворотного механизма осуществляется наклон до 15° в сторону рабочей площадки для скачивания шлака, или на 30—33° в сторону выпускного отверстия для выпуска стали. Продолжительность службы мартеновской печи (ее кампания) определяется числом плавок, выдерживаемых сводом рабочего пространства; она составляет обычно для печей с динасовым сводом 250— 300 плавок (при большой емкости) или 400—500 плавок (при малой и средней емкости), а для печей с хромомагнезитовым сводом 700 и более плавок. В мартеновских печах выплавляют углеродистую конструкционную сталь, а также легированную сталь различных марок.
Классификация сталей
Стали классифицируют по химическому составу, способу производства, назначению, качеству, степени раскисления, структуре (рис. 5.3).
По химическому составу стали классифицируют на углеродистые и легированные. Углеродистые стали разделяются на низкоуглеродистые (до 0,25 % С), среднеуглеродистые (0,3. 0,6 % С) и высокоуглеродистые (более 0,6 % С). Легированные стали по содержанию легирующих элементов делятся на низколегированные (до 2,5 %), среднелёгиро-ванные (2,5. 10 %) и высоколегированные (более 10 %). По преобладающему легирующему элементу легированные стали подразделяются на хромистые, марганцовистые, хромоникелевые, хромомарганцево-ванадиевые и др.
Рис. 5.3. Классификация сталей
По способу производства различают конверторные, мартеновские, электростали и стали особых методов выплавки.
По назначению стали классифицируют на конструкционные, инструментальные, строительные и стали специального назначения с особыми свойствами. ■
По качеству различают стали обыкновенного качества, качественные, высококачественные и оёобо высококачественные. Качество стали зависит от количества вредных примесей, преимущественно серы и фосфора. Содержание этих элементов в сталях различного качества приведено в табл. 5.1. - ■ ■
Качество углеродистой стали отражается в маркировке. Стали обыкновенного качества маркируют буквами Ст (например, СтЗ). В конце маркировки высококачественных сталей ставится буква А (например, У12А). Отсутствие букв Ст в начале и буквы А в конце маркировки означает, что углеродистая сталь является качественной (45, У12 их д.). Все легированные стали производят, как минимум, качественными.
Содержание серы и фосфора в сталях разного качества, %
Стали | S | Р |
Обыкновенного качества | 0,04. 0,06 | 0,04. 0,08 |
Качественные | 0,03. 0,04 | 0,03. 0,04 |
Высококачественные | 0,03 | 0,025. 0,03 |
Особо высококачественные | До 0,015 | 0,015 |
Для производства особо высококачественных сталей применяют специальные виды улучшающей обработки, которые могут быть указаны в марках сталей: ВИ (ВИП) - переплав в вакуумных индукционных печах; Ш (ЭШП) - электрошлаковый переплав; ВД (ВДП) - переплав в вакуумных дуговых печах; ШД - вакуумно-дуговой переплав стали после электрошлакового переплава; ОДП - обычная дуговая плавка; ПДП - плазменно-дуговая плавка.
По степени раскисления различают спокойную сталь, которая раскислена марганцем, кремнием и алюминием; полуспокойную - марганцем и алюминием и кипящую - марганцем. Кипящая сталь уступает по качеству спокойной, так как содержит больше кислорода.
По структуре в равновесном состоянии стали классифицируют на доэвтектоидные, эвтектоидные, заэвтектоидные (перлитного класса), ледебуритные, аустенитные и ферритные. По структуре в неравновесном состоянии после охлаждения на воздухе - на перлитные,, мартенситные vi аустенитные.
В ГОСТах на стали принята следующая система для обозначения марок сталей. Обозначения состоят из комбинации цифр и букв.
Первые цифры в маркировке указывают на содержание углерода в стали: если число однозначное - в десятых долях процента, если двузначное - в сотых долях процента. В случае, когда первые цифры (цифра) отсутствуют, углерода в стали не менее 1 % (например Х12, Х6ВФ).
Для обозначения легирующих элементов, входящих в состав стали, каждому из них присвоена своя буква: Ni - Н, Си - Д, N - А, Сг-Х, В-Р, Р-П, Со-К, Nb-Б, Мо-М, Zr-Ц, Ti - Т, Мп - Г, Si - С, V - Ф, W - В, А1 - Ю. Для указания количества легирующего элемента в составе стали после соответствующей буквы в марке ставится число, равное процентному содержанию элемента. Если числа нет, то содержание элемента меньше 1. 1,5 % (например, 5ХЗВЗМФС).
Степень раскисления стали обозначается буквами в конце маркировки стали: сп - спокойная; пс - полуспокойная; к - кипящая.
Помимо указанных, для некоторых сталей употребляются специальные условные обозначения. Например, обозначение быстрорежущих сталей начинается с буквы Р, цифры за которой показывают содержание вольфрама в процентах (Р18, Р6М5К5); шарикоподшипниковых сталей - с буквы Ш (ШХ9, ШХ15СГ), где цифры (9 и 15) указывают на содержание хрома в стали в десятых долях процента.
Материаловедение: сталь
Что такое сталь? Каковы плотность, температура плавления и другие характеристики стали? В чем роль стального проката в производстве, и как объяснить неуклонный рост цен на сталь в последние годы? Обо всем этом и не только – в нашей новой статье.
Сталь – сплав железа (Fe) с углеродом (C). При этом доля углерода в составе мала: до 2,14% в теории и обычно не более 1,5% на практике. Как и в любых других сплавах, в сталях всегда присутствуют примеси (сера, фосфор, кремний), а для улучшения свойств могут вводиться легирующие элементы.
В силу высокой прочности, жесткости, а также из-за дешевизны сталь используется повсеместно и считается ключевым продуктом черной металлургии. Что важно в свете «зеленых» трендов: сталь можно перерабатывать практически бесконечно. По данным Всемирной ассоциации стали, 75% стальных изделий, выпущенных с момента появления мартеновской плавильной печи в 1864 году, до сих пор в обиходе.
Эти железосодержащие сплавы похожи и по составу, и способом получения. Принципиальное различие в доле углерода. Если его меньше 2,14% от состава, то это сталь; если больше – чугун. Во многом отсюда и разница в свойствах. Так, сталь легче в обработке, тверже и прочнее, ее не разбить ударом. Чугун же хрупче, тяжелее, но более теплоемкий (дольше держит тепло) и в отличие от стали подходит для литья, в том числе художественного. Отметим также, что чугун часто используется для передела в сталь.
Отметим, что у стали высокая температура плавления – это не ЦАМ, не свинец и уж тем более не олово, которые можно плавить у себя на кухне. Сами по себе стальные изделия увесистые – в 2,5 раза тяжелее аналогичных алюминиевых (плотность сплавов алюминия – 2400-2900 кг/м³). Ну и очевидное: все черные стали реагируют на магнит. Причем чем меньше в них углерода, тем лучше магнитные свойства.
Все знают: железо и его сплавы ржавеют. Сталь не исключение. Главная причина появления ржавчины – повреждение оксидной пленки. У тех же алюминия, хрома и никеля она тонкая, но плотная и прочная – настолько, что атомы кислорода не в состоянии диффундировать через нее. У сталей же оксидная пленка хоть и плотная, но непрочная и в любых условиях быстро растрескивается.
Для предотвращения окисления и развития ржавчины сталь покрывают химическим способом – например, оцинковкой, погружая заготовку в бак с расплавленным цинком. В этом случае молекулы цинка реагируют с молекулами железа, и на поверхности образуется защитный слой. Для закрепления эффекта его покрывают дополнительными слоями цинка. Идея способа основана на том, что отрицательный потенциал цинка выше, чем у железа, и в такой паре железо будет восстанавливаться, а цинк отважно послужит щитом для коррозии.
Чтобы металлические конструкции не ржавели, применяют стали, легированные хромом (12-20%) и некоторыми другими металлами, такими как никель, титан и молибден. Защита от ржавчины здесь заключается в формировании инертного слоя оксида хрома, способного к самовосстановлению.
Сразу развеем расхожий миф, что нержавеющая сталь якобы не магнитится. По факту это справедливо для хромникелевых и хромомарганцевоникелевых сталей, к которым относится всем известная пищевая нержавейка. В то же время техническая нержавеющая сталь, из которой делают клапаны, фитинги и трубы, на магнит вполне себе реагирует.
Впрочем, термообработка не ограничена одной закалкой. Есть еще как минимум отжиг, нормализация и отпуск. Отжигу сталь подвергают для улучшения обработки (принося в жертву твердость); нормализации – для выравнивания структуры и устранения зернистости. Отпуск нужен для снятия внутренних напряжений и снижения хрупкости (пусть, опять же, и в ущерб твердости). Отметим, что отпуск выполняется после закалки и считается важным этапом термообработки, тогда как без отжига и нормализации зачастую можно обойтись.
В любой марке стали есть примеси, пусть и в микроскопическом количестве. Некоторые, такие как кремний, даже улучшают свойства сплава. Однако вредных примесей больше; среди них сера, фосфор, а также газы: кислород, азот и водород.
• Хром (Cr). Придает износостойкость, способность к закаливанию и устойчивость к коррозии. Стали с содержанием хрома от 12% относят к нержавеющим.
• Марганец (Mn). Может присутствовать в виде примесей. Дополнительная присадка марганца улучшает прокаливаемость стали и нивелирует вредное воздействие серы.
• Молибден (Mo). Одна из главных упрочняющих легирующих добавок в жаропрочных сталях. Доля в составе незначительна: 0,15-0,8%.
• Ванадий (V). С ним сталь становится прочнее и устойчивее к износу. Содержание: 1,0-1,5% в штамповых сталях, 0,2-0,8% в специальных.
Содержат только железо, углерод и примеси. Определяющий элемент – углерод: чем его больше, тем сталь жестче и тверже. Чем меньше – тем сталь пластичней, ударопрочней, удобнее в обработке и сварке.
Легированные – это стали, которые кроме основных компонентов и примесей содержат специально вводимые легирующие добавки. По типу легирования такие стали подразделяют на хромистые, марганцовистые, хромоникелевые, хромо-никель-кремний-марганцовистые и др. По доле легирующих элементов в составе – на низко- (<5% С), средне- (5-10% C) и высоколегированные (>10% C).5%>
Качество стали определяется спецификой производственных процессов, перерабатываемым сырьем, видом плавки и другими факторами. Все это, в свою очередь, напрямую зависит от состава сплава и содержания в нем примесей.
Стали обыкновенного качества. Рядовые углеродистые стали, где углерода менее 0,6%, серы – в диапазоне 0,045-0,060%, фосфора – 0,04-0,07%. Являясь самыми дешевыми, такие стали уступают сталям остальных классов по всем ключевым свойствам.
Качественные стали. Могут быть углеродистыми (марки 08, 10, 15…) или легированными (0,8кп, 10пс…). Нормативы по примесям: серы – не более 0,04%, фосфора – 0,035-0,04%.
Высококачественные стали. Углеродистые или легированные. Содержание примесей: серы – не более 0,02%, фосфора – не более 0,03%. Примеры марок: стали 20А, 15Х2МА.
Особовысококачественные стали. Эти стали только легированные и содержат не более 0,015% серы и не более 0,025% фосфора. Примеры марок: 20ХГНТР-Ш, 18ХГ-Ш.
Идут на изготовление сварных строительных конструкций, узлов механизмов, деталей машин. Могут быть углеродистыми или легированными. Примеры марок: Ст1, Ст2, Ст3; 05, 10, 15; 15Г, 20Х, 45 ХН и др.
Из них делают режущие и ударные инструменты – от лезвия топора и губок плоскогубцев до напильника и сверла. Само собой, такие стали должны быть твердыми, поэтому содержание углерода в них не менее 0,7%. Примеры марок: У7, У8ГА, У10А (У – углеродистая; число – усредненное содержание углерода, выраженное в десятых долях процента; Г – повышенное содержание марганца; А – высококачественная сталь).
По большому счету, это те же конструкционные стали, но со специфическим составом, особым способом производства или обработки. Нержавеющие, жаропрочные, электротехнические, кислотостойкие стали – все они относятся к специальным.
Речь о том, сколько кислорода было выведено из жидкого металла при производстве стали и сколько его по итогу осталось. В целом: чем меньше в сплаве остается кислорода, тем чище состав и однородней структура.
Кипящие стали (кп). Раскисляются только марганцем. Обычно это низкоуглеродистые стали с большим количеством оксидов углерода – отсюда просадка в прочности и пластичности. Как следствие, кипящие стали склонны к разрушению, растрескиванию, плохо свариваются и поэтому идут в ход лишь в простых конструкциях. Из плюсов: кипящая сталь самая дешевая.
Спокойные стали (сп). Раскисляются в плавильных печах и ковшах алюминием, марганцем, кремнием. В отличие от кипящих, спокойные стали стабильны: содержат мало остаточного кислорода и затвердевают спокойно, без выделения газообразных примесей. Применение: конструкции ответственного назначения.
Полуспокойные стали (псп). Частично насыщенные кислородом стали, раскисляемые марганцем и алюминием. Всегда углеродистые. Среднепрочные, применяются в строительстве.
Нет более неудобного вопроса, чем «сколько стоит сталь»? Во-первых, какая и где – на бирже или у местных трейдеров металлопроката? Во-вторых, эта статья написана в марте 2022 года, когда экономику России (да и других стран мира) засосало в турбулентную фазу. Мы можем лишь констатировать, что в ближайшие год-два стоимость стали будет расти. Причем расти кратно, если сравнивать с допандемийным уровнем. Связано это с несколькими причинами:
• Первая волна коронавируса, во время которой приостанавливался сбор лома и ограничивалась работа сталеплавильных заводов. К осени 2020 года из-за лавины отложенного спроса и промедления трейдеров это привело к общемировому дефициту стали.
• Конфликт России с Украиной, последующие санкции, разрыв производственных и логистических цепочек. Это уже ускорило девальвацию рубля, а в перспективе может привести и к гиперинфляции, если конфликт окажется затяжным.
• Зеленые тренды в соответствии с определенными ООН целями в области устойчивого развития (ЦУР). Страны, включая мировую фабрику под названием Китай, уже сокращают выплавку стали ради снижения углеродного следа. Это в каком-то смысле парадоксально, ведь именно сталь – один из важнейших материалов для производства ветрогенераторов и электрокаров, так агрессивно насаждаемых на Западе.
В России фурнитуру для входных и межкомнатных дверей производят по большей части из низкоуглеродистой конструкционной стали. Одна из самых ходовых марок – Ст3 и ее аналоги. Из ее листов изготавливают дверные петли, корпуса и планки замков, розетки дверных ручек, задвижки и, например, крепеж. Подчеркнем: мы говорим о видимых элементах конструкции. Для тех же петельных подшипников есть инструментальные подшипниковые стали (например, ШХ-15). Для возвратных пружин в ручках и замках – средне- и высокоуглеродистая пружинная сталь.
(+) Прочность и антивандальность. Сталь крепче цветных металлов вроде алюминия, латуни и ЦАМ и дольше пилится. Вспомните корпуса гаражных навесных замков – там сплошь и рядом либо сталь, либо чугун.
(+) Дешевизна. Просто приценитесь, сколько стоят стальные дверные петли, а сколько – аналогичные по размерам латунные. Подсказка: первые дешевле в 3-5 раз.
(+) Магнитные свойства. Благодаря этому мы имеем счастье пользоваться такими чудесами инженерной мысли, как магнитные защелки и магнитные дверные стопоры.
(-) Низкие литейные качества. Снова обратимся к дверным петлям. В то время как латунные петли получают литьем под давлением, стальные – гибкой и штамповкой. Отсюда «побочные эффекты»: заметные швы и стыки, зазоры от 2 мм, неровные края, несоразмерность.
(-) Коррозия. Антикоррозийное покрытие рано или поздно повредится, и изделие начнет ржаветь. Кто-то возразит: но как же, есть же, скажем, дверные ручки из нержавеющей стали. А мы и не спорим. Но именно в России в частном секторе они не в ходу из-за дороговизны и ограниченности дизайна, продиктованной опять же низкими литейными качествами.
(-) Вес. Если вы подбираете небольшой и удобный в переноске навесной замок для багажа или противоугонного троса, то, возможно, есть смысл предпочесть алюминий. При одинаковых габаритах алюминиевый замок окажется в 2,5 раза легче стального. Тем более что упрочнение тела замка в данном случае неоправданно: в маленьких замках куда проще перекусить дужку, чем водить пилой по корпусу.
Расшифровка маркировок сталей, правила обозначения
Сталь является самым распространенным сплавом. Разнообразие областей применения обуславливает большое количество разновидностей с различными требованиями, как по механическим, так и химическим характеристикам стали. Различные марки стали подразумевают не только разнообразие химического состава, но и технологию изготовления.
В основе многообразия сплавов лежит именно химический состав металла, поскольку легирующие компоненты определяют конечный результат, а технология изготовления и обработки лишь подчеркивает и выделяет отдельные характеристики. Некоторые элементы, входящие в состав, могут ухудшать характеристики, поэтому отдельные элементы маркировки могут указывать на отсутствие или низкое содержание подобных веществ.
Расшифровка маркировки позволяет определить содержание основных элементов сплава и, отчасти, технологию производства, а также оценить технические характеристики, а с ними и область возможного применения.
Кроме различий в составе и обработке, подразделяют также категории стали по механической прочности. Насчитывается 5 категорий, которые различаются методикой испытаний на соответствие механической прочности. Испытания проводятся на растяжение и ударную вязкость контрольных образцов.
Виды сталей и особенности их маркировки
Различные области применения сталей требуют наличие у нее строго определенных свойств – физических, химических. В одном случае требуется максимально высокая износоустойчивость, в других – повышенная устойчивость против коррозии, в третьих внимание уделяется магнитным свойствам.
Видов стали много. Основная масса выплавляемого металла идет в производство конструкционной стали, в которую входят такие виды:
- Строительная. Низколегированная сталь с хорошей свариваемостью. Основное назначение – производство строительных конструкций.
- Пружинная. Имеют высокую упругость, усталостную прочность, сопротивление разрушению. Идет на производство пружин, рессор.
- Подшипниковая. Основной критерий – высокая износоустойчивость, прочность, низкая текучесть. Применяется для производства узлов и составляющих подшипников различного назначения.
- Коррозионностойкая (нержавеющая). Высоколегированная сталь с повышенной стойкостью к воздействию агрессивных веществ.
- Жаропрочная. Отличается способностью длительное время работать в нагруженном состоянии при повышенных температурах. Область применения – детали двигателей, в том числе газотурбинных.
- Инструментальная. Применяется для производства метало- и деревообрабатывающих, измерительных инструментов.
- Быстрорежущая. Для изготовления инструмента металлообрабатывающего оборудования.
- Цементируемая. Применяется при изготовлении деталей и узлов, работающих при больших динамических нагрузках в условиях поверхностного износа.
При расшифровке обозначений нужно учитывать, что каждому из видов соответствует строго определенная буква в маркировке.
Классификация по химическому составу
Основными легирующими добавками являются металлы. Варьируя количественный состав добавок и их массовую долю, получают большое разнообразие марок стали. Само по себе чистое железо имеет невысокие технические свойства. Малая механическая прочность, сильная подверженность коррозии, требуют введения в состав сплава дополнительных веществ, которые направлены на улучшение одного из качеств, либо сразу нескольких.
Нередко улучшение одних характеристик влечет за собой ухудшение иных. Так, высоколегированные нержавеющие стали могут иметь низкую механическую прочность, а качественные углеродистые вместе с высокой прочностью получают ослабленные коррозионные свойства.
Как уже говорилось выше, одной из классификаций марок стали является ее химический состав. Основными компонентами всех без исключения сталей являются железо и углерод, содержание которого не должно превышать 2,14 %. В зависимости от количества и пропорций добавок, содержание железа в композиции должно составлять не менее 50 %.
По количеству содержащегося углерода классифицируют три группы сталей:
- Малоуглеродистые – содержание углерода менее 0,25 %;
- Среднеуглеродистые – 0,25-0,6 % углерода;
- Высокоуглеродистые, с содержанием углерода более 0,6 %.
Увеличение процентного содержания углерода повышает твердость металла, но, вместе с тем, снижается его прочность.
Для улучшения эксплуатационных качеств, в состав сплава вводят определенное количество химических элементов. Такие стали называют легированными. Для легированных сталей также существует деление на три группы:
- Низколегированные, с содержанием добавок до 2,5 %;
- Среднелегированные, которые содержат от 2,5 до 10 % легирующих элементов;
- Высоколегированные. Содержание легирующих примесей варьируется от 10 до 50 %.
Маркировка сталей отражает наличие и процентное содержание легирующих добавок. При расшифровке каждому элементу соответствует определенная буква, рядом с которой находится цифра, соответствующая его содержанию в процентах. Отсутствие чисел говорит о том, что добавка присутствует в сплаве в количестве менее 1-1,5%. Наличие углерода в составе не отражается, поскольку он входит во все композиции, но его содержание обозначается в самом начале маркировки.
Маркировка может говорить и о назначении сплава. Поскольку в данной классификации также используются буквенные обозначения, то регламентируется порядок их расположения – в начале, середине и конце маркировки.
Классификация по назначению
Выше уже были приведена классификация видов сталей по назначению. Маркировка конструкционных сталей включает в себя такие обозначения:
- Строительная – обозначается буквой С и цифрами, характеризующими предел текучести.
- Подшипниковая – обозначается буквой Ш. Далее идет обозначение и содержание легирующих добавок, в основном, хрома.
- Инструментальная нелегированная – обозначается буквой У и содержанием углерода в десятых долях процента.
- Быстрорежущая – обозначается буквой Р и символами легирующих компонентов.
- Нелегированная конструкционная сталь имеет в обозначении символы Сп и число, показывающее содержание углерода в десятых или сотых долях процента.
Классификация стали по назначению
Остальные разновидности, в том числе и инструментальные марки из легированных сталей, не имеют специальных обозначений, кроме химического состава, поэтому расшифровку и назначение отдельных видов можно определить только по справочной литературе.
Классификация по структуре
Под структурой стали подразумевается внутреннее строение металла, которое может существенно меняться в зависимости от условий термообработки, механических воздействий. Форма и размер зерен зависят от состава и соотношения легирующих добавок, технологии производства.
Основу зерен стали составляет кристаллическая решетка железа, в которую включены атомы примесей – углерода, металлов. Углерод может образовывать твердые растворы в кристаллической решетке, а может создавать с железом химические соединения, карбиды.
Добавки металлов существуют в виде растворов, и многие из них влияют на состояние раствора углерода.
Структура стали меняется при изменениях температуры. Эти изменения называются фазами. Каждая фаза существует в определенном температурном диапазоне, но легирующие добавки могут существенно смещать границы перехода одной фазы в другую.
Насчитывают такие основные фазы состояния металла:
- Аустенит. Атомы углерода находятся внутри кристаллической решетки железа. Данная фаза существует в диапазоне 1400-700 °С. При наличии в составе от 8 до 10% никеля, аустенитная фаза может сохраняться и при комнатной температуре.
- Феррит. Твердый раствор углерода в железе.
- Мартенсит. Пересыщенный раствор углерода. Данная фаза свойственна закаленной стали.
- Бейнит. Фаза образуется при быстром охлаждении аустенита до температуры 200-500 °С. Характеризуется смесью феррита и карбида железа.
- Перлит. Равновесная смесь феррита и карбида. Образуется при медленном охлаждении аустенита до температуры 727 °С.
Фазы строения металла характеризуют его физические свойства, в зависимости от которых определяется класс стали – конструкционная, литейная и так далее.
Классификация по качеству
Легированная и нелегированная сталь в пределах каждой марки отличается качеством, которое зависит от технологии производства и качества исходных материалов.
На качество стали особо влияют примеси, которые остаются в ней при восстановлении железа из рудных концентратов. В основном негативно влияют на качество стали фосфор и сера. По их содержанию классифицируют стали обыкновенного качества и высококачественную, в конце обозначения которой присутствует буква А. Содержание фосфора в высококачественной стали не превышает 0,025 %.
Классификация по способу раскисления
При выплавке стали в ней остается некоторое количество кислорода в составе окислов железа. Для снижения количества кислорода и восстановления железа из окислов применяется реакция раскисления, при которой в расплавленный металл добавляют соединения, более активные по взаимодействию с кислородом, чем железо. Во время реакции высвободившийся кислород также реагирует с углеродом, в результате чего образуется углекислый газ, который выделяется в виде пузырьков.
В зависимости от количества раскислителей и продолжительности процесса можно выделить три вида итогового сплава:
- Кипящая сталь. В результате минимального использования присадок и времени реакции увеличен выход готовой продукции, которая, при этом отличается низким качеством;
- Спокойная сталь. Металл, в котором полностью прошли процессы раскисления. Отличается высоким качеством, но дорога в производстве в связи с высокой стоимостью реагентов и сниженным выходом продукта;
- Полуспокойная сталь. Промежуточный вариант с оптимальным сочетанием качества и стоимости.
При изготовлении ассортимента марок стали из металла разной степени раскисления применяется специальная маркировка материалов, соответственно символами «сп», «кп» и «пс».
Маркировка сталей по российским стандартам
Маркировка сталей по российским стандартам позволяет определить состав металла и, частично, принадлежность к определенному виду.
При наличии углерода в стали более 1 %, его количество в маркировке не указывается. Марка стали включает буквенные обозначения легирующих добавок с указанием их количества в десятых и сотых долях процента, но если содержание компонента менее 1,5 %, то в маркировке присутствует только буквенное обозначение.
Кроме химического состава, маркировка содержит символы, характеризующие назначение стали, степень ее качества.
Маркировка сталей по американской и европейской системам
Маркировка сталей отечественного производства и на постсоветском пространстве позволяет приблизительно определить состав, назначение и характеристики, не прибегая к справочной литературе. В американских и европейских стандартах такая расшифровка, по большей части, отсутствует. Это связано с большим количеством организаций, занимающихся стандартизацией металлопродукции.
По большей части обозначение стали по американским и европейским стандартам не содержит указаний на химический состав. Виды стали по назначению характеризуются буквенным или цифровым кодом, который можно расшифровать при помощи справочной литературы.
Только в европейском стандарте EN10027 существует вариант маркировки сплавов по химическому составу, который имеет близкое сходство с отечественными обозначениями.
Обозначения легирующих элементов
Для того чтобы по маркировке стали узнать качественный и количественный состав, для легирующих элементов используют буквенные обозначения. В основном, русские буквы соответствуют названиям элементов, хотя встречаются исключения, поскольку есть элементы, которые начинаются с одинаковых букв. Таблица легирующих элементов выглядит следующим образом.
В | Вольфрам | Б | Ниобий |
К | Кобальт | Е | Селен |
М | Молибден | Р | Бор |
Н | Никель | Ф | Ванадий |
Т | Титан | Ц | Цирконий |
Х | Хром | Ю | Алюминий |
Г | Марганец | А | Азот |
Д | Медь | С | Кремний |
Как видно из таблицы, в ней присутствуют два неметалла – кремний и азот, а углерода нет. Наличие углерода подразумевается в составе любой стали, поэтому в обозначении указывается лишь его содержание
Цветовая маркировка
Цветовая маркировка сталей применяется для обозначения проката. Это удобно при хранении материалов на складах, транспортировке. Обозначение сталей производится метками в виде точек или полос, выполненных несмываемой краской. Цвет обозначений выбирается из таблицы согласно назначениям стали. При этом группа стали и степень ее раскисления не учитываются.
Пример цветовой маркировки стали
Примеры расшифровки маркировки
Для того чтобы расшифровка была понятнее, следует привести некоторые, наиболее яркие примеры маркировки. На основании примеров, определение марки стали в сравнении с уже известными, будет являться несложной задачей. Вот некоторые виды стали с расшифровкой условных обозначений:
- 30ХГСА – расшифровка марки стали говорит о том, что в сплаве содержится 0,3 % углерода, о чем свидетельствует цифра в начале обозначения. Сталь содержит хром (Х), марганец (Г), кремний (С), но их содержание менее 1,5 %. Символ «А» в конце обозначения говорит о том, что сталь высококачественная.
- У8ГА – инструментальная сталь с содержанием углерода 0,8 %. Высококачественная с добавлением марганца.
- Р6М5Ф2К8 – быстрорежущая сталь. Содержит 5 % молибдена, 2 % ванадия, 8 % кобальта. Хром содержится во всех быстрорежущих сталях в количестве около 4 %, поэтому в обозначение не входит. Вольфрам также всегда присутствует, но его содержание может изменяться, поэтому в данной марке его количество составляет 6 %.
- Ст3сп5 – сталь конструкционная нелегированная, полностью раскисленная – спокойная, 5-й категории, то есть может применяться для изготовления несущих сварных конструкций.
- ХВГ – сталь ХВГ имеет в составе хром, вольфрам и марганец в количестве около 1 % и дополнительные легирующие элементы, но их содержание меньше 0,5 %.
Читайте также: