Сталь как обозначается в химии
Сталь представляет собой сплав, основными элементами которого являются железо и углерод.Его массовая доля теоретически не превышает 2,14% (на практике – не более 1,5%). В состав также входят постоянные и случайные примеси, оказывающие различное влияние на качество материала (сера, фосфор, марганец, кремний), могут добавляться другие элементы.
Сталь производят переработкой передельного чугуна и лома. Во время этого процесса снижается содержание углерода и ненужных примесей, вводятся необходимые дополнительные компоненты, обеспечивающие требуемые свойства материала.
Виды сталей и их классификация
Черная металлургия производит множество видов стали с различными характеристиками, материалы классифицируют по способу производства,химическому составу, назначению, качеству, степени раскисления, структуре.
По способу производства
Свойства стального сплава во многом зависят от технологии изготовления. Традиционный способ переплавки передельного чугуна и лома – ведение процесса в мартеновских печах, основными недостатками которых были длительность плавки и значительные выбросы в атмосферу вредных веществ. Постепенно мартены заменялись кислородными конвертерами и электропечами. Высококачественные легированные стальные сплавы получают только по технологии электрошлаковой переплавки.
По химическому составу
По химсоставу стали разделяют на углеродистые, применяемые в стандартных эксплуатационных условиях, и легированные, используемые при высоких температурах и/или в агрессивных средах. Углеродистые и легированныестали классифицируют по содержанию углерода на следующие типы:
- низкоуглеродистые – содержат менее 0,3%C;
- среднеуглеродистые – содержание C в интервале 0,3-0,7%;
- высокоуглеродистые – доля углерода превышает 0,7%.
Процентное содержание существенно влияет на технические характеристики как легированных, так и нелегированных стальных сплавов. Чем оно больше, тем выше твердость и хрупкость материала, тем хуже обрабатываемость резанием, свариваемость, способность к деформированию. Для холодной штамповки изделий сложной формы выбирают сплавы, в которых содержание Cне превышает 1%. Низкоуглеродистые стали свариваются без ограничений, то есть не требуют предварительного подогрева и особых условий охлаждения. При сварке средне- и высокоуглеродистых сплавов во избежание трещинообразования применяют дополнительные технологические операции.
Углеродистые стали содержат железо, углерод, постоянные и случайные примеси; легированные, помимо этих компонентов, – добавки, обеспечивающие требуемые технические характеристики. Распространенные легирующие элементы и их действие:
- Хром (Cr). Дешевый и распространенный элемент, введение которого в состав стальных сплавов повышает их прочность, твердость и прокаливаемость. При содержании в количестве 13% и более повышают коррозионную стойкость материала.
- Никель (Ni). Дефицитнаядобавка, вводимая обычно в количестве не более 5%. Часто используется в коррозионностойких сталях совместно с хромом. Служит для снижения порога хладноломкости, обеспечения прочности и ударной вязкости. Обеспечивает малый линейный и объемный коэффициент термического расширения. В настоящее время уделяется внимание разработке безникелевых коррозионностойких марок.
- Молибден (Mo) и вольфрам (W). Дорогостоящие лигатуры, применяемые при производстве быстрорежущих сталей для повышения их теплостойкости. Эти элементы увеличивают красностойкость, износостойкость, ударную вязкость.
- Марганец (Mn). В количестве до 0,6% является постоянной примесью. При искусственном повышении процентного содержания марганец выполняет функции более дешевой альтернативы никеля. Он повышает ударную вязкость, износостойкость и твердость при сохранении хорошей пластичности. Mn связывает серу и, тем самым, нейтрализует ее негативное воздействие на качество материала. Минус марганца – повышение чувствительности сплава к перегреву.
- Кремний (Si). Как и марганец, является постоянной примесьюв количестве до 0,4 %. Искусственное повышение его содержания позволяет повысить упругость и прочность материала. Высокий процент Si сообщает сплаву особые свойства, необходимые в электротехнической индустрии, при производстве рессорно-пружинных, кислото- и окалиностойких марок.
- Титан (Ti). Обеспечивает комплекс ценных эксплуатационных характеристик – прочности, твердости и пластичности, повышает теплостойкость материала.
Классификация легированных марок стали по количеству легирующих добавок:
- низколегированные – до 5%;
- легированные – 5-10%;
- высоколегированные – выше 10%.
По назначению
По областям применения все марки стали условно разделяют на следующие виды:
- Конструкционные. Наиболее обширная категория, используемая в строительстве при создании сварных металлоконструкций, в машиностроении, для сооружения сетей инженерных коммуникаций. К ней относятся – стали обыкновенного качества, качественные углеродистые, низко- и среднелегированные марки. Конструкционные стальные сплавыподвергаются различным видам термической (ТО) и химико-термической обработки (ХТО).
- Инструментальные. Используются при производстве режущего, измерительного, штамповочного инструмента. К ним предъявляются высокие требования по прокаливаемости, способности сохранять прочность и износостойкость при нагреве.
- Специального назначения. Это конструкционные легированные сплавы с особыми свойствами –кислотостойкие, жаростойкие, жаропрочные, с высоким электросопротивлением.
Таблица условных обозначений химических элементов в маркировке
Наименование элемент | Условное обозначение | Наименование элемента | Условноеобозначение |
Хром | Х | Азот | А |
Кремний | С | Никель | Н |
Титан | Т | Кобальт | К |
Медь | Д | Молибден | Мо |
Вольфрам | В | Алюминий | Ю |
Ванадий | Ф | Марганец | Г |
По качеству
Качество – это совокупность характеристик, которые определяются особенностями производства, составом сырья, дополнительными технологическими приемами. Категории качества:
- Обыкновенного качества. К этой группе относятся только нелегированные марки. Количество серы не превышает 0,06%, фосфора – 0,07%.
- Качественные. Бывают нелегированными и легированными. S – не более 0,04%, P – до 0,04%.
- Высококачественные – нелегированные и легированные. Количество серы до 0,02%, фосфора – 0,03%.
- Особовысококачественные. Это легированные марки, полученные способами электрошлакового или электродугового переплава, содержат минимально возможное количество вредных примесей: серы – не более 0,15%, фосфора – до 0,025%.
По степени раскисления
Раскисление – это операция, при которой из сплава удаляется кислород, вызывающий его хрупкое разрушение при высокотемпературных деформациях. Элементы, используемые для раскисления: алюминий, марганец, кремний.Классификация марок стали по степени раскисления, влияющей на технологические свойства материала:
- Кипящие. По мере твердения выделяются газы, создающие имитацию кипения состава. Для раскисления в этом случае используется марганец. Обычно к этой категории относятся малоуглеродистые марки. Их выгружают из печи практически сразу после внесения раскислителей. В отдельных случаях расплав раскисляют в ковше. Из кипящих сплавов производят прокат крупного сечения, который затем переплавляют на материал более высокого качества или подвергают горячей деформации для получения проката меньших размеров сечения.
- Полуспокойные. Бывают только углеродистыми. Отличаются хорошей ковкостью. Для раскисления используются марганец и алюминий.
- Спокойные. Качественные легированные марки производят только спокойными. Для раскисления применяют марганец, кремний, алюминий. Кислород в этих сплавах практически весь связывается раскислителями, образовавшимися в результате окислительных реакций,поднимается наверх и удаляется вместе со шлаком. Расплав охлаждается и не сопровождается выделением газов.
По структуре
Структурная форма стали зависит от химического состава, способа производства, дополнительных технологических операций. Различают структуру материала в отожженном и нормализованном состояниях. В отожженном состоянии возможно 6 типов структуры:
- Доэвтектоидная. В структуре имеются феррит и перлит, который является смесью двух фаз – феррита и цементита (или карбидов). К ферритному классу относятся все углеродистые и низколегированные стальные сплавы.
- Эвтектоидная. Перлитная структура обеспечивает хорошую обрабатываемость стального сплава. Ее дисперсные виды – троостит и сорбит.
- Заэвтектоидная. Перлит и цементит, который является представителем фаз внедрения.
- Ледебуритная. Первичный ледебурит (эвтектическая смесь перлита и цементита).
- Аустенитная. Это твердые растворы, пересыщенные углеродом. Сплавы этого класса образуются при высоких концентрациях хрома, никеля и марганца. Они отличаются высоким уровнем ударной вязкости.
- Ферритная. Представляет собой твердые растворы, слабо насыщенные углеродом.
Углеродистые стали могут иметь структуру одного из трех первых классов, легированные – всех шести. После нормализации возможны 4 структурных состояния: ферритное, перлитное, аустенитное и мартенситное. Мартенситная структура, присущая средне- и высоколегированным сталям, характеризуется высокими прочностными характеристиками и мелкозернистостью.
Принципы классификации и маркировки стали по российской системе
В России используются буквенно-цифровые маркировки, конкретный тип которых зависит от качества сплава.
Как расшифровать марку стали в европейской и американской системах
Для коррозионностойких сталей в Европе и Америке часто используют систему маркировки AISI. Она предусматривает наличие трех цифр, одной или нескольких букв. Первая цифра в маркировке металла обозначает класс стали. Следующие две цифры соответствуют порядковому номеру сплава в группе. Значение букв, используемых в маркировке стальных сплавов:
- содержание углерода менее 0,03%;
- содержание Св пределах 0,03-0,08%;
- сплав содержит азот;
- малоуглеродистые стали, содержащие азот;
- высокая концентрация серы и фосфора;
- содержится селен, B – кремний, Cu – медь.
Таблица обозначений легированных сталей в разных системах маркировки
Сталь: состав, свойства, применение
Сталь – это сплав железа с углеродом с добавлением различных примесей, оказывающих влияние на основные характеристики продукта. При заказе материала нужно учитывать, какими свойствами должна обладать сталь, так как механические и химические свойства стали напрямую влияют на то, где ее можно использовать.
Сталь – это один из основных промышленных материалов, используемых в разных отраслях, от машиностроения до медицины. Сырье представляет собой сплав, в котором соединяется железо с углеродом. Также добавляются и другие примеси, оказывающие значительное влияние на основные характеристики конечного продукта.
Состав стали
Основа состава – железо и углерод. В сплаве обычно содержится не более 2,14%.
Основной критерий классификации – химический состав. Вся представленная на рынке продукция разделена на два основных вида сырья:
- Углеродистая сталь. В ее составе кроме железа и углерода также есть фосфор, сера, марганец и кремний. В зависимости от процентного содержания углерода сырье разделено на высоко-, средне- и низколегированные марки. Этот материал можно применять, даже если перед вами стоит задача создать инструмент, использующийся под постоянным напряжением и высокими нагрузками.
- Легированная сталь. К основным компонентам добавлены дополнительные легирующие элементы. Среди них – множество типов веществ, от кремния, бора и азота до хрома, циркония, ниобия, вольфрама и титана. Это влияет не только на стоимость, но и на качество продукции, область использования и характеристики. В продаже вы найдете множество типов продукции – жаропрочные, цементуемые, улучшаемые стали. В зависимости от структуры сырье может быть доэвтектоидного, ледебуритного, эвтектоидного и заэвтектоидного типа.
Свойства и применение стали можно определить по ее марке.
В состав стали могут добавляться различные примеси. В зависимости от того, в каком количестве они представлены в рецептуре, выделяются два основных типа продукции:
- Обыкновенного качества. В составе такого сплава углерода не более 0,6%. Основные стандарты, используемые в изготовлении –ГОСТ 14637 и ГОСТ 380-94. Многие виды продукции в маркировке указываются как «Ст», что означает стандартное качество. На рынке этот тип сырья –один из наиболее доступных по стоимости.
- Качественный. К этой категории относятся легированная и углеродистая разновидности. Уже в маркировке указывается особенность состава, количество углерода в сотых долях. Основной стандарт, которого придерживаются изготовители, – ГОСТ 1577. Стоит такая сталь дороже, чем продукт обыкновенного качества. При этом материал намного более пластичен, хорошо сваривается и отлично защищен от механического воздействия.
Основные свойства стали
При заказе материала нужно учитывать, какими свойствами должна обладать сталь, чтобы подойти под конкретную область применения. Если не понимать такой особенности, есть риск покупки сырья, не соответствующего прочности, уровню защиты от коррозии, качеству свариваемости и другим характеристикам.
Рассмотрим основные характеристики материала.
Механические
Показывают, какие варианты обработки можно выбирать и где использовать. Есть несколько основных параметров:
- Прочность. Показывает, какую нагрузку можно прикладывать к детали, пока не появятся первые признаки разрушения. Для каждой марки материала указывается этот параметр, а также предел текучести.
- Предел прочности. Указывает на защищенность материала от механического напряжения.
- Предел текучести. Дает представление о растягиваемости материала. Это помогает понимать, насколько сильно можно растянуть материал до момента, пока процесс будет продолжаться, даже когда нагрузка перестанет прикладываться.
- Пластичность. Чтобы материал можно было использовать в изготовлении различных типов деталей и заготовок. Такая характеристика помогает сырью менять форму, прописывается, чтобы определить параметры относительного угла изгиба и удлинения.
- Ударная вязкость. Напрямую связана с пределами динамических нагрузок. Характеристика указывает, насколько сильный удар сможет выдержать готовое изделие или заготовка, прежде чем начнет окончательно разрушаться.
- Твердость. Показывает предельную нагрузку по площади до момента возникновения вдавливания. Может определяться разными методами, как Бринелля, так и Виккерса.
Физические
Параметры дают понять, возможно ли применение стали в строительстве или различных областях промышленности. Есть три значимых центральных показателя:
- Плотность. В характеристике зашифровано, какая масса стали содержится в указанном объеме. Чем выше прочность, тем больше защищенность от деформации, сильного давления и других потенциальных угроз.
- Теплопроводность. Параметр дает представление, насколько быстро тепло передается по заготовке. Параметр очень важен для промышленности, к примеру, при изготовлении радиаторов или труб для теплотрасс.
- Электропроводность. Позволяет оценить безопасность применения материала в местах, где есть риск удара током. Также сплав можно выбрать и для установки в сферах, где имеют значение его проводниковые характеристики.
Химические
Весь набор параметров дает представление о том, как поведет себя материал в разных температурах или средах с разной степенью агрессивности. Есть четыре основных параметра:
- Окисляемость. Процесс окисления вызывается контактом металла с кислородом, может стимулироваться увеличением температуры. На уровень окисляемости влияет содержание углерода и среда, в которой используются изделия. Чем больше подверженность окислению, тем быстрее на поверхности появится ржавчина.
- Защищенность от коррозии. Указывается для разных сред. Может меняться при использовании на открытом воздухе, а также при контакте с водой или почвой.
- Жаростойкость. Помогает понять, при каком нагреве на металле начинает постепенно развиваться коррозия. Характеристика напрямую связана с окисляемостью.
- Жаропрочность. От жаростойкости отличается тем, что затрагивает не коррозийную стойкость и защиту от окалины, а саму прочность. Знание параметров поможет вам понять, до какой температуры нагреется заготовка, прежде чем ее можно будет сломать или деформировать.
Технологические
Показывают возможность обработки с применением различных технологий. Центральные параметры:
- Ковкость. Чем она выше, тем быстрее можно будет придать форму постоянным внешним механическим воздействием.
- Жидкотекучесть. Если этот параметр находится на высоком уровне, расплавленный материал сможет лучше заполнять пустоты.
- Свариваемость. Помогает соединять различные заготовки между собой. Отличается как в зависимости от типа использованной сварки, так и самого сплава.
- Обрабатываемость резанием. Сталь можно обрабатывать разными видами режущих инструментов для создания металлопроката и деталей с разными параметрами и областью применения.
Применение стали
Механические и химические свойства стали напрямую влияют на то, где ее можно использовать. Проще всего определиться со сферой по марке, указанной на сырье. Так продукцию с хорошей жаропрочностью можно использовать в средах, где есть риск воздействия постоянных высоких температур. То же относится к маркам, отличающимся хорошей свариваемостью и коррозийной стойкостью.
По сферам производства можно выделить несколько основных категорий:
- Строительные. Применяются при создании металлоконструкций различного масштаба, арматуры, обшивки стен. Необходимые характеристики отличаются в зависимости от области применения. Так для одних видов сплава важна стойкость к коррозии во влажных средах, для других – защита от окисления при контакте с почвой. Но все используемые типы сырья должны хорошо свариваться, иметь повышенную прочность при постоянном или периодическом сильном механическом давлении. В сочетании с важной для строителей доступностью стоимости такими параметрами обладают низколегированные сплавы и варианты обычного качества.
- Инструментальные. Применяются для изготовления инструментов различного назначения. Все сплавы разделены на три категории. Первая используется для создания штампованных деталей. Вторая – при производстве режущего инструмента, третья – измерительного с высокой точностью. Лучшим решением станет заказ высоколегированных и высокоуглеродистых материалов. Они не только хорошо защищены от износа, но и отличаются твердостью, хорошей теплопроводностью.
- Конструкционные. Разнообразны по сфере использования: применяются для металлоконструкций, а также для деталей, крупных механических узлов. Лучшее решение – применение сплава с малой долей марганца. Легирование позволяет расширить список полезных характеристик. Эксперты рекомендуют обратить внимание на высокопрочные, автоматные, износостойкие и другие марки.
Также всегда можно заказать материалы со специальными характеристиками для конкретной зоны применения. Это могут быть как сплавы с повышенной жаропрочностью, так и защищенные от окисления при контакте с кислородом, хорошо плавящиеся, электропроводные и многие другие.
Материаловедение: сталь
Что такое сталь? Каковы плотность, температура плавления и другие характеристики стали? В чем роль стального проката в производстве, и как объяснить неуклонный рост цен на сталь в последние годы? Обо всем этом и не только – в нашей новой статье.
Сталь – сплав железа (Fe) с углеродом (C). При этом доля углерода в составе мала: до 2,14% в теории и обычно не более 1,5% на практике. Как и в любых других сплавах, в сталях всегда присутствуют примеси (сера, фосфор, кремний), а для улучшения свойств могут вводиться легирующие элементы.
В силу высокой прочности, жесткости, а также из-за дешевизны сталь используется повсеместно и считается ключевым продуктом черной металлургии. Что важно в свете «зеленых» трендов: сталь можно перерабатывать практически бесконечно. По данным Всемирной ассоциации стали, 75% стальных изделий, выпущенных с момента появления мартеновской плавильной печи в 1864 году, до сих пор в обиходе.
Эти железосодержащие сплавы похожи и по составу, и способом получения. Принципиальное различие в доле углерода. Если его меньше 2,14% от состава, то это сталь; если больше – чугун. Во многом отсюда и разница в свойствах. Так, сталь легче в обработке, тверже и прочнее, ее не разбить ударом. Чугун же хрупче, тяжелее, но более теплоемкий (дольше держит тепло) и в отличие от стали подходит для литья, в том числе художественного. Отметим также, что чугун часто используется для передела в сталь.
Отметим, что у стали высокая температура плавления – это не ЦАМ, не свинец и уж тем более не олово, которые можно плавить у себя на кухне. Сами по себе стальные изделия увесистые – в 2,5 раза тяжелее аналогичных алюминиевых (плотность сплавов алюминия – 2400-2900 кг/м³). Ну и очевидное: все черные стали реагируют на магнит. Причем чем меньше в них углерода, тем лучше магнитные свойства.
Все знают: железо и его сплавы ржавеют. Сталь не исключение. Главная причина появления ржавчины – повреждение оксидной пленки. У тех же алюминия, хрома и никеля она тонкая, но плотная и прочная – настолько, что атомы кислорода не в состоянии диффундировать через нее. У сталей же оксидная пленка хоть и плотная, но непрочная и в любых условиях быстро растрескивается.
Для предотвращения окисления и развития ржавчины сталь покрывают химическим способом – например, оцинковкой, погружая заготовку в бак с расплавленным цинком. В этом случае молекулы цинка реагируют с молекулами железа, и на поверхности образуется защитный слой. Для закрепления эффекта его покрывают дополнительными слоями цинка. Идея способа основана на том, что отрицательный потенциал цинка выше, чем у железа, и в такой паре железо будет восстанавливаться, а цинк отважно послужит щитом для коррозии.
Чтобы металлические конструкции не ржавели, применяют стали, легированные хромом (12-20%) и некоторыми другими металлами, такими как никель, титан и молибден. Защита от ржавчины здесь заключается в формировании инертного слоя оксида хрома, способного к самовосстановлению.
Сразу развеем расхожий миф, что нержавеющая сталь якобы не магнитится. По факту это справедливо для хромникелевых и хромомарганцевоникелевых сталей, к которым относится всем известная пищевая нержавейка. В то же время техническая нержавеющая сталь, из которой делают клапаны, фитинги и трубы, на магнит вполне себе реагирует.
Впрочем, термообработка не ограничена одной закалкой. Есть еще как минимум отжиг, нормализация и отпуск. Отжигу сталь подвергают для улучшения обработки (принося в жертву твердость); нормализации – для выравнивания структуры и устранения зернистости. Отпуск нужен для снятия внутренних напряжений и снижения хрупкости (пусть, опять же, и в ущерб твердости). Отметим, что отпуск выполняется после закалки и считается важным этапом термообработки, тогда как без отжига и нормализации зачастую можно обойтись.
В любой марке стали есть примеси, пусть и в микроскопическом количестве. Некоторые, такие как кремний, даже улучшают свойства сплава. Однако вредных примесей больше; среди них сера, фосфор, а также газы: кислород, азот и водород.
• Хром (Cr). Придает износостойкость, способность к закаливанию и устойчивость к коррозии. Стали с содержанием хрома от 12% относят к нержавеющим.
• Марганец (Mn). Может присутствовать в виде примесей. Дополнительная присадка марганца улучшает прокаливаемость стали и нивелирует вредное воздействие серы.
• Молибден (Mo). Одна из главных упрочняющих легирующих добавок в жаропрочных сталях. Доля в составе незначительна: 0,15-0,8%.
• Ванадий (V). С ним сталь становится прочнее и устойчивее к износу. Содержание: 1,0-1,5% в штамповых сталях, 0,2-0,8% в специальных.
Содержат только железо, углерод и примеси. Определяющий элемент – углерод: чем его больше, тем сталь жестче и тверже. Чем меньше – тем сталь пластичней, ударопрочней, удобнее в обработке и сварке.
Легированные – это стали, которые кроме основных компонентов и примесей содержат специально вводимые легирующие добавки. По типу легирования такие стали подразделяют на хромистые, марганцовистые, хромоникелевые, хромо-никель-кремний-марганцовистые и др. По доле легирующих элементов в составе – на низко- (<5% С), средне- (5-10% C) и высоколегированные (>10% C).5%>
Качество стали определяется спецификой производственных процессов, перерабатываемым сырьем, видом плавки и другими факторами. Все это, в свою очередь, напрямую зависит от состава сплава и содержания в нем примесей.
Стали обыкновенного качества. Рядовые углеродистые стали, где углерода менее 0,6%, серы – в диапазоне 0,045-0,060%, фосфора – 0,04-0,07%. Являясь самыми дешевыми, такие стали уступают сталям остальных классов по всем ключевым свойствам.
Качественные стали. Могут быть углеродистыми (марки 08, 10, 15…) или легированными (0,8кп, 10пс…). Нормативы по примесям: серы – не более 0,04%, фосфора – 0,035-0,04%.
Высококачественные стали. Углеродистые или легированные. Содержание примесей: серы – не более 0,02%, фосфора – не более 0,03%. Примеры марок: стали 20А, 15Х2МА.
Особовысококачественные стали. Эти стали только легированные и содержат не более 0,015% серы и не более 0,025% фосфора. Примеры марок: 20ХГНТР-Ш, 18ХГ-Ш.
Идут на изготовление сварных строительных конструкций, узлов механизмов, деталей машин. Могут быть углеродистыми или легированными. Примеры марок: Ст1, Ст2, Ст3; 05, 10, 15; 15Г, 20Х, 45 ХН и др.
Из них делают режущие и ударные инструменты – от лезвия топора и губок плоскогубцев до напильника и сверла. Само собой, такие стали должны быть твердыми, поэтому содержание углерода в них не менее 0,7%. Примеры марок: У7, У8ГА, У10А (У – углеродистая; число – усредненное содержание углерода, выраженное в десятых долях процента; Г – повышенное содержание марганца; А – высококачественная сталь).
По большому счету, это те же конструкционные стали, но со специфическим составом, особым способом производства или обработки. Нержавеющие, жаропрочные, электротехнические, кислотостойкие стали – все они относятся к специальным.
Речь о том, сколько кислорода было выведено из жидкого металла при производстве стали и сколько его по итогу осталось. В целом: чем меньше в сплаве остается кислорода, тем чище состав и однородней структура.
Кипящие стали (кп). Раскисляются только марганцем. Обычно это низкоуглеродистые стали с большим количеством оксидов углерода – отсюда просадка в прочности и пластичности. Как следствие, кипящие стали склонны к разрушению, растрескиванию, плохо свариваются и поэтому идут в ход лишь в простых конструкциях. Из плюсов: кипящая сталь самая дешевая.
Спокойные стали (сп). Раскисляются в плавильных печах и ковшах алюминием, марганцем, кремнием. В отличие от кипящих, спокойные стали стабильны: содержат мало остаточного кислорода и затвердевают спокойно, без выделения газообразных примесей. Применение: конструкции ответственного назначения.
Полуспокойные стали (псп). Частично насыщенные кислородом стали, раскисляемые марганцем и алюминием. Всегда углеродистые. Среднепрочные, применяются в строительстве.
Нет более неудобного вопроса, чем «сколько стоит сталь»? Во-первых, какая и где – на бирже или у местных трейдеров металлопроката? Во-вторых, эта статья написана в марте 2022 года, когда экономику России (да и других стран мира) засосало в турбулентную фазу. Мы можем лишь констатировать, что в ближайшие год-два стоимость стали будет расти. Причем расти кратно, если сравнивать с допандемийным уровнем. Связано это с несколькими причинами:
• Первая волна коронавируса, во время которой приостанавливался сбор лома и ограничивалась работа сталеплавильных заводов. К осени 2020 года из-за лавины отложенного спроса и промедления трейдеров это привело к общемировому дефициту стали.
• Конфликт России с Украиной, последующие санкции, разрыв производственных и логистических цепочек. Это уже ускорило девальвацию рубля, а в перспективе может привести и к гиперинфляции, если конфликт окажется затяжным.
• Зеленые тренды в соответствии с определенными ООН целями в области устойчивого развития (ЦУР). Страны, включая мировую фабрику под названием Китай, уже сокращают выплавку стали ради снижения углеродного следа. Это в каком-то смысле парадоксально, ведь именно сталь – один из важнейших материалов для производства ветрогенераторов и электрокаров, так агрессивно насаждаемых на Западе.
В России фурнитуру для входных и межкомнатных дверей производят по большей части из низкоуглеродистой конструкционной стали. Одна из самых ходовых марок – Ст3 и ее аналоги. Из ее листов изготавливают дверные петли, корпуса и планки замков, розетки дверных ручек, задвижки и, например, крепеж. Подчеркнем: мы говорим о видимых элементах конструкции. Для тех же петельных подшипников есть инструментальные подшипниковые стали (например, ШХ-15). Для возвратных пружин в ручках и замках – средне- и высокоуглеродистая пружинная сталь.
(+) Прочность и антивандальность. Сталь крепче цветных металлов вроде алюминия, латуни и ЦАМ и дольше пилится. Вспомните корпуса гаражных навесных замков – там сплошь и рядом либо сталь, либо чугун.
(+) Дешевизна. Просто приценитесь, сколько стоят стальные дверные петли, а сколько – аналогичные по размерам латунные. Подсказка: первые дешевле в 3-5 раз.
(+) Магнитные свойства. Благодаря этому мы имеем счастье пользоваться такими чудесами инженерной мысли, как магнитные защелки и магнитные дверные стопоры.
(-) Низкие литейные качества. Снова обратимся к дверным петлям. В то время как латунные петли получают литьем под давлением, стальные – гибкой и штамповкой. Отсюда «побочные эффекты»: заметные швы и стыки, зазоры от 2 мм, неровные края, несоразмерность.
(-) Коррозия. Антикоррозийное покрытие рано или поздно повредится, и изделие начнет ржаветь. Кто-то возразит: но как же, есть же, скажем, дверные ручки из нержавеющей стали. А мы и не спорим. Но именно в России в частном секторе они не в ходу из-за дороговизны и ограниченности дизайна, продиктованной опять же низкими литейными качествами.
(-) Вес. Если вы подбираете небольшой и удобный в переноске навесной замок для багажа или противоугонного троса, то, возможно, есть смысл предпочесть алюминий. При одинаковых габаритах алюминиевый замок окажется в 2,5 раза легче стального. Тем более что упрочнение тела замка в данном случае неоправданно: в маленьких замках куда проще перекусить дужку, чем водить пилой по корпусу.
Расшифровка и классификация марок сталей
Железо химически-активно и встречается в природе только в виде соединений, руды состоят из гидратов, закисей солей и оксидов. Богатая руда содержит не более 57% чистого металла, а изделия быстро корродируют. С развитием металлургии было изобретено множество сплавов на железной основе, которые превосходят его по прочности и имеют надежную молекулярную структуру. Стали классифицируют по способу раскисления, назначению и содержанию элементов. Обозначения марок сформированы разными системами стандартизации.
Для точной расшифровки марки стали воспользуйтесь нашим марочником стали
Классификация по химическому составу
В естественной среде железо реагирует с окислителями, галогенами, фосфором и серой. Для очищения сырья и преобразования оксидных соединений в роли восстановителя сначала применяли каменный уголь. Так при горении в недостатке кислорода, выплавляли чугун, из которого уже частично удалены оксиды и примеси, а доля углерода составляет не менее 2,14%. Для выплавления стали из полученной массы необходимо уменьшить его концентрацию до 2%.
Углеродистые
По составу отличаются от чугуна только концентрациями. При обработке снижается количество углерода и вредных включений. Соотношение кремния и марганца – может корректироваться для придания дополнительной прочности и стойкости к коррозии. По количеству углеродных соединений различают следующие группы:
- Высокоуглеродистая (0,6-2%);
- Среднеуглеродистая (0,25-0,55%);
- Низкоуглеродистая (до 0,25%).
Углеродная составляющая участвует в формировании карбидов и укрепляет структуру на молекулярном уровне. Чем выше содержание, тем больше стойкость к механическим нагрузкам, особенно ударным. Понижение придает пластичность и возможность выпускать изделия повышенной точности. Из этих сплавов получают инструменты (топоры, валы), детали, испытывающие большое напряжение (оси, арматура) и малонагруженные (зубчатые колеса, пружины). Расшифровка характеристик стали производится по буквам:
- Ст – сталь;
- Цифра – номер, согласно регламенту, ГОСТ 380-2005;
- Г – марганец выше 0,8%;
- КП, ПС или СП – метод раскисления.
Группу объединяет название «конструкционные», их обозначают маркировками: Ст0, Ст1кп, Ст1пс, Ст1сп, Ст2кп, Ст2пс, Ст2сп, Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп, Ст4кп, Ст4пс, Ст4сп, Ст5пс, Ст5сп, Ст5Гпс, Ст6пс, Ст6сп.
Отдельно выделяют группу с названием «инструментальные», они содержат 0,7% углерода и дополнительно очищаются от вредных составляющих. Расшифровка букв в обозначении согласно ГОСТ 1435-99:
- У – углеродистая;
- Цифры: углеродная концентрация в десятых долях процента;
- Г – марганец выше 0,33%;
- А – повышенное качество, серы не более 0,03%, фосфора – до 0,035%.
Инструментальные нелегированные стали обозначают следующими маркировками: У7; У8; У8Г; У9; У10; У11; У12; У13; У7А; У8А; У8ГА; У9А; У10А; У11А; У12А; У13А.
Легированные
Для придания специальных свойств в расплав добавляют различные присадки. Процесс называют легированием. По соотношению легирующих элементов марки разделяют на низколегированные (до 2,5%), среднелегированные (до 10%) и высоколегированные (до 50%).
В таблице приведены металлы, включения примесей и их обозначения в маркировке:
Марганец – Mn | Г |
Хром – Cr | Х |
Никель – Ni | Н |
Титан – Ti | Т |
Молибден – Mo | М |
Бериллий – Be | Л |
Медь – Cu | Д |
Азот – N | А |
Ванадий – V | Ф |
Ниобий – Nb | Б |
Алюминий –Al | Ю (от ювенал) |
Селен – Se | E |
Кобальт – Co | К |
Бор – B | P |
Фосфор – P | П |
Кремний –Si | С (от силициум) |
Цирконий –Zr | Ц |
Например, 08Х18Н10 расшифровывается как 0,08% углерода (С), 18 % хрома (Cr), 10% никеля (Ni). Обозначаются не все составляющие, а только говорящие об основных свойствах. Легирование применяется во всех случаях, когда неприемлемо использование углеродистых сплавов. Технический процесс сложнее и дороже, но присадки помогают продлить срок службы в сложных условиях или создать материал со специальными возможностями.
Также в начале маркировки могут присутствовать такие обозначения:
Р — быстрорежущая;
Ш — шарикоподшипниковая;
А — автоматная;
Э — электротехническая.
У этих марок есть ряд особенностей:
- в шарикоподшипниковых сталях содержание хрома указывается в десятых долях процента (например, сталь ШХ4 содержит 0,4% хрома);
- в марках быстрорежущей стали после буквы Р сразу ставится число, указывающее содержание вольфрама в процентах. Также все быстрорежущие стали содержат 4% хрома (Х).
Классификация по назначению
Часто для группы со сходными химическими формулами и эксплуатационными ресурсами применяют термины, указывающие на условия применения. Как правило, такая продукция подвергается испытаниям на соответствие по нескольким одинаковым параметрам: на устойчивость к ударным нагрузкам, кислотам, экстремальным температурным режимам. Специальные обозначения в маркировке есть у нелегированных групп: строительные (С), подшипниковые (Ш), конструкционные (Сп), инструментальные (У). Отдельно выделяют режущие легированные сплавы (Р).
Классификация сталей по назначению
Конструкционные
Категория объединяет марки способные выдерживать разнонаправленные механические нагрузки: изгибающие, ударные, растягивающие. Отличительной особенностью является стойкость к усталости, они не трескаются и не истираются при сочетании различных негативных факторов. По составу могут быть углеродистыми и легированными. Применяются для изготовления конструкций и деталей повышенной прочности.
Если сталь является литейной конструкционной, то в конце маркировки ставят букву Л. Например: 40ХЛ, 35ХМЛ.
Инструментальные
Стальные изделия без легирования очень прочны, но в некоторых областях их качеств недостаточно, поэтому применяют присадки. Например, марганец участвует в формировании особо-прочной молекулярной структуры (аустенит) и увеличивает стойкость к механическим деформациям. Алмазная сталь ХВ5 долго сохраняет заточку, может резать очень твердые материалы, при этом требует ухода и легко ломается. Ее прародителями были булатные и дамасские клинки, плохо переносящие сырость и хрупкие ближе к острию.
Инструментальные нелегированные стали обозначаются буквой У. Затем ставится цифра, которая обозначает среднее содержание углерода в стали: У11; У12; У13;. Высококачественные стали дополнительно обозначают буквой А на конце — У11А; У12А; У13А.
Особого назначения
Способность выдерживать определенные физические или химические воздействия определяет область применения. К особенным свойствам относится: немагнитность, кислотостойкость, жаростойкость, жаропрочность. Появляются узкоспециальные названия: авиационные (нагрузка свыше 1300Мпа), судостроительные (стойкость в щелочной среде), криогенные (отсутствует хрупкость при –196 С о и ниже).
Классификация по способу раскисления
При плавлении руды необходимо удалить кислород, иначе готовый прокат быстро заржавеет. Так как кислород находится в несвободном состоянии, требуется разрушить оксидные и гидратные соединения. В реакции раскисления участвуют активные вещества: ферромарганец, силикомарганец, расплав алюминия и другие. Некоторые реагенты действуют только в вакуумной среде.
Для обозначения способа раскисления используют такие обозначения:
Уже более 100 лет разрабатываются методы прямого получения металла, минуя переплавку в чугун и использование кокса, загрязняющего расплав продуктами горения. В результате применения газообразных и твердых восстановителей, обработки в электропечах, реакторах, реторах, получается раствор, насыщенная газами в разной степени. Разделение не относится к легированным продуктам, так как добавление присадок требует регламентированной чистоты.
Кипящая
Для получения используют минимальное количество реагентов, поэтому остается много кислорода и углекислого газа. Слитки имеют неоднородное строение, в одной части оседают вредные примеси, поэтому до 5% готового слитка удаляется. Материал с низкими характеристиками, хрупкий. Воздух концентрируется в сердцевине, но наружная корка может иметь достаточную прочность. Возможно изготовление крепежных деталей котлов и конструкций, контактирующих с взрывоопасными средами. Главный недостаток: быстрая коррозия.
Спокойная
Благодаря сложным технологическим процессам присутствие газов и неметаллических включений минимально, а структура однородна. Из слитков изготовляют металлоконструкции, детали или используют для создания дорогостоящих сплавов.
Полуспокойная
Промежуточное состояние. Упрощенные технические циклы удешевляют производство, а свойства достаточны для выпуска несущих элементов сварных и клепаных конструкций. Из Ст5пс изготовляют болты, гайки, упоры, которые можно использовать в плюсовых температурах и низкой влажности воздуха.
Классификация по качеству
Чем меньше осталось вредных включений, тем выше качественные характеристики, но иногда это не оправдано экономически. Система стандартизации предусматривает три класса.
Качественная
К категории относят углеродистые продукты. В них больше всего фосфора, серы и газов, они недостаточно однородны. Качества удовлетворительны для производства конструкций и деталей.
Нелегированные качественные стали обозначают буквой К. Например, 20К
Высококачественная
Низкое содержание вредных примесей и неметаллических включений обозначается в маркировке буквой А в конце. Из марок У8 и У8А вторая будет обладать лучшими характеристиками, изделия получатся точнее и качественнее.
Букву А в начале пишут в марках конструкционных сталей высокой обрабатываемости (А12–автоматная, А30, А40), но в таком случае она не отображает соответствие стандарту чистоты.
Особо качественные
Сплавы с минимально-возможным количеством примесей обозначаются по способу получения в конце маркировки:
- ВД – вакуумно-дуговая переплавка;
- Ш – электрошлаковый переплав;
- ВИ – вакуумно-индукционный;
- ПД – плазменно-дуговой.
Особое качество достигается легированием, так как основу, полученную из чугунного расплава, невозможно привести к таким показателям. Содержание серы снижено до 0,1%, фосфора – до 0,025%. Примеры: 30ХГСН2МА – ВД. Здесь пропущены цифры, так как концентрации присадок составляют от 0,8 до 1,2%, поэтому их доля округляется до 1.
Классификация по структуре
Легирующие элементы формируют собственные соединения и создают молекулярную решетку. Строение металлов по своей природе зернистое, подвергается изменениям при термообработке и давлении. Геометрия химических связей определяет отношение к классу: ферриты, аустениты, перлиты и мартенситы. В обозначениях эта информация не отображается, но принадлежность всегда учитывается для применения в той или иной области.
Аустенит
Атомы углерода находятся внутри ячеек кристаллической решетки металла. Легирующие элементы способны замещать атомы железа и вставать на их место. Аустениты отличаются прочностью и однородностью, не магнитны, относятся к коррозийно-стойким и жаропрочным материалам, применяются для транспортировки агрессивных веществ, работы в особо сложных условиях.
Феррит
Ферритная решетка похожа на куб правильной формы. Поликристаллическое строение делает ферриты мягкими, при переохлаждении зерна становятся крупными, увеличивается хрупкость. Представители класса являются сильными магнетиками, поэтому используются в радиотехнике и электронике для поглощения электромагнитных волн, выпуска антенн и сердечников.
Мартенсит
При закаливании и охлаждении формируется игольчатое строение, при этом атомы железа смещаются на вершины ячеек, а углеродные концентрируются в центре. Это создает внутренние напряжения. Интересно, что мартенситовое превращение происходит в определенных температурных промежутках, при котором достигается предельная твердость. Явление сопровождается возникновением «памяти метала». Сталь, находящаяся в таком состоянии способна вернуть форму после механической деформации.
Мартенсит получают различными методами термообработки и легирования, присадки помогают стабилизации решетки. Степень зависит от назначения, иногда необходимо полное прокаливание, а если этого не требуется, то воздействуют лишь на поверхностные слои. Применение осложняется дополнительными требованиями к обработке, особенно сварке. Уникальные свойства пока не изучены до конца.
Перлит
На этой стадии облегчается механическая обработка. Перлит – явление распада при охлаждении после нагрева. Зерна измельчаются или расслаиваются на пластинки. Состояние создают искусственно для пластической деформации.
Цементит
Особо устойчивое состояние. Решетка FeC3 имеет ромбическую форму, физически цементит очень тверд и хрупок. Формируется при кристаллизации расплава чугуна. В сталях образуется при охлаждении аустенита и нагревании мартенсита (разупрочняющий отжиг).
В металлургии термообработка производится для получения лучших эксплуатационных характеристик конкретного состава и состоит из многочисленных процедур нагревов и охлаждений в разной температуре: сфероидизация, гомогенизация, изотермический отжиг, разупрочнение, стабилизация.
Классификация по способу производства
Многое зависит от применяемого оборудования. Доменные печи давно заменены на более экологичные и эффективные варианты. За прошедшее столетие появилось несколько новых технологий:
- Конверторная или бессемеровская. В процессе выплавки в конвертер поступает сжатый, обогащенный кислородом воздух, углеродная составляющая выжигается. Дополнительное топливо не требуется, так во время реакции высвобождается дополнительная энергия и масса нагревается самостоятельно. До изобретения технологии невозможно было получить температуру плавления 1600 С о , поэтому производили только чугун при 1400 С о . В усовершенствованном виде способ применяется и сегодня.
- Мартеновская. Ученый предложил использовать полученное тепло повторно: выходящий воздух нагревает входящий. Для этого печь была оснащена регенератором, не только восстанавливающим тепло, но улавливающим копоть и конденсат. В установках действуют термические режимы, не превышающие 2000 С о . Изобретение позволило переплавлять лом, регенераторы используются в современных установках, особенно стеклодувных и плазменных.
- Электросталь – оборудование нового поколения, использующее индукцию и дуговую выплавку. В современных установках получают наиболее чистые от загрязнений продукты, затраты электричества снижаются, так как поддерживается точная температура. В плазменно-дуговых печах создают жаропрочные и тугоплавкие материалы. Появилась возможность получать стали прямым методом, без плавления чугунной основы.
Предельное повышение температуры до 20000 С о позволило получить железо, усиленное молибденом и титаном. Вместе с технологией плавления одновременно разрабатываются методы металлообработки: резки, гибки, проката.
Таблица маркировки сталей
В таблице приведено содержание элементов в распространенных марках стали.
Читайте также: