Сталь как основной конструкционный материал
Сталью 2 называют сплавы, созданные на основе железа и углерода. С середины XVIII в., когда началось ее промышленное производство, сталь была и остается ведущим конструкционным материалом в силу неоспоримых технико-экономических преимуществ:
доступность, распространенность и дешевизна сырья;
высокая прочность, жесткость (высокий модуль Юнга) и теплостойкость, сочетающиеся с достаточной пластичностью и вязкостью;
технологичность (хорошая способность к литью, ковке, штамповке, прокатке, сварке, обработке резанием и др.);
возможность управления свойствами в широких пределах с помощью легирования, деформационной, термической, химико-термической и др. видов обработки;
высокая степень рециркуляции.
Наряду с этим стальные конструкции обладают относительно высоким удельным весом, а также недостаточной коррозионной стойкостью (если не приняты специальные меры защиты).
5. Способы получения и технологической обработки металлов и сплавов
1. Для первичного получения металлов в большинстве случаев используют три вида технологий:
Пирометаллургия 3 – совокупность процессов получения и очистки металлов и сплавов, протекающих при высоких температурах. Пирометаллургия – основная и древнейшая область металлургии. В современной классификации пирометаллургия противопоставляется гидрометаллургии – совокупности так называемых мокрых процессов получения металлов, осуществляемых при невысоких температурах. Примерами пирометаллургических процессов могут служить доменная плавка, мартеновская плавка, плавка в конвертерах, дуговых и индукционных печах. Почти 100 % мирового производства чугуна, стали, свинца, около 95 % меди, свыше 60 % цинка получают методами пирометаллургии.
Гидрометаллургия 4 – извлечение металлов из руд, концентратов и отходов различных производств при помощи водных растворов химических реагентов с последующим выделением металлов из этих растворов. Основные операции гидрометаллургии: механическая обработка руды (дробление, измельчение, классификация, сгущение); изменение химического состава руды или концентрата (обжиг, спекание, разложение химическими реагентами); выщелачивание; обезвоживание и промывка; осветление растворов и удаление вредных примесей; осаждение металлов или их соединений из растворов; переработка осадков. Гидрометаллургические методы широко используются при производстве меди, никеля, кобальта, платины и других цветных металлов.
Электрометаллургия –область металлургической науки и техники, охватывающая извлечение металлов из руд и концентратов, плавку и рафинирование металлов и сплавов, а также их нагрев и придание им соответствующей структуры при помощи электрического тока. Электрометаллургия делится на две области: в первой применяются электротермические методы, т. е. используется тепловой эффект электрических явлений; во второй – электрохимические методы, а именно электролиз как при обычных (электролиз водных растворов), так и при высоких (электролиз расплавленных солей) температурах. В чёрной металлургии применяют преим. электротермические методы, а в цветной – электротермические и электрохимические. Широкое распространение получили рафинирующие переплавы (так называемая, спецэлектрометаллургия). Электрометаллургические методы широко используются при производстве алюминия, магния и других цветных металлов, образующих прочные окислы.
Побочные продукты, получающиеся при производстве черных и, особенно, цветных металлов, могут содержать большое количество ценных элементов и используются, например, для получения всех металлов платиновой группы, золота, серебра, редкоземельных элементов и т. п. Из газообразных продуктов доменных печей извлекают цинк, селен и др. ценные элементы. Сера, получающаяся при производстве ряда цветных металлов, идет на производство серной кислоты. Шлак идет на производство стройматериалов (шлакобетон, шлаковата, шлакоблоки и т. п.).
Производство чугуна и стали.Чугун выплавляют в доменных печах за счет разделения смеси железной руды, кокса и шлакообразующих на три фазы: газообразную и две жидких – шлак и чугун. Благодаря различию в плотности шлак концентрируется в средней части печи, а чугун – в нижней. Чугун, направляемый на производство стали, называют «передельным». Передельный чугун в жидком виде транспортируют в сталеплавильный цех.
Пудлинговый 5 способ получения стали известен с конца ХVIIIв. Во второй половинеXIXв. он был вытеснен бессемеровским, томасовским и мартеновским процессами 6 . Наиболее распространенным в мире, начиная с середины 70-х гг. ХХ в., являетсякислородно-конвертерный способ производства стали, пригодный для переработки чугуна и возрастающих объемов металлолома. В результате продувки кислородом и взаимодействия со специально наведенным шлаком в расплаве уменьшается содержание углерода и вредных примесей, прежде всего, серы и фосфора.
Высококачественную сталь получают в индукционных и электродуговых печах путем переработки металлолома с небольшим количеством чугуна, необходимого для создания избытка углерода. Для еще большего повышения качества сталь может быть подвергнута электрошлаковому, электродуговому, электроннолучевому и др. переплавам.
Все вышеуказанные пирометаллургические процессы производства чугуна и стали дискретны и хуже поддаются автоматизации по сравнению с непрерывными процессами, характерными для гидрометаллургии.
В настоящее время имеется тенденция прямого восстановления металлов из руд, что позволяет автоматизировать производство, отказаться от ряда промежуточных процессов, уменьшить потери металла и выбросы вредных примесей. В частности, при производстве стали начали применять железорудные окатыши, получаемые прямым восстановлением железа из руды водородом или углеродом. Из таких окатышей получают наиболее качественные стали, в которых содержится минимум вредных примесей.
2. Способы обработки металлов и сплавов
Обработка с увеличением или уменьшением массы изделий
С уменьшением массы обрабатываемого изделия связаны такие процессы, как резанье (точение, фрезерование, шлифование, протяжка и т. д.), растворение и химическое травление, производимое для подготовки поверхности к последующей отделке.
К увеличению массы изделий приводят такие технологические приемы, как сварка, наплавка, напыление, пайка, гальванопластика, окраска и т. д. Эти процессы служат для неразъемного соединения деталей или для придания поверхности особых свойств.
Обработка с изменением формы при неизменной массе
В промышленности широко применяются различные способы пластического деформирования: ковка, штамповка, прокатка и т. п. Деформация в этих процессах происходит под действием механических сил, энергетического импульса (например, магнитного поля) или от ударной волны, вызванной взрывом.
Обработка, связанная с изменением агрегатного состояния
Охлаждением из жидкого состояния получают слитки, отливки, полуфабрикаты типа прутков, лент, полос, фольг и т. п. Изготовление слитков осуществляется путем разливки жидкого металла в изложницы.
Крупнейшим в ХХ веке отечественным изобретением, внедренным на самых современных заводах за рубежом, является процесс непрерывной разливки стали, позволивший получать профили постоянного сечения сложной формы (даже с внутренним отверстием, например, трубы) непрерывным способом. Такие слитки называют слитками УНС (установка непрерывной разливки стали). Литые заготовки могут иметь очень сложную форму и поэтому сокращают потери металла при резании.
Методами сверхбыстрого охлаждения жидкого металла получают материалы с аморфной структурой – металлические стекла, которые обладают уникальными физическими свойствами, например, магнитными.
Методы управления структурой и свойствами материалов
Для изменения свойств материалов широко используются: термическая, химико-термическая, термомеханическая, термоциклическая, деформационная, радиационная, лучевая, термомагнитная и др. виды обработки, о которых будет сказано в дальнейшем.
Конструкционные материалы
При изготовлении деталей и механизмов необходимого качества нужно при выборе материала учитывать следующие требования:
Эксплуатационные – определяются условиями работы детали в механизме, при этом учитываются следующие свойства материала:
Прочность (способность материала к сопротивлению разрушениям или появлению остаточных деформаций, характеризующаяся пределом прочности σu, пределом текучести σy, условным пределом текучести σ0,2, пределом выносливости σR, твердостью по Бринеллю НВ или Роквеллу HRCэ)
Износостойкость (способность материала сопротивляться износу, характеризуется твердостью НВ, HRCэ или допустимым удельным давлением qadm)
Жесткость (способность материала сопротивляться упругим деформациям, характеризуется при растяжении (сжатии) и изгибе модулем упругости Е, при кручении – модулем упругости G)
Упругость (характеризуется пределом упругости σe и модулем упругости Е)
Антифрикционность (характеризуется коэффициентом трения скольжения f)
Удельные характеристики: электропроводность, теплопроводность, коррозионная стойкость, жаропрочность и др.
2) Технологические требования – определяют возможность изготовления деталей с минимальными трудозатратами.
а. При изготовлении методами обработки давлением (штамповка, прессование и др.):пластичность (свойство получать без разрушения значительные остаточные деформации).
б) При изготовлении литьем – легкоплавкость и жидкотекучесть (заполняемость без пустот узких полостей различных форм).
в) При изготовлении методами механической обработки – обрабатываемость резанием.
г) Термообрабатываемость – способность материала изменять механические свойства при термической и термохимической обработках.
д) Свариваемость – способность материала образовывать прочные соединения при сварке.
3) Экономические требования (определяются стоимостью и дефицитностью).
При изготовлении конструктивных элементов механизмов используют черные металлы (стали и чугуны), цветные металлы и сплавы, и неметаллические материалы.
Сплавы - это материалы, имеющие металлические свойства и состоящие из двух или большего числа химических элементов, из которых хотя бы один является металлом. Многие металлические сплавы имеют один металл в качестве основы с малыми добавками других элементов. Самый распространенный способ получения сплавов – затвердевание однородной смеси их расплавленных компонентов. Существуют и другие методы производства – например, порошковая металлургия. В принципе, четкую границу между металлами и сплавами трудно провести, так как даже в самых чистых металлах имеются «следовые» примеси других элементов. Однако обычно под металлическими сплавами понимают материалы, получаемые целенаправленно добавлением к основному металлу других компонентов.
3.1 Сплавы на основе железа. Чугуны. Стали. Классификация сталей, марки сталей. Применение в механических устройствах (валы, зубчатые колеса, крепеж).
Рассмотрим сплавы на основе железа, а именно чугуны и стали.
Черный металл, содержащий свыше 2,14% углерода, представляет собой сплав железа с углеродом, содержащий постоянные примеси марганца, кремния, фосфора и серы, а также при необходимости легирующие элементы.
В зависимости от структуры и состояния, в котором находится углерод (свободный или химически связанный), различают серые, белые и ковкие чугуны. Также существуют чугуны в зависимости от назначения: конструкционные, и со специальными свойствами; от химического состава: легированные и нелегированные.
Наиболее распространены в применении серые чугуны, в которых углерод находится в свободном состоянии, в виде включений графита пластинчатой формы в связи с тем, что они обладают средней прочностью, хорошими литейными и другими технологическими свойствами (жидкотекучестью, малой линейной усадкой, обрабатываемостью резанием), также они малочувствительны к концентрации переменных напряжений и антифрикционны.
Существует такая разновидность чугуна, как белый чугун: в них избыточный углерод не растворившийся в твердом растворе железа присутствует в виде карбидов железа. Как следствие, высокая хрупкость данного материала, твердость, плохая обрабатываемость резанием и не применение их в качестве конструкционного материала.
Из белого чугуна получают ковкий чугун путем последующего отжига, до распада графита в виде хлопьев. Детали из данного материла могут подвергаться незначительным деформациям, обладают меньшей по сравнению с деталями из серого чугуна хрупкостью, но стоимость их на 30—100% выше.
Чугун высокопрочный характеризуют шаровидной или близкой к нему формой включений графита, которую получают модифицированием жидкого чугуна присадками магния. Шаровидный графит в наименьшей мере ослабляет металлическую основу, что приводит к высоким механическим свойствам. Этот вид чугуна обладает хорошими литейными и эксплуатационными свойствами.
Для улучшения характеристик чугунов, а именно прочностных, а также получения таких особых эксплуатационных свойств как износостойкость, немагнитность, коррозионная стойкость и др. в состав чугунов вводят легирующие элементы (никель, хром, алюминий, титан и др.). Ими могут служить марганец (при содержании более 2%) и кремний (более 4%).
Марки чугуна различают следующие:
СЧ – серый чугун;
ВЧ – высокопрочный чугун;
КЧ – ковкий чугун;
В случае антифрикционных чугунов в начале марке указывается буква А (АСЧ, ФВЧ).
Цифры в обозначении марки нелегированного чугуна указывают на его механические свойства:
Для серых чугунов: указывается величина предела прочности (кгс/мм 2 ) при растяжении (СЧ18).
Для высокопрочного и ковкого чугуна цифры определяют предел прочности (кгс/мм 2 ) и относительное удлинение при растяжении в процентах (ВЧ60-2).
Из чугуна можно отливать самые разнообразные и очень полезные изделия, например крышки для люков, трубопроводную арматуру, блоки цилиндров двигателей. В правильно выполненных отливках достигаются хорошие механические свойства материала.
Стали – это деформируемые сплавы железа с углеродом и другими элементами, с содержанием углерода до 2,14%.
Рассмотрим классификацию сталей:
1) По химическому составу:
а) углеродистые – содержат кроме железа и углерода также марганец (до 1%) и кремний (до 0,8%), а также примеси, от которых трудно избавиться в процессе выплавки – серу и фосфор (снижающие механические свойства сталей: сера увеличивает хрупкость в горячем состоянии, а фосфор при пониженных температурах). Различают:
– низкоуглеродистые (С ≤ 0,25%)
– высокоуглеродистые (C > 0,6%)
б) легированные – помимо указанных компонентов входят легирующие элементы с целью улучшения технологических и эксплуатационных характеристик и придания особый свойств – хром, никель, молибден, вольфрам, ванадий, титан, ниобий, марганец (более 1%), кремний (более 0,8%).
2) По назначению:
а) конструкционные – наиболее широко используемые:
– углеродистые (С ≤ 0,7%)
б) инструментальные – для изготовления ударно-штампового, режущего, мерительного инструментов:
– углеродистые (С ≥ 0,8 … 1,3%)
– легированные хромом, марганцем, кремнием и др.
в) с особыми свойствами – нержавеющие, немагнитные, электротехнические стали, стали постоянных магнитов и др.
3) По качеству стали (различают по количеству вредных – сера и фосфор – примесей):
а) обыкновенные – содержание серы до 0,06% и фосфора до 0,07%
б) качественные – каждого элемента не более 0,035%
в) высококачественные и особо высококачественные – не более 0,025%
4) По характеру застывания из жидкого состояния, степени раскисления (чем полнее удален из расплава кислород, тем спокойнее затвердевает сталь, т.е. меньше выделяются пузырьки окиси углерода («кипение»)):
– углеродистая сталь обыкновенного качества обозначается буквами Ст (сталь) и цифрами от 0 до 6 (Ст0 — Ст6). Цифры являются условным номером марки в зависимости от химического состава и механических свойств (чем выше число, тем выше прочность и ниже пластичность за счет большего содержания углерода в стали). Данные стали делятся на три группы: А (гарантированные механические свойства, не подвергается термообработке, в марке стали группа А не указывается), Б (гарантируется химический состав), В (химический состав и механические свойства).
Обозначение степени раскисления обозначается индексами, которые указываются справа от номера марки: кп – кипящая, пс – полуспокойная, сп – спокойная (Ст2кп, БСт3пс).
– углеродистые качественные стали маркируются двузначными цифрами (08, 10, 15, …, 70), которые показывают среднее содержание углерода в стали в сотых долях процента. Их разделяют на несколько групп:
стали 08, 10 обладают высокой пластичностью, хорошо штампуются и свариваются.
низкоуглеродистые стали 15, 20, 25 хорошо свариваются и обрабатываются резанием, после цементации и термообработки обладают повышенной износостойкостью.
среднеуглеродистые стали 30, 25, 40, 45, 50 получили наибольшее распространение, за счет хороших прочностных и пластических свойств, хорошей обрабатываемости резанием. Прочность и твердость можно повысить термической обработкой.
высокоуглеродистые стали 60, 65, 70 обладают высокой прочностью, износостойкостью, упругостью (используются для изготовления пружин). Прочность и твердость можно повысить термической обработкой.
– углеродистые инструментальные стали маркируются буквой У, цифрами которые соответствуют содержанию углерода в десятых долях процента (У9 – содержит в среднем 9% углерода).
– легированные стали – в состав которых для придания им специальных свойств входят легирующие элементы (марганец повышает прочность и износостойкость, кремний – увеличивает упругие характеристики, хром – коррозионную стойкость, никель – снижает коэффициент линейного расширения, повышает прочность и износостойкость, вольфрам и молибден - повышают прочность и твердость, улучшают режущие свойства при повышенной температуре).
Маркируются буквами и цифрами, которые указывают химический состав. Первые цифры марок перед буквами указывают содержание углерода для конструкционных сталей в сотых долях процента (две цифры), для инструментальных и специальных сталей в десятых долях.
Далее следует обозначение буквами, указывающих какие легирующие элементы входят в состав стали, и стоящих непосредственно за каждой буквой цифр, которые характеризуют среднее содержание легирующего элемента менее 1,5%. Введены следующие обозначения легирующих элементов:
Т – титан, С – кремний, Г – марганец, Х – хром, Н – никель, М – молибден, В – вольфрам и т.п. (нержавеющая сталь Х18Н10Т содержит 18% хрома, 10% никеля, до 1,5% титана; конструкционная легированная сталь 30ХГС содержит 0,30% углерода, а хрома, марганца и кремния до 1,5% каждого; инструментальная легированная сталь 9ХС содержит 0,9% углерода, а хрома и кремния до 1,5% каждого; в сталях 30ХГС и 9ХС кремния больше 0,8%, марганца в стали 30ХГС больше 1%).
Некоторые обозначения марок некоторых специальных сталей включают впереди букву, указывающую на назначение стали (Ш - шарикоподшипниковая (ШХ15 – с содержанием хрома ≈ 1,5%), Э – электротехническая и др.).
Сталь представляет собой наиболее распространенный конструкционный материал. Основным недостатком является большая плотность (как следствие – небольшая удельная прочность и удельная жесткость), можно назвать также малую коррозийную стойкость, а применение нержавеющих сталей достаточно дорого.
В производство стали поставляют как листовой и сортовой прокат в виде листов, полос, лент, проволоки, прутков круглого, прямоугольного и квадратного сечений, труб, равнобоких и неравнобоких уголков (рис.3.1 a и 3.1 б соответственно), двутавров (рис.3.1 в), швеллеров (рис.3.1 г) и других видов профилей разных размеров оговоренных стандартами.
Малоуглеродистая сталь (менее 0,25% углерода) в больших количествах потребляется в качестве конструкционного материала, а сталь с более высоким содержанием углерода (более 0,55%) идет на изготовление таких низкоскоростных режущих инструментов, как бритвенные лезвия и сверла. Легированные стали находят применение в машиностроении всех видов и в производстве быстрорежущих инструментов.
Семейство конструкционных сталей — основа машиностроения и строительства
Конструкционная сталь — материал особой прочности и пластичности, что обеспечивает высокую сопротивляемость к разрушению изготовленных из нее конструкций. Представляет собой сплав, определенные характеристики которого позволяют использовать многопрофильный материал для изготовления промышленных механизмов и строительных конструкций.
Что такое конструкционная сталь
К механизмам и конструкциям, используемым на предприятиях обрабатывающей промышленности и строительстве, предъявляются высокие требования по качеству и стойкости. По этой причине металл для их производства должен обладать особыми технологическими свойствами для обеспечения безаварийной эксплуатации в различных условиях окружающей среды. Этим требованиям соответствует группа конструкционных сталей, представители которой наделены заданными параметрами химических, физических и механических свойств.
Состав конструкционных сплавов содержит набор полезных добавок – железо, марганец, медь, кремний и другие элементы, но основным параметром, определяющим все свойства стального проката, является углерод. Увеличение содержания углерода в сплаве повышает прочность металла и порог его хладноломкости, что позволяет стальным конструкциям выдерживать суровые климатические условия, а также высокие промышленные нагрузки.
- сталь углеродистая качественная;
- легированная качественная.
- фосфор (P) наделяет металлопрокат способностью к растрескиванию и поломкам по ходу механической обработки (холодной);
- сера (S) способствует трещинообразованию под действием высокого давления во время горячей обработки (спектр красного каления).
Применение деталей из углеродистого металла с высоким содержанием фосфора и серы оправдано при необходимости повышения степени обрабатываемости изделия методом резания (автоматные виды сталей).
Маркировка
- конгломераты обыкновенного качества, содержащие до 0,05 % вредных добавок, маркируют обозначением «Ст»;
- качественный металл, содержащий максимум 0,035% серно-фосфорных примесей, имеет маркировку «Сталь»;
- высококачественное металлическое сырье, содержащее до 0,025 % примесей, снабжают завершающей буквой «А»;
- особовысококачественные с 0,015 % фосфора и серы маркируют конечной буквой «Ш».
Исходя из сферы применения металлопроката, он бывает строительным (в основном низкоуглеродистый тип) и машиностроительным (средняя и низкоуглеродистая категория). Среднеуглеродистую конструкционную сталь (0,25-0,55 % серы) используют в машиностроении благодаря хорошему сочетанию механических свойств после термической обработки. Металл с низким содержанием углерода применяют для строительных работ по причине хорошей степени свариваемости, низкой склонности к старению.
Углеродистая конструкционная сталь
Качество металлопроката этого типа может быть обыкновенным и высоким. Материал обыкновенного качества более дешевый за счет меньшей очистки от вредных компонентов, отличается большим количеством неметаллических примесей.
Градация по качественному показателю
- А – сплавы этой группы не требуют дальнейшей термической обработки, что способствует сохранению заводских свойств исходного металла. Маркировка стандартная – буквы «Ст» плюс цифры, обозначающие степень прочности и пластичности – Ст1, Ст3 и т.п.
- Б – гарантированный химический состав материала этой группы поддается раскислению. Маркировка содержит букву «Б» с указанием степени раскисления в конце – БСТ3сп (спокойная), БСт1кп (кипящая). Числом обозначают процент углерода.
- В – группа сталей повышенного качества с гарантированным химическим составом выдерживает механическую обработку. Маркируется буквами ВСт1, ВСт3 и т.д. Для производства изделий из металла этой группы потребуется дополнительная обработка, преимущественно сваркой.
Металлопрокат обыкновенного качественного состава применяют для изготовления деталей, требующих сварки, необходимых для работы в условиях небольших нагрузок. Конструкционную сталь этого типа в основном используют в автомобильной промышленности, а также в строительном деле для конструкций массового предназначения.
Металл обыкновенного типа соответствующих марок используют для производства гвоздей, проволоки, заклепок. Из конструкционного материала выпускают оси и валы, работающие под слабой нагрузкой, различные виды крепежных деталей, используют для получения фасонного проката.
Ограничения
Содержание углерода, обозначаемое цифровым индексом, накладывает определенные ограничения на качество, область применения стальных изделий.
Наименование | Свойства изделий, сферы применения |
Низкоуглеродистые | Малонагружаемые детали из этого материала отличаются небольшой прочностью при высокой пластичности и уровне свариваемости. Изделия пригодны для штамповки холодным способом, исключив термическую обработку. Из металлического сплава производят сложные детали для автомобилей, ответственные сварные конструкции |
Среднеуглеродистые | Среднеуглеродистой конструкционная сталь становится после улучшения методом закалки и горячего отпуска (до 650°С). Эти показатели повышают прочность стальных деталей, но понижают пластичность, что допускает обработку резанием. Улучшенный закалкой материал высокой прочности применяют в машиностроении |
Высокоуглеродистые | Для высокоуглеродистых материалов характерен высокий процент марганца. Из такого вида металла производят изделия, которым требуется повышенная упругость, износостойкость (рессоры, пружины). После отжига материал хорошо поддается обработке резанием |
Качественные | Конструкционный материал этой категории содержит увеличенную долю примесей – серно-фосфорных, свинцовых добавок. Качественный металл применяют для выпуска деталей, подвергающихся повышенной обработке, не вредящей металлорежущему инструменту. Это класс автоматных сталей, обогащенных серой, фосфором, свинцом, предназначенных для работы на станках-автоматах |
Для повышения износостойкости металлоизделий применяют графитизацию, наклеп, наплавку. Подобные методы улучшения параметров конструкционной стали позволяют добиться повышения твердости материала, устойчивости его к износу.
Область применения
Конкретную область применения углеродистого металлопроката определяют его характеристики.
Конструкционные сплавы | Свойства сталей, области применения |
Машиностроительный | Применяют для производства автомобилей благодаря высоким механическим свойствам, распространяющимся на весь материал. Детали машин отличаются надежностью, хорошо сопротивляются большим нагрузкам, ударному воздействию, сохраняя повышенную прочность |
Строительный | Из углеродистых сплавов изготавливают мостовые конструкции , фермы, оборудование нефте- и газопроводов. Основное требование к сталям конструкционным этого типа – хороший показатель свариваемости при небольшом объеме легирующих компонентов. Повышению прочности способствует легирование кремнием, а также марганцем |
Арматурный | Арматурой из стального материала армируют железобетонные конструкции, что способствует повышению их прочности при воздействии нагрузок. Этот тип металла представлен прутками (гладкими, профилированными) и проволокой. В зависимости от требований прочности к конструкциям (предварительно напряженные либо ненапряженные) стальную арматуру упрочняют термической обработкой |
Пружинный | Свойства упругости используют для изготовления пружинной стали. Основное требование к металлу конструкционного типа – повышенная текучесть, которая достигается методом закалки с отпуском в температурном режиме до 400°С. Такой уровень температуры обеспечивает наивысшее значение предела упругости. Конструкционные стали для особо нагружаемых пружин усиливают добавкой ванадия и хрома |
Шарикоподшипниковый | К изделиям предъявляется требование особой твердости из-за высоких локальных нагрузок. По этой причине для получения металлопроката выбирают высокоуглеродистую сталь. Легкость закалки при низких температурах и применении масла обеспечивают легированием хромом, для улучшения прокаливания вводят кремниево-марганцевые элементы |
Цементуемый | Этот вид содержит 0,1-0,25 % углерода, что позволяет использовать их для производства изделий, подвергающихся цементированию. Детали цементуемого и цианируемого класса (болты, шестерни, гайки и т.д.) имеют небольшие размеры при повышенной прочности благодаря введению полезных добавок |
Котельная разновидность углеродистых сплавов производится в виде котельных листов двух типов – толстолистовой материал толщиной свыше 4 мм и тонколистовая основа меньше 4 мм толщиной. Из котельного типа стали изготавливают паровые котлы (водогрейные), а также сосуды (паропроводы, коллекторы, трубы), способные выдерживать повышенные температуры (до 450 o С) при высоком давлении пара. Качественный металлопрокат обладает хорошей свариваемостью, маркируются буквой «К» на конце (12К, 16К, 22К и т.д.).
Особенности легированных сплавов
Наряду с углеродистыми качественными сталями, для конструкций в строительстве, а также для деталей машиностроения и приборостроения применяют легированную сталь. Легирование металла (обогащение основного состава полезными добавками) наделяет готовые изделия рядом специальных свойств, улучшает технологические, прочностные, физико-химические качества.
- до 2,5-5 % примесей – материал низколегированный;
- до 10 % добавок – металл среднелегированный;
- свыше 10 % примесей – высоколегированный прокат.
Легированная конструкционная сталь применяется для самых ответственных узлов механизмов, подвергаемых особо тяжелым нагрузкам. Для обеспечения высокой конструктивной прочности такие детали обязательно проходят окончательную термическую обработку для гарантии повышенной прочности.
- начинается с двух цифр, обозначающий процентный состав углерода;
- русской буквой прописывают конкретный элемент легирования;
- следующая за буквой цифра указывает процентное содержание этой присадки;
- завершающая буква «А» сообщает, что сталь высококачественная.
Преимущества добавок
- повысить прочность, не подвергая изделия термической обработке;
- усилить твердость, ударную вязкость, уровень прокаливаемости;
- обогатить особыми свойствами (жаропрочность, стойкость к коррозии).
Разные виды добавок улучшают определенные показатели конструкционной стали. Введение никеля способствует повышению ударной вязкости, а в содружестве с хромом обеспечивает способность к глубокому прокаливанию. Подобное сочетание примесей гарантирует равномерное улучшение свойств конгломерата по всей площади сечения.
Недостатки
К недостаткам хромоникелевого улучшения можно отнести вероятность хрупкости после отпускного процесса. Недостаток устраняют путем введения молибдена (0,2-0,4 %). Область применения легированного материала этого вида – крупные цементируемые изделия (валы, шестерни, шатуны) улучшенной прочности, износостойкости, пластичности. Для существенного усиления этих свойств молибден заменяют присадкой вольфрама, которая устраняет также отпускную хрупкость.
Наиболее распространенный дефект конструкционных сплавов – появление флокенов. Это трещины (белые пятна) внутри стальной детали, которые можно заметить на изломах. Флокены снижают усиление механических свойств, превращая сталь в непригодный для использования материал.
Появление тонких нитеобразных дефектов (волосовины) связано со скоплением неметаллических примесей, представляющих собой продукты раскисления. Их направленность отражает текучесть металла под действием давления во время горячей обработки. Преимущественный состав волосовин – силикатные включения.
Изделия из легированных сплавов малоуглеродистого вида часто страдают от межкристаллических трещин. Причина образующихся дефектов связана усадкой, их расположение обычно совпадает с осью слитка. На поверхность трещины не выходят в отличие от волосовин, с целью их устранения поверхность заготовки подвергают зачистке. Для защиты от появления дефектов, ухудшающих качество металла, разработан ряд специальных мероприятий.
Углеродистые конструкционные стали
Углеродистые конструкционные стали являются весьма востребованными в строительстве и машиностроении, но также используются и в других областях промышленности. Универсальность обеспечивается характеристиками, которые позволяют подобрать необходимое сочетание качеств.
Впрочем, у этой особенности есть и обратная сторона – сложная классификация с обилием маркировок. В нашей статье мы расскажем, что собой представляет углеродистая конструкционная сталь, по каким признакам ее классифицируют и разберем ограничения в ее использовании.
Описание углеродистой конструкционной стали
Конструкции, механизмы, задействованные в промышленности и строительных работах, должны отличаться повышенной прочностью. Поэтому их производят из материала с особыми характеристиками, ведь от них зависит безопасная эксплуатация объекта при любых окружающих условиях. Углеродистая конструкционная сталь отвечает всем нормам по химическим, физическим и механическим показателям.
Данный металл выгодно отличается от других своей способностью справляться с постоянными и переменными нагрузками, является стойким к износу и образованию ржавчины. Чаще всего используют обычную углеродистую конструкционную сталь, но иногда прибегают к ее легированию при помощи определенных добавок, чтобы обеспечить материалу новые свойства.
Углеродистые конструкционные стали имеют в составе железо, кремний, медь, марганец, прочие вещества. Однако главной добавкой является углерод, поскольку от него зависят ключевые характеристики и степень прочности металла. Концентрация углерода определяет стойкость объекта к хладноломкости, способность справляться с производственными нагрузками, сменой погодных условий.
VT-metall предлагает услуги:
Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы
Среди конструкционных сталей принято выделять несколько классов в соответствии с долей вредных веществ – под последними понимают серу и фосфор. Чем больше этот показатель, тем ниже уровень хладноломкости и красноломкости металла.
Плюсы и минусы углеродистой конструкционной стали
Преимущества подобного металла становятся очевидны после того, как изделия проходят термическую обработку. Поэтому в процессе производства их подвергают воздействию температуры, чтобы проявить такие достоинства:
- Закалка и отпуск позволяют усилить сопротивление материала пластическим деформациям. В итоге данный показатель углеродистой конструкционной стали становится выше, чем у углеродистых сплавов при равном содержании углерода.
- В идентичных условиях конструкционная сталь прокаливается сильнее углеродистой. Из-за чего внешние элементы, имеющие значительную толщину, рекомендуется изготавливать из конструкционной стали с легирующими добавками. Благодаря составу, деталь прокаливается насквозь.
- Термическая обработка подобной стали может проходить с применением так называемых «мягких» охладителей, то есть масла. При помощи данного подхода серьезно сокращается вероятность растрескивания, коробления в процессе закалки.
- После термообработки и легирования у конструкционной стали возрастает вязкость, порог хладноломкости. Поэтому техника, в составе которой присутствуют детали из этого металла, считается более надежной.
Однако у углеродистой конструкционной стали есть и отрицательные свойства:
- Большинство изделий из нее подвержено обратимой отпускной хрупкости.
- Под действием температуры сталь теряет изначальную твердость и сопротивление усталости.
- Ковка, прокатка приводят к тому, что структура изделий меняется на строчечную. В зонах деформации они утрачивают однородность, из-за чего металл становится сложно резать.
- Углеродистым конструкционным сталям, легированным никелем, свойственно формирование флокенов, то есть светлых пятен в изломе. Они появляются при выходе водорода, растворенного в металле. В поперечном разрезе такие дефекты выглядят как трещины, расходящиеся в разных направлениях.
Разновидности углеродистой конструкционной стали в машиностроении
Стали углеродистые обыкновенного качества, выпускаемые по ГОСТ 380-71
Данный тип сталей является наиболее распространенным и поставляется в виде проката в нормализованном состоянии. Он применяется в машиностроении, строительстве, пр.
Углеродистые конструкционные стали обыкновенного качества маркируют при помощи букв Ст и цифр в пределах от 0 до 6. Последние обозначают номер марки – чем больше число, тем выше доля углерода, прочность, при этом ниже пластичность.
Справа от номера марки пишут индекс: кп – кипящая, пс – полуспокойная, сп – спокойная сталь. Между индексом и номером марки нередко есть буква Г, свидетельствующая о повышенной концентрации марганца. Слева от букв Ст указываются группы стали. Стоит пояснить, что всего выделяют три группы: А, Б, В, которые устанавливаются в соответствии с назначением и гарантируемыми свойствами металла.
Стали обыкновенного качества делят на категории, исходя из требований к нормируемым показателям, то есть к химическому составу и механическим свойствам. При маркировке углеродистых конструкционных сталей категорию обозначают цифрой, которая располагается справа от индекса степени раскисления.
Допустим, Ст6ГпсЗ говорит о том, что перед нами сталь группы А, марки Ст6, с повышенной долей марганца, полуспокойная, третьей категории. Если при заказе металла указана определенная категория, но неизвестна степень раскисления, категорию пишут за номером марки через тире, например Ст4-3. Для стали первой категории цифру 1 не ставят, поэтому маркировка выглядит таким образом: Ст4пс.
У сталей группы А не регламентируется химический состав, зато гарантируются механические свойства. Такие металлы обычно становятся материалом деталей, при изготовлении которых не используется горячая обработка, то есть сварка, ковка и прочие методы.
Для стали группы Б производитель не гарантирует механические свойства, а ее ключевой характеристикой считается химический состав. Этот металл используют для изделий, проходящих термообработку и горячую обработку давлением, например, штамповку, ковку.
Сталь группы В поставляют в соответствии с механическими характеристиками, отвечающими нормам для группы А. Тогда как по химическому составу этот металл должен подходить под требования к углеродистым конструкционным сталям группы Б. Такой материал применяют в большинстве случаев для изготовления сварных конструкций.
Стали углеродистые качественные конструкционные, выпускаемые по ГОСТ 1050-74
Они отличаются от сталей обыкновенного качества меньшей долей серы, фосфора и прочих вредных примесей в составе. Также они имеют более узкие пределы содержания углерода в каждой марке и чаще всего более высокую концентрацию кремния и марганца.
Рекомендуем статьи
Для маркировки качественных углеродистых конструкционных сталей используют двузначные числа, которые говорят о содержании углерода в сотых долях процента. Также нужно учитывать, что данный металл поставляют с гарантированными показателями химического состава и механических свойств.
По степени раскисления выделяют кипящую (кп), полуспокойную (пс), спокойную сталь, которая не имеет соответствующего индекса. Буква Г также свидетельствует о повышенной доле марганца, но в пределах 1%.
Данная сталь бывает катаной, кованой, калиброванной, круглой с особой отделкой поверхности, которая известна как серебрянка.
Стали углеродистые специального назначения, выпускаемые по ГОСТ1414-75
Они имеют хорошую и повышенную обрабатываемость резанием, поэтому известны как автоматные стали. В первую очередь, такой металл применяется для изготовления деталей массового производства. При его обработке на станках-автоматах образуется короткая и мелкая стружка, обеспечивается меньший расход режущего инструмента, снижается уровень шероховатости обработанных поверхностей.
Автоматные углеродистые конструкционные стали со значительной долей серы и фосфора хорошо обрабатываются. Чтобы добиться высокой обрабатываемости резанием в металл вводят селен, свинец, теллур в качестве технических добавок.
Для маркировки данной группы сталей используют букву А и цифры, по которым можно определить среднее содержание углерода в сотых долях процента. Существуют такие марки автоматной стали: А12, А20, АЗО, А40Г.
Металл первой марки используют для производства неответственных деталей, тогда как из остальных делают элементы, призванные работать при повышенном напряжении и давлении. Данная сталь поступает в продажу в качестве прутков круглого, квадратного и шестигранного сечений. Стоит оговориться, что такой металл не подходит для изготовления сварных конструкций.
Стали листовые, а именно котельные, ГОСТ 5520-79 и ТУ, предназначены для производства котлов и емкостей, работающих под давлением. Поэтому такие углеродистые конструкционные стали нашли применение в сфере изготовления паровых котлов, судовых топок, камер горения газовых турбин, прочих изделий. Их задача состоит в том, чтобы справляться с переменными давлениями и температурами в пределах +450 °С.
Немаловажным качеством котельной стали является хорошая свариваемость. Для этого в металл добавляют титан и дополнительно раскисляют его алюминием.
Существует несколько марок углеродистой котельной стали: 12К, 15К, 16К, 18К, 20К, 22К, доля углерода в них находится на уровне 0,08–0,28 %. Металл поставляют в виде листов толщиной не более 200 мм и поковок в состоянии после нормализации и отпуска.
Характеристики углеродистой конструкционной стали в строительстве
Для строительных нужд используются углеродистые конструкционные стали с небольшой концентрацией легирующих элементов, то есть хрома, марганца и кремния. Доля углерода в них не выходит за пределы 0,1–0,2 %. Данный металл отличается хорошей свариваемостью и другими важными при изготовлении строительных конструкций свойствами. К ним относятся:
- хорошая ковкость и жидкотекучесть;
- высокая твердость и ударная вязкость;
- оптимальные параметры относительного удлинения и прочности.
За счет производства изделий для строительной сферы из низколегированных, а не углеродистых сталей удается на треть сократить издержки на сырье. Легирование позволяет улучшить закаливаемость металла и повысить его предел текучести.
Чаще всего среди углеродистых конструкционных сталей используются такие марки, поставляемые в виде сортового проката, листов, полос и прутков:
Перечисленные стали хорошо свариваются и поддаются прочим способам обработки, поэтому подходят для изготовления строительных конструкций любого размера и конфигурации без значительных трудозатрат.
Ограничения по использованию углеродистых конструкционных сталей
Доля углерода фиксируется при помощи цифры в маркировке – от этого показателя зависит качество и область применения изделий из стали.
Свойства изделий, возможные сферы их использования
Из данного металла производят малонагружаемые детали, ведь они имеют небольшую прочность, высокую пластичность и хорошо поддаются сварке. Также изделия подходят для штамповки холодным способом, однако их нельзя подвергать термическому воздействию. Сплав является материалом для сложных деталей автомобилей, ответственных сварных конструкций
Для получения такого металла углеродистую конструкционную сталь улучшают закалкой и горячим отпуском до температуры + 650 °C. В результате увеличивается уровень прочности деталей, при этом снижается пластичность, что позволяет резать металл. Данную сталь используют в сфере машиностроения
Эти материалы имеют значительное содержание марганца, поэтому из них делают элементы, обладающие повышенной упругостью и стойкостью к износу, например, рессоры, пружины. Благодаря отжигу материал поддается резанию
Металл имеет большую долю серно-фосфорных, свинцовых добавок и используется для изготовления деталей, подвергающихся значительной обработке без вреда для самого инструмента. Это автоматные стали с добавлением серы, фосфора, свинца, которые, в соответствии с названием, обрабатывают станками-автоматами
Если нужно добиться повышенной твердости, сопротивляемости износу элементов из углеродистой конструкционной стали, используют графитизацию, наклеп, наплавку.
Чтобы не ошибиться при выборе марки металла под конкретные задачи, важно понимать перечисленные выше свойства конструкционных сталей. Если вас не покидают сомнения, стоит посоветоваться со специалистами – они точно помогут подобрать подходящий материал.
Почему следует обращаться именно к нам
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.
Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.
Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.
Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.
Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.
Конструкционная сталь
Конструкционная сталь пользуется сегодня огромным спросом. Она незаменима при изготовлении промышленных механизмов и возведении строительных конструкций, так как обладает высокой прочностью, пластичностью и сопротивляемостью к разрушению.
Используется данный материал и в других сферах человеческой деятельности. К примеру, из него производят детали для разного рода станков, горячекатаный рядовой прокат, пружины, рессоры, мелкие крепежные элементы и много чего еще. Однако при выборе конструкционной стали следует иметь в виду, что она бывает разных видов, у каждого из которых свои физические и химические характеристики.
Описание конструкционной стали
Конструкции и механизмы, применяемые в промышленности или строительстве, должны отвечать повышенным требованиям прочности. Для их изготовления применяется материал, обладающий особыми технологическими качествами. Использование металла с нужными свойствами – основа безопасной эксплуатации всей конструкции в разнообразных условиях. В соответствии с химическими, физическими и механическими характеристиками таким материалом может быть конструкционная сталь.
Ключевой особенностью такого металла является способность выдерживать постоянные и переменные нагрузки. Нередко от него ожидается также износостойкость или антикоррозийные свойства. Иногда выдвигаемым требованиям соответствует обычная углеродистая конструкционная сталь. Но в некоторых случаях ее качества необходимо дополнять или усиливать за счет легирования особыми химическими элементами.
Рекомендуем статьи по металлообработке
В структуру сталей этого типа входят такие полезные добавки, как железо, кремний, медь, марганец и другие вещества, однако главную роль в них играет углерод. Именно он наделяет конструкционный металл ключевыми свойствами и определяет степень его прочности. От концентрации этого элемента зависит устойчивость объекта к хладноломкости, его способность выдерживать производственные нагрузки и переносить различные погодные условия.
Конструкционная сталь делится на несколько классов в зависимости от уровня содержания в них вредных примесей – серы и фосфора. Чем он выше, тем ниже порог хладноломкости и красноломкости материала.
Существует классификация, где за основу берется концентрация в сплавах S и P:
- менее 0,05 % – это конструкционные стали обыкновенного качества;
- менее 0,035 % – качественные конструкционные стали;
- менее 0,025 % – высококачественные стали;
- менее 0,015% – особо высококачественные стали.
Классификации конструкционных сталей
Есть и другие способы классификации сталей такого типа. Если брать за основу российские марки, то можно выделить:
- Нелегированные углеродистые стали, произведенные в соответствии с ГОСТом 1050.
- Низколегированные конструкционные стали с добавлением углерода, изготовленные согласно ГОСТу 5058 – такой вид материала пользуется спросом в строительстве.
- Среднелегированные стали, регламентируемые стандартом ГОСТа 4543.
- Качественные рессорно-пружинные стали, требования к которым отражены в ГОСТе 14959.
- Специальные конструкционные – к этой группе относятся высоколегированные стали с антикоррозийными свойствами и особыми характеристиками. Руководство по их производству, как правило, определяется ТУ фирм-изготовителей. Химический состав таких материалов нередко позволяет относить их, скорее, к сплавам на основе железа, нежели к сталям.
Ключевым признаком, позволяющим отнести сталь к типу конструкционной, является доля углерода в составе готового сплава. Но с ее определением не все так просто: если минимальный показатель концентрации данного вещества в изделии указан четко и составляет 0,05 %, то максимальный представляет собой «плавающую» величину и варьируется между 0,7 % и 0,85 %. Стоит отметить, что в отдельных случаях такая же доля углерода в металле свойственна и инструментальным сталям.
Примером тому может служить сталь марки 60С2. Разные инженеры-металловеды относят ее то к рессорно-пружинным, то к инструментальным материалам. Эта же двойственность характерна таким маркам, как У7А, ШХ9 или 75Г.
В связи с этим для того, чтобы более четко обозначить верхний предел концентрации углерода в конструкционной стали, важно также обратить внимание на следующие характеристики:
- Диапазон текучести – максимальный показатель деформации сжатия, при котором объект не разрушается. Если он увеличен, то такой материал можно классифицировать как конструкционный, если нет – как инструментальный.
- Диапазон концентрации некоторых примесей в стали, попадающих в нее в процессе выплавки.
Еще одна классификация видов конструкционной стали, применяемая на производстве, основана на различии сплавов по части химических, физических и механических свойств. В нее входят следующие группы:
- углеродистые;
- низколегированные;
- легированные;
- автоматные;
- подшипниковые;
- пружинные;
- теплоустойчивые.
Выделенные группы отличаются не только по указанным свойствам конструкционного материала, но и по областям его использования.
Сферы применения конструкционной стали
Конструкционные стали, обогащенные углеродом, по праву можно считать универсальным материалом – их сфера применения распространяется от производства строительных конструкций и механизмов до деталей оборудования и машин. Такая многофункциональность этого вида сплава обусловлена комплексом его качественных характеристик.
Применение легированных конструкционных сталей имеет большое значение в области машиностроения, строительства, а также в производственных работах. Дело в том, что они обладают уникальными химическими, физическими и механическими свойствами. Эти характеристики материала определяются содержанием в сплаве того или иного вещества.
Свойства конструкционной стали низкой степени легирования позволяют использовать материал для производства локомотивов и вагонов для железнодорожного транспорта, трамваев или метрополитена, изготовления полевой и сельскохозяйственной техники, строительства инженерных конструкций и сооружений – словом, в условиях повышенной нестабильности нагрузок и температур.
Теплоустойчивая сталь способна выдерживать до +6 000 °С. Поэтому из нее изготавливают элементы приборов, работающие в течение длительного времени, а также детали, подвергающиеся постоянным нагрузкам и высокому термическому воздействию.
Из подшипниковой конструкционной стали выполняют элементы, подверженные точечным переменным нагрузкам – это места, где в одноименных механизмах шарики, ролики и беговые дорожки колец вступают в контакт.
Пружинная или пружинно-рессорная сталь применяется для изготовления пружин, рессор, сильфонов и т. д.
Из автоматной стали производят крупные партии мелких деталей и крепежей при помощи автоматических станков.
Достоинства и недостатки конструкционных сталей
Преимущества конструкционной стали раскрываются только после термической обработки изделий из данного сплава, поэтому их в обязательном порядке подвергают температурному воздействию. Главные плюсы такой процедуры:
- После закалки и отпуска детали из конструкционной стали ее способности к сопротивлению пластическим деформациям обостряются и даже превосходят в этом углеродистые сплавы (при одинаковой концентрации углерода).
- При одинаковых условиях конструкционный металл прокаливается сильнее, чем углеродистый. Поэтому внешние элементы большой толщины лучше выполнять именно из легированной конструкционной стали. Состав такого сплава должен позволять детали прокалиться насквозь.
- При термической обработке стали такого типа можно использовать «мягкие» охладители – масла. Эта технология значительно снижает риск появления трещин или коробления при закалке.
- После термообработки и процедуры легирования конструкционная сталь приобретает дополнительный запас вязкости, увеличивается порог ее хладноломкости. Так, оборудование с деталями из данного материала становится надежнее.
Недостатки конструкционной стали:
- Значительная часть изделий из этого материала подвержена обратимой отпускной хрупкости.
- После температурного воздействия конструкционный металл становится мягче, снижается его сопротивление усталости.
- В результате ковки и прокатки элементы из конструкционной стали приобретают строчечную структуру. Кроме того, в местах деформирования их свойства становятся неоднородными. Такой материал впоследствии с трудом поддается резке.
- В конструкционном материале, легированном никелем, могут образовываться флокены – светлые пятна в изломе. В поперечном разрезе они могут проявляться в виде трещинок разной направленности. Такое явление возникает за счет выхода водорода, растворенного в стали.
Выбор конструкционной стали по ее маркировке
Конструкционные металлы маркируются по сложной системе, включающей в себя множество обозначений. Рассмотрим ее подробнее.
Углеродистая сталь обыкновенного качества стандартно обозначается сочетанием букв «Ст» и цифры от 0 до 6 – они отражают номер марки. Затем идет описание степени раскисления: в спокойных сталях – «сп», полуспокойных – «пс» и кипящих «кп».Причем в конструкционной стали марки 0 степень раскисления не указывается, зато отражается содержание в ней фосфора (не более 0,07 %), серы (не более 0,06 %) и углерода (не более 0,23 %). Марки от 1 до 6 могут быть полуспокойными, а от 1 до 4 –кипящими. Доля С, Мn, Si, S, P в них строго прописана.
Согласно ГОСТу 1050–88 маркировка углеродистых качественных сталей включает двузначное число, говорящее о концентрации в нем углерода (в сотых долях процента): 0, 8, 10, 20, …60. Из такого обозначения очевидно, что, например, сталь 20 содержит 0,20 % углерода.
Углеродистые конструкционные стали тоже бывают спокойные, полуспокойные и кипящие, но перед первыми индекс не ставится. Так, можно встретить обозначения полуспокойных металлов: 08 пс, 10 пс, 20 пс, и кипящих: 08 кп, 10 кп, 20 кп.
Литая макроструктура углеродистых сталей обозначается заглавной буквой «Л» (сталь 60 Л).
Определяет маркировку легированных конструкционных сталей ГОСТ 4532–71. Так, она должна содержать буквенно-цифровое обозначение, отражающее химический состав материала:
- алюминий – Ю;
- бор – Р;
- ванадий – Ф;
- вольфрам – В;
- кобальт – К;
- кремний – С;
- марганец – Г;
- медь – Д;
- молибден – М;
- никель – Н;
- ниобий – Б;
- титан – Т;
- хром – Х.
Цифра, стоящая после буквы, обозначает приблизительную долю легирующих компонентов в сплаве. Если ее нет, значит, таких веществ в материале содержится не более 1 %.
Цифра, расположенная в самом начале маркировки, обозначает количество углерода в легированном материале (в сотых долях процента). Так, запись «30ХН3А» означает, что в данном сплаве содержится порядка 0,30 % С, около 1 % Сr и 3 % Ni. Заглавная «А» в конце записи отражает высокое качество стали. Особо высококачественные стали (которые получаются, например, путем электрошлакового переплава) маркируются буквой Ш – 30ХГС-Ш.
Некоторые группы конструкционных сталей содержат дополнительные обозначения в начале маркировки. Так, автоматные начинаются с буквы «А», строительные – с «С», подшипниковые – с «Ш» (ШХ15).
Автоматные стали характеризуются повышенной концентрацией кальция, селена, серы, теллура и фосфора. Согласно ГОСТу 1414–75 увеличенное содержание некоторых веществ должно обозначаться соответствующей буквой: кальций – «Ц», селен –«Е», сера – «А», свинец – «С». Двузначное число, стоящее перед буквами А, АС или АЦ говорит о концентрации углерода (в сотых долях процента). Например, автоматные стали с повышенным содержанием кальция – АЦ20, …, АЦ30ХН; селена – А35Е, А40ХЕ; серы – А11, А20,…, А40; свинца – АС14, АС40, …, АС45Г2.
Низколегированные конструкционные стали обозначают буквой «С» и числом, отражающим предел текучести (мегапаскаль), например, С235, С285,…, С590. В конце записи могут стоять заглавные «Д» – обозначающая усиление антикоррозийных свойств, «К» – отражающая специальный химический состав, или «Т» – говорящая об усилении прочности материала за счет термообработки.
Требования, которые выдвигает потребитель к свойствам конструкционной стали (химическим, физическим или механическим) выполняются за счет специфического состава сплава, подбора методик термического воздействия и способов упрочнения поверхности, а также качества металлургической обработки. Такой материал может быть представлен на рынке в формате проката, труб и пр.
Стоимость изделий из конструкционной стали в основном зависит от состава сплава и размеров детали.
Читайте также: