Сталь для холодной обработки
Только несколько металлов легко поддаются холодной обработке, в том числе, низкоуглеродистые стали, а также ферритные и аустенитные нержавеющие стали. Холодную обработку металлов часто называют также нагартовкой, наклепом, деформационной обработкой. Холодная обработка включает деформирование металла в пластической стадии при комнатной температуре или ниже температуры рекристаллизации. Степень, до которой металл можно подвергать холодной обработке зависит от его пластичности.
Только несколько металлов легко поддаются холодной обработке, в том числе, низкоуглеродистые стали, а также ферритные и аустенитные нержавеющие стали. Холодную обработку металлов часто называют также нагартовкой, наклепом, деформационной обработкой. Холодная обработка включает деформирование металла в пластической стадии при комнатной температуре или ниже температуры рекристаллизации. Степень, до которой металл можно подвергать холодной обработке зависит от его пластичности.
Механизмы холодной пластической деформации
При холодной пластической деформации металла происходит скольжение компонентов его структуры относительно друг друга. Известно, что металлы, в том числе, сталь, имеют кристаллическую структуру и состоят из зерен неправильной формы и различных размеров. Ориентация кристаллической атомной структуры в каждом отдельном зерне является упорядоченной, но имеет различное направление в разных зернах. В процессе холодной обработки зеренная структура металла изменяется, происходит фрагментация зерен, движение атомов и искажение атомной решетки (рисунок).
В результате холодной обработки зерна удлиняются, получают смещения атомной решетки и разбиваются на фрагменты. Для улучшения зеренной структуры нагартованного металла проводят специальные термические обработки: отжиг (отпуск) для снятия остаточных напряжений (возврат) и отжиг для формирования новых зерен (рекристаллизация).
В ходе холодной обработки металла в ослабленных местах атомной решетки зерен возникают плоскости сдвига, которые приводят к деформации зерен. При холодной обработке для продолжения деформирования металла требуются все более значительные усилия. При холодной обработке металла не происходит процессов рекристаллизации и возврата деформированных зерен. За счет увеличения плотности дислокаций, искажений атомной решетки и фрагментации зерен возникает упрочнение металла, которое называют наклепом, нагартовкой или деформационным упрочнением. Такое упрочнение металла вызывает в поверхностном слое изделия высокие сжимающие остаточные напряжения.
Преимущества холодной обработки
1) Повышение предела прочности и предела пластичности металла.
2) Повышение твердости металла, но снижение его пластичности.
3) Повышение качества поверхности и допусков на размеры.
4) Является эффективным способом повышения твердости для тех металлов, которые не способны упрочняться термической обработкой.
Недостатки холодной обработки
1) Только пластичные металлы, например, низкоуглеродистая сталь, могут подвергаться холодной обработке.
2) Возникают остаточные напряжения, не всегда благоприятные. Чрезмерная холодная обработка металла приводит к его охрупчиванию. Для восстановления пластичности металла требуется проведение отжига.
3) Зеренная структура металла искажается и фрагментируется – требуется термическая обработка.
4) Легко подвергать обработке только относительно небольшие изделия – большие требуют значительных усилий.
Металлы для холодной обработки
Следующие металлы легко подвергаются холодной обработке в виде листов и других простых по форме видов изделий.
1) Низкоуглеродистая сталь.
2) Медь.
3) Латунь.
4) Бронза.
5) Алюминиевая бронза.
6) Ферритные и аустенитные нержавеющие стали.
7) Сплавы на основе никеля (монель).
8) Нелегированный алюминий, сплавы алюминия с марганцем, сплавы алюминия с магнием, а также некоторые другие алюминиевые сплавы.
Процессы холодной обработки металлов
К процессам холодной обработки металлов относятся следующие:
1) Деформирование сдвигом или срезом: вырубка, пробивка, перфорирование, обрезка, продольная и поперечная резка и тому подобное.
2) Волочение: волочение проволоки, волочение труб, чеканка рельефа, правка растяжением.
3) Обработка давлением: холодная прокатка, чеканка, клепка, холодная штамповка, холодная ковка, накатка резьбы, накатывание насечки.
4) Гибка: гибка прутков, гибка на угол, роликовая правка, отбортовка.
Холодная обработка металлов
Холодная обработка металла является популярной технологией, которая включает в себя несколько методик. Этим способом достигают необходимых параметров заготовки без ее нагрева или разрушения, однако далеко не каждый материал доступен для обработки такого рода.
Помимо ограниченности по типу металла, холодная обработка имеет и ряд других недостатков. В нашей статье мы расскажем, как реализуется данная технология на практике, разберем ее плюсы и минусы, поговорим об охране труда во время этого процесса.
Понятие холодной обработки металла
Холодная обработка металлов представляет собой изменение формы изделий без их нагрева при помощи ряда манипуляций, в том числе резания. Для этого используются станки и ручные инструменты. Обычно к холодной обработке относят различные слесарные работы.
Хотя машиностроение непрерывно развивается, создаются новые технологии, холодная ручная обработка металлов все еще сохраняет значимую позицию. Правда, ее удельный вес в современной промышленности неуклонно снижается. Активнее всего ручная работа сменяется рубкой, сверлением, развертыванием, нарезкой резьбы на станках.
Не так ярко данная тенденция прослеживается в опиловке, шабровке, притирке, инструментально-лекальном деле, хотя и в этих сферах не так давно появилось специальное оборудование.
Слесарно-монтажные работы до сих пор проводятся без значительной механизации, однако доля ручного труда здесь сократилась благодаря взаимозаменяемости деталей, обработанных механическими способами. Ручная работа пока остается незаменимой только в сфере разметки.
VT-metall предлагает услуги:
Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы
Если на предприятии не удается перейти на использование станков, экономические показатели повышают благодаря рационализации методов. Холодная обработка металлов считается одной из областей, позволяющих задействовать научную организацию труда, в основе которой лежит наблюдение, определение эффективности разных подходов, хронометраж, пр.
Плюсы и минусы холодной обработки металлов
Данный способ имеет такие достоинства:
- повышается предел пластичности, прочности материала изделия;
- возрастает твердость, но снижается уровень пластичности;
- обеспечивается более высокое качество поверхности, повышаются допуски на размер;
- возрастает твердость, даже если этого не удается добиться при помощи термической обработки.
Минусы данного подхода:
- Может использоваться только для пластичных металлов, таких как низкоуглеродистая сталь.
- Во время обработки появляются остаточные напряжения, которые вызывают повышение хрупкости изделия. Изначальную пластичность возвращают при помощи отжига металла.
- Есть вероятность фрагментирования, изменения зерненой структуры металла – подобные дефекты устраняют посредством термической обработки.
- Холодная обработка крупных заготовок из металла предполагает значительные трудозатраты, расход времени, энергии, тогда как при работе с небольшими изделиями этот метод считается простым.
Металлы, используемые в холодной обработке
Холодная обработка металлов предполагает, что заготовки меняют форму, размер при комнатной температуре либо той, что не вызывает рекристаллизации.
Поэтому данный подход может использоваться лишь для некоторых материалов, таких как:
- низкоуглеродистая сталь;
- латунь;
- бронза;
- медь;
- алюминиевая бронза;
- аустенитные и ферритные нержавеющие стали;
- сплавы на базе никеля;
- нелегированный алюминий, а также ряд его сплавов.
Основные методы холодной обработки металлов
На производствах применяют пять способов холодной обработки металлов:
Ковка
Для работы с заготовками весом 0,3–20 кг выбирают пневматические молоты. Изделия массой 20–350 кг обрабатываются при помощи паровоздушных молотов. Деталям весом до 200 тонн придают необходимую форму гидравлическими прессами.
Холодная ковка позволяет выполнять:
- осадку, то есть расплющить деталь, сократив высоту при параллельном увеличении поперечного сечения;
- протяжку или растяжение поковки в длину с уменьшением поперечного сечения;
- прошивку, то есть создать глухое либо сквозное отверстие;
- гибку, что предполагает изгиб оси заготовки без образования складок и трещин с обеих сторон изделия;
- разгонку или увеличение ширины при одновременном уменьшении толщины детали.
Данный метод холодной обработки металлов давлением используется чаще других. С его помощью производят изделия значительной длины, то есть трубы, рельсы, профили строительных конструкций, листовой металл для сферы машиностроения.
Именно способом холодной прокатки выпускают фольгу из чистого алюминия толщиной не более 0,001 мм.
Прессование (штамповка)
Здесь принято говорить о двух подвидах, таких как объемная и листовая штамповка.
Объемная штамповка позволяет производить такие операции:
- выдавливание;
- высадка;
- формовка.
Для выдавливания используют прессы в штампах с пуансоном и матрицей, а роль исходной заготовки играет пруток либо лист. Методом прямого выдавливания изготавливают болты и клапаны, тогда как обратный способ используется для производства полых изделий.
Боковой метод дает возможность создавать тройники и крестовины. При работе со сложными изделиями прибегают к комбинированному выдавливанию.
Нужно понимать, что это единственный вид штамповки среди способов холодной обработки металлов, который обеспечивает максимальную деформацию поверхности без ее параллельного разрушения.
Холодная высадка признана методом изготовления продукции, имеющим наиболее высокий уровень производительности. Процесс может быть автоматизирован, тогда в минуту создается от 20 до 400 деталей. В качестве исходного материала используют пруток или проволоку диаметром 0,5–40 мм.
К высадке прибегают для производства элементов с местным утолщением, таких как заклепки, болты, винты, гвозди, шарики, звездочки, накидные гайки. При этом методе холодной обработки металлов коэффициент использования материала доходит до 95 %.
Холодная формовка близка к горячей штамповке, но требует больших усилий, ведь упрочнение и сила трения приводит к низкой формуемости материала. Чаще всего данный подход используют для производства изделий из цветных металлов.
Холодная листовая штамповка предполагает, что в качестве заготовок применяются листы, полосы, ленты толщиной до 10 мм. Данный способ обработки имеет целый ряд достоинств:
- позволяет формировать изделия, имеющие малый вес;
- обеспечивает высокую точность, качество поверхностей;
- имеет высокую производительность, давая возможность изготавливать на одном станке до 40 тысяч деталей за смену;
- предполагает автоматизацию работы, если в этом есть необходимость.
В процессе листовой штамповки деформируется вся заготовка либо ее фрагмент. В первом случае применяется отрезка и вырубка, а во втором – гибка, вытяжка, формовка.
Волочение
Этот способ холодной обработки металлов позволяет уменьшить диаметр, уплотнить поверхность проволоки, чтобы обеспечить более высокую прочность. Данный метод остается единственным подходящим для работы со значительными объемами проволоки.
Если при прокатке обработка ведется вращающимися валками, то при волочении заготовку обжимают неподвижной матрицей с фильерами. Нужно понимать, что за один цикл невозможно значительно снизить диаметр изделия, так как тянущее усилие прикладывается к тонкому концу.
Благодаря волочильным станам удается изготавливать проволоку, имеющую диаметр от одного микрона до шести миллиметров.
Редуцирование
Данный вид холодной обработки металлов предполагает размещение заготовки между вращающимися обжимными валами либо вращение задается самой детали, которая впоследствии формуется и уплотняется пуансоном.
Этот метод позволяет осуществлять такие операции:
- формирование наружной, внутренней резьбы;
- редуцирование труб;
- правка заготовок;
- гибка изделий.
Резьбонакатные станки при помощи накатных роликов или оправки нарезают наружную и внутреннюю резьбу М3 – М68. Редуцирование труб предполагает, в первую очередь, закатку либо раскатку концов на длину не более 200 мм.
Операция правки используется, чтобы придать заготовке верную геометрическую ось, тогда как гибка необходима для получения пружин с различным диаметром.
Обеспечение безопасности при проведении холодной обработки металлов
В процессе холодной обработки металлов опасность для сотрудников предприятия представляют такие факторы:
- движущиеся машины, механизмы;
- мобильные элементы оборудования;
- передвигающиеся изделия, заготовки, материалы;
- транспортные средства;
- избыточное содержание пыли, газов в воздухе рабочей зоны, аэрозолей фиброгенного действия;
- повышенное напряжение в электрической цепи;
- высокий уровень шума;
- вероятность пожаров, взрывов;
- острые кромки, заусенцы, шероховатости заготовок, инструментов, оборудования, металлическая стружка;
- слишком высокая/низкая температура оборудования, материалов;
- вибрации;
- патогенные микроорганизмы, содержащиеся в смазочно-охлаждающих жидкостях;
- тяжелый труд, предполагающий значительное напряжение работника.
Чаще всего несчастные случаи во время металлообработки происходят по причине несоответствия оборудования требованиям безопасности. Также проблема может скрываться в отсутствии необходимых защитных ограждений, блокировок, иных предохранительных устройств.
Подвижные части оборудования могут превратиться в источник травм, поэтому (согласно правилам безопасности при холодной обработке металлов) должны ограждаться. Либо они могут располагаться таким образом, чтобы прикосновение к ним было невозможным.
Кроме того, разрешается прибегать к иным средствам, в том числе двуручному управлению, чтобы избежать травмирования персонала предприятия.
Иногда ограждение и использование других средств, исключающих вероятность непосредственного контакта работников с подвижными элементами, негативно отражается на функционировании машин. Тогда нужно предусмотреть яркие цвета, знаки безопасности и сигнализацию, которая будет сообщать людям о запуске оборудования.
Около движущихся элементов, оказывающихся за пределами поля видимости оператора, монтируются механизмы управления аварийным торможением. Это делается на случай, если в опасной зоне оказывается персонал предприятия.
Дверцы, крышки, ограждения должны надежно удерживаться в закрытом, то есть рабочем, и открытом состоянии, что обеспечивается специальными приспособлениями. При необходимости они должны быть сблокированы с приводом для его отключения во время их открывания, снятия.
При холодной обработке металлов не допускается запуск и функционирование оборудования с неисправными ограждающими механизмами и без таковых. Невозможны любые операции вблизи техники при полном отсутствии либо наличии плохо закрепленных ограждений.
Рекомендуем статьи
Однако мало соблюсти нормы безопасности в сфере оборудования, важно грамотно организовать рабочие места. Последние должны располагаться за пределами линии движения грузов, доставляемых при помощи грузоподъемных средств.
Также необходимо, чтобы на рабочих местах были предусмотрены площадки со стеллажами, тарой, столами, местами для оснастки, материалов, заготовок, деталей и отходов, появляющихся в процессе производства.
Для специалистов, задействованных в холодной обработке металлов, подготавливаются удобные безопасные рабочие места, благодаря которым их действия не стесняются при осуществлении всех необходимых операций.
В целом, холодная обработка металлов представляет собой интересный, полезный и активно используемый предприятиями способ деформации, который позволяет значительно повысить эффективность труда.
Почему следует обращаться именно к нам
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.
Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.
Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.
Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.
Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.
Холодная обработка металла
Холодная обработка металла остается востребованной уже долгое время и сдавать свои позиции пока не собирается. Объясняется это не слишком высокой стоимостью оборудования относительно иных вариантов, а также огромным потенциалом метода. Впрочем, и других плюсов тут более чем достаточно.
Однако прежде чем начинать работу, нужно не только ознакомиться с возможностями конкретного способа металлообработки, но и хорошо понимать, что именно должно получиться на выходе. Тот или иной метод изменения технических характеристик материала выбирается в зависимости от конкретной ситуации, и холодная обработка металла тут не исключение.
Описание холодной обработки металла
Метод холодной обработки металла заключается в деформировании, которой подвергается заготовка, при температуре менее точки рекристаллизации или при нормальной (комнатной) температуре. Степень и глубина воздействия на заготовку во многом зависит от пластичности металла.
На практике из всех методов холодной обработки чаще всего используют слесарные работы, которые объединяет понятие «механическая обработка металлов».
Это достаточно большая группа, в которой при всех способах применяется твердый острый инструмент, механически воздействующий на заготовку. При этом в результате отделения слоев материала происходит смена формы изделия. Разница между величиной конечного продукта и первоначальной заготовки называется припуском.
Существует несколько видов механической обработки:
- Точение. В этом случае к закрепленной на вращающейся основе заготовке подводится резец – он снимает металл, создавая деталь с установленными в конструкторской документации размерами. Таким образом получают изделия, которые имеют форму тела вращения.
- Сверление. При этом к неподвижно закрепленной заготовке продольно подводится сверло, которое вращается вокруг своей оси, а затем медленно погружается в деталь. Данный вид обработки используется для изготовления круглых отверстий.
- Фрезерование. Отличие данного вида от сверления заключается в рабочей поверхности. Если у сверла это только передний конец, то у фрезы еще и боковая поверхность. Кроме того, фреза имеет возможность перемещаться в разные стороны (вправо, влево, вперед и назад). Данный вид обработки помогает создать изделие, имеющее необходимую конструктору форму.
- Строгание. Заготовка неподвижно закрепляется на основе, а резец перемещается относительно нее назад и вперед. Каждый проход инструмента снимает с детали слой металла. Некоторые агрегаты работают неподвижным резцом по двигающемуся изделию. Такой вид обработки используется для изготовления продольных пазов.
- Шлифование. Процесс осуществляется с помощью абразивного материала, который вращается или поверхность заготовки обрабатывается продольно возвратно-поступательными движениями, снимая с нее тонкие слои материала. Таким образом происходит подготовка изделия к нанесению покрытия.
Помимо вышеперечисленного, к холодной обработке металла относятся:
- Деформирование срезом или сдвигом – пробивка, обрезка, вырубка и перфорирование, а также поперечная, продольная резка и пр.
- Гибка – на угол, роликовая правка, гибка прутков, отбортовка.
- Обработка давлением – чеканка, холодная ковка, прокатка и штамповка, клепка, накатка, насечка, резьба, пр.
Распространенные виды холодной обработки металла давлением
Чаще всего под холодной обработкой материала подразумевается только один из ее методов – давлением. Давайте рассмотрим разновидности данного процесса.
Это высокотемпературный процесс, при котором происходит нагрев детали до оптимальной ковочной температуры – индивидуальной для каждой марки металла. Существуют следующие способы ковки:
- на молотах (паровых, гидравлических, пневматических);
- ручная.
На молотах (иначе – машинная ковка), а также ручная – это свободные варианты обработки. Они носят такое название, поскольку не происходит ограничения металла в процессе воздействия на него оборудования или инструмента.
Штамповка – это несвободная ковка. Причина заключается в матрице штампа, которая ограничивает заготовку. Под воздействием инструмента изделие приобретает ее форму.
Ковку часто используют при небольших объемах производства – единичном или мелкосерийном. Поковку получают разогревом изделия и размещением его между бойками молота. Подкладными же делают обжимку, топор или раскатку.
Прокатка – это пластическая обработка металла в холодном состоянии обжиманием. Она происходит на прокатном стане посредством вращающихся валков. Применяют ее для уменьшения поперечного сечения детали, а также для создания необходимого профиля. В настоящее время используют такие три способа прокатки, как:
- Продольная. Посредством нее изготавливается наибольшее число изделий. В процессе обработки валки обжимают деталь, проходящую между разносторонне вращающимися валками, оставляя толщину, которая равна зазору между последними.
- Поперечная. Таким образом обрабатываются тела вращения (например, цилиндры, шары, втулки и пр.). Поступательных движений деталь не производит.
- Поперечно-винтовая. Способ объединяет два предыдущих. Используется для производства деталей, полых изнутри.
- Волочение.
Это обработка металла холодным способом, технология которого заключается в протяжке детали, имеющей профиль круглого (фасонного) вида, через волоку (фильеру). Таким образом изготавливается проволока. Катанка (заготовка, имеющая больший диаметр) протягивается между фильерами, в результате чего выходит проволока малого диаметра.
Процесс волочения классифицируют:
- По типу: на сухое, когда проволоку протаскивают через мыльный порошок, и мокрое, когда в процессе задействована мыльная эмульсия.
- По обработке поверхности: на черновое и чистовое.
- По кратности переходов: на однократные и многократные. Последние осуществляются в несколько переходов, а поперечное сечение детали уменьшается постепенно.
- По температуре: на горячее и холодное.
- Прессование.
Данный процесс позволяет работать с хрупкими металлами, выдавливая их сквозь отверстия матрицы с помощью пресса.
Метод используется для изготовления сплошных или полых профилей из таких материалов, как алюминий, магний, титановые сплавы, медь. Детали используют для самолетов и автотранспорта, например, делают подвески, лопатки, трубы и пр.
Рекомендовано к прочтению
Бывает холодное и горячее прессование. Для таких пластичных материалов, как медь, олово, алюминий в чистом виде, применяется холодная обработка металла. Для тугоплавких материалов и сплавов, какими являются металлы, содержащие титан, никель и пр., используется горячая обработка, то есть перед прессованием инструменты и детали нагревают.
Процесс позволяет получить изделия, имеющие различную конфигурацию, например, с периодическим (постоянным) профилем, наружными либо внутренними ребрами и пр.
Производство идет на специальных прессах, где можно менять матрицы. Материалом изготовления матриц являются штампованные стали с высокой жаропрочностью.
Это метод, позволяющий получать деталь с помощью штампа, части которого ограничивают течение материала.
Используются два вида штампов: закрытые и открытые.
Открытые имеют зазор подвижных частей, через который происходит удаление облоя (переизбытка металла). Убирают его механическим способом в ходе окончательной обработки детали. Открытые штампы могут широко использоваться для обработки заготовок различной массы без предъявления к ней особых требований.
У закрытых штампов зазор отсутствует, поэтому металл остается внутри формы, не образуя облоя. Для такого процесса необходимо тщательно рассчитать деталь по объему.
С ее помощью производят изделия из полосы, листа или ленты металла, которые были получены прокаткой.
В производстве используют два вида (группы) операций:
- разделение – отрезка, вырубка и пробивка;
- образование формы – раздача, вытяжка, чеканка, отбортовка, гибка и пр.
Для листовой штамповки используют гидравлические и кривошипные прессы. В качестве инструмента применяют штампы с такими основными деталями, как пуансоны и матрицы.
Штампованное изделие в последующем, как правило, не требует доработки механическим способом. Для этого размеры пуансонов и матрицы тщательно рассчитывают в соответствии с техническими требованиями и только после этого запускают в производство.
Листовую штамповку применяют практически во всех областях промышленности. Данный метод позволяет изготовить детали с высокой точностью. Это могут быть и небольшие изделия для микроэлектроники, и части кузова автомобиля. Холодная обработка металлов резанием и давлением чрезвычайно востребованы.
Данный способ обработки предполагает два варианта размещения заготовки: между вращающимися валами, которые обжимают ее, либо заставляют вращаться саму заготовку, при этом формуется она пуансоном. Обжим и вращение формируют поверхность детали, и она уплотняется.
Существует несколько видов редуцирования:
- накатка резьбы (внутренней, наружной);
- редуцирование труб;
- правка деталей;
- гибка деталей.
Изделия с внутренней и наружной резьбой от М3 до М68 изготавливают на станках для накатки резьбы. При этом применяют накатные оправки и ролики. Редуцирование труб необходимо для раскатки и закатки концов (до 20 см). Правку деталей используют для исправления их геометрической оси. Гибка нужна для производства пружин различных диаметров.
Плюсы и минусы холодной обработки металла
Рассмотрим сначала преимущества:
- У металла возрастают пределы пластичности и прочности.
- Увеличивается твердость материала при одновременном снижении пластичности.
- Качество поверхности возрастает, как и допуски на размер.
- Повышается твердость материалов, структура которых не может стать более прочной при термической обработке.
Однако имеется и ряд недостатков:
- Холодная обработка используется исключительно при работе с пластичными металлами, например, с низкоуглеродистой сталью.
- Остаточные напряжения, появляющиеся в результате обработки, неблагоприятны для металла, так как он может стать хрупким. Чтобы восстановить пластичность, необходимо его отжечь.
- Вероятно проявление фрагментирования и искажения зеренной структуры металла. Для исправления требуется термическая обработка.
- Холодная обработка проста в применении для изделий небольшого размера, в то же время крупные заготовки требуют больших затрат труда, времени и энергии.
Немного о химической обработке металла
Специалисты с небольшой натяжкой, но относят химическую обработку к холодным работам. Перед окраской или для получения какого-либо эффекта металлы обрабатывают различными составами. Одной из основных их болезней является ржавчина. Она значительно ухудшает свойства изделий, поэтому важно не допустить или убрать с металлических поверхностей любые признаки появления коррозии.
Химической обработкой называют процессы, которые должны помочь убрать с помощью химических реакций поверхностный слой, а затем защитить металл от ржавчины. Существуют растворы, которые помогают сформировать окисные (или иные) соединения. В результате на поверхности образуется пленка, качество которой зависит от температуры обработки, химического состава средства и периода его воздействия, а также от того, насколько изделие было хорошо подготовлено к данной процедуре.
Химическую обработку применяют для увеличения прочности, защиты от ржавчины, а следовательно – повышения срока эксплуатации изделия.
Существует ряд методов химической обработки. Выделим основные из них:
- Распыление раствора – происходит при низком давлении струи вещества, которым обрабатывают металл.
- Погружение в раствор – изделие помещают на определенный период времени в действующее вещество.
- Гидроструйная обработка раствором – происходит только с использованием соответствующего оборудования.
Глубокое травление или химическое фрезерование используют в металлургии, машиностроении и т. д. для изделий, которые сделаны из тонкого материала, чья поверхность имеет сложную конфигурацию, или при обработке множества малых изделий.
Существуют и иные методы. Например, цинкование, оксидирование, фторирование, нитрирование, анодирование, хромирование, воронение и пр. Наука не стоит на месте, с каждым днем появляются все новые методы химической обработки.
Выбор лучшего из имеющихся методов зависит от габаритов и конфигурации изделия, норм производства и пр. В любом случае перед началом обработки необходимо тщательно подготовить поверхность. Для этого применяют грунтование или обезжиривание, также можно использовать протравку хромитами. Облегчить процесс можно с помощью специальных установок для химической подготовки.
Охрана труда при холодной обработке металлов
В процессе холодной обработки работники могут подвергаться негативному воздействию вредных, а иногда и опасных факторов. Это может быть высокое напряжение электросети, двигающиеся части агрегатов и оборудования, перемещение механизмов и машин и пр. Причиной большинства несчастных случаев на производстве, которые произошли в ходе работы на оборудовании для обработки металлов, является полное или частичное его несоответствие требованиям техники безопасности.
Все движущиеся части механизмов, которые могут стать источником травмы, следует ограждать либо их расположение должно предотвращать прикосновение к ним работника. Возможно также применение иных способов защиты, к примеру, использование двуручного управления.
Существуют виды оборудования, в которых нельзя ограждать (или использовать иные средства защиты) места вероятного соприкосновения работника с движущимися элементами агрегатов. В таком случае конструкция должна быть оснащена сигнализацией, которая включается одновременно с запуском станка. Дополнительно можно использовать различные знаки безопасности и сигнализирующие об опасности цвета. Аварийные кнопки или иные средства экстренной остановки оборудования должны быть установлены вблизи движущихся частей, которые не видны работнику. Это следует делать в случае, когда работники находятся в опасной близости от движущихся элементов установки.
Однако необходимо не только соблюдать требования безопасной работы с оборудованием, но и правильно организовать рабочее пространство. Все рабочие места следует располагать так, чтобы над ними не проходили линии переноса грузов грузоподъемными агрегатами.
Рабочие пространства должны быть оснащены площадками, на которых располагаются столы, стеллажи, тара и прочие хранилища материалов и заготовок, оснастки и полуфабрикатов, а также отходов и готовых изделий. Специалистам, участвующим в технологических операциях и соблюдающим правила холодной обработки металла, должно быть максимально удобно и безопасно работать.
Вдоль всего оборудования по полу обязаны располагаться трапы из дерева шириной ≥ 60 см от выступающих элементов оборудования.
Складирование заготовок и готовых изделий должно проводиться в специально отведенных местах – нельзя загромождать рабочие поверхности. Все детали должны быть установлены основательно, обеспечивая удобство зачаливания при использовании подъемного оборудования. Штабели не могут быть выше 100 см. Проходы следует всегда оставлять свободными.
Коррозионностойкая сталь
Коррозионностойкая сталь (она же нержавейка) прочно вошла в нашу жизнь и применяется в различных сферах: от химической и авиационной промышленности до изготовления товаров повседневного спроса. Все дело в том, что этот вид стали показывает гораздо лучшие характеристики, чем обычная, а разнообразие марок позволяет подобрать материал, наиболее точно отвечающий запросам.
История этого материала насчитывает более века, а количество марок превышает две сотни, поэтому важно понимать их особенности, выбирая нержавейку в качестве материала для своих нужд. В нашей статье мы расскажем, какими характеристиками обладает коррозионностойкая сталь, на какие типы ее делят, а также поговорим о нюансах западной и отечественной маркировки.
Характеристики коррозионностойкой стали
Коррозионностойкая сталь, изобретение металлурга Гарри Бреарли, была запатентована в 1913 году в Англии. Благодаря данному материалу сталелитейная и другие отрасли промышленности вышли на совершенно новый уровень.
Обычные стальные сплавы получили уникальные свойства, смогли сопротивляться образованию ржавчины за счет добавления в их состав хрома. Для коррозионностойких сталей и сплавов содержание данного элемента должно быть не меньше 10,5%. Таким образом достигаются следующие характеристики:
- очень высокая устойчивость к появлению коррозии;
- отличная прочность;
- хорошая свариваемость;
- простота обработки при помощи холодной деформации;
- большой срок эксплуатации, в течение которого материал сохраняет изначальные качества;
- привлекательный вид изделий.
Обязательными компонентами коррозионностойких сталей являются хром и железо. За счет того, что данные добавки дополняют друг друга, материал приобретает уникальные характеристики. Хром соединяется с кислородом и формирует на поверхности сплава оксидную пленку – именно она препятствует формированию ржавчины.
Однако описанные свойства нержавеющей стали можно еще улучшить при помощи легирующих добавок, таких как никель, титан, молибден, ниобий, кобальт, пр. Благодаря легированию на производствах создают множество видов стальных нержавеющих сплавов, которые имеют различные характеристики и назначения.
Углерод, содержащийся в коррозионностойкой стали, обеспечивает металлу высокую твердость и прочность. Кроме того, данный элемент входит во все стальные сплавы, так как от него зависят многие значимые свойства.
Нержавеющая сталь имеет ряд уникальных качеств, поэтому ее активно применяют в сферах, предполагающих, что изделие или оборудование должно постоянно функционировать при высокой влажности и воздействии агрессивных сред. Из коррозионностойких сталей делают предметы для использования в промышленности и даже в быту – именно этот металл является материалом столовых приборов, ножей, элементов коммуникаций, ограждающих конструкций, деталей оборудования, пр.
4 вида коррозионностойкой стали
Классификация нержавеющих сплавов установлена ГОСТами, где сталь описана в соответствии с производственными процессами и сферами ее использования.
Среди сплавов выделяют группы на основании их структуры, разных легирующих добавок и доли углерода в составе. От содержания элементов зависит область применения конкретного сплава.
Коррозионностойкие стали делят на такие основные группы:
Ферриты
В ферритную группу входят хромистые стали, на которые ставится маркировка в виде буквы F. Речь идет о сплавах, характеризующихся значительной долей хрома, содержание которого доходит до 30%, при небольшом количестве углерода – до 0,15%. Такие металлы имеют ферромагнитные свойства, иными словами, отличаются намагниченностью за пределами магнитного поля при низкой критической температуре.
Чтобы добиться необходимых свойств металла, на производствах подбирают оптимальное соотношение углерода и хрома.
Среди главных достоинств таких коррозионностойких сталей выделяют высокую прочность и пластичность.
Не менее важны их следующие свойства:
- хорошо поддаются холодной деформации;
- имеют высокую сопротивляемость образованию ржавчины;
- обеспечивают возможность термообработки при помощи отжига.
Мартенситы
В данную группу входит сталь со структурой, формируемой при помощи закалки заготовки или слитка металла и его дальнейшего отпуска. Стоит пояснить, что закалка предполагает нагрев до температуры, превышающей критический уровень, а под отпуском понимают быстрое охлаждение.
Благодаря подобному воздействию перестраивается кристаллическая решетка коррозионностойкой стали, последняя приобретает большую твердость. Однако параллельно может возрасти хрупкость.
В итоге получаются сплавы с такими качествами:
- высокая твердость;
- увеличенная прочность;
- упругость;
- стойкость к ржавчине;
- жаропрочность.
За счет увеличения доли углерода удается повысить твердость металла и устойчивость к износу.
Аустениты
Этот класс коррозионностойких сталей выделяется на общем фоне химическим строением – здесь атомы углерода включаются в молекулярную решетку железа. Немаловажно, что такой металл считается высоколегированным, имея до 33% хрома и никеля. Благодаря немагнитности сплавы используются в целом ряде производственных процессов.
Металлы этой группы обладают следующими качествами:
- пластичность в холодном и горячем состоянии;
- прочность;
- возможность проведения сварочных работ на высоте;
- сопротивление агрессивным средам, в том числе азотной кислоте;
- чистота в экологическом плане;
- стойкость к электромагнитным излучениям.
Чтобы добиться стабильного аустенита, гранецентрированной кристаллической решетки железа, в сталь в качестве легирующего элемента добавляют никель. Его доля в сплаве должна достигать 9%. Титан и ниобий обеспечивают устойчивость металла к межкристаллитной коррозии – содержащие их сплавы принято называть стабилизированными.
Комбинированные сплавы
В таких металлах сочетаются структура и свойства аустенитно-мартенситной либо аустенитно-ферритной группы.
Аустенитно-ферритные сплавы отличаются небольшой долей никеля и значительным содержанием хрома, которое превышает 20%. Роль легирующих компонентов играют ниобий, титан, медь. За счет термической обработки обеспечивается равное соотношение феррита и аустенита. На производствах подобные материалы ценят за пластичность, устойчивость к межкристаллической коррозии, способность справляться с ударными нагрузками и прочность, которая выше, чем у аустенитов.
Аустенитно-мартенситная группа имеет 12–18% хрома и 3,7–7,5% никеля, также в составе нередко бывают присадки алюминия. Чтобы добиться высокой прочности такой коррозионностойкой стали, осуществляют ее закалку при более чем +975 °C и отпуск при +450–500 °C. Эти сплавы характеризуются повышенным пределом текучести. Стоит пояснить, что данное свойство говорит о напряжении, при котором деформация возрастает без роста нагрузки. Такие коррозионностойкие стали хорошо поддаются сварке и имеют отличные механические свойства.
Маркировка и применение коррозионностойкой стали
Сегодня существует более 50 марок коррозионностойких хромоникелевых сталей. Их используют как материал для трубного и плоского проката, арматуры, швеллеров, балок, уголков, профилей. Кроме того, нержавеющая сталь активно применяется в сфере авто-, авиастроения, энергетической промышленности.
Из аустенитов производят изделия методом сварки и холодной штамповки, такие как:
- строительные резервуары;
- трубы;
- установки для нефтяных вышек, очистительных систем;
- турбины и иные механизмы, которые должны функционировать в воде;
- силовые агрегаты для энергетической сферы;
- детали самолетов, автомобилей;
- оборудование для работы с пищевыми продуктами;
- фармакологическая и медицинская техника;
- сварные металлоконструкции;
- метизы.
В соответствии с ГОСТом, подобные сплавы маркируются:
- 12Х18Н10Т. Включает в себя никель, титан, является материалом для оборудования для химической и нефтеперерабатывающей промышленности.
- 12Х18Н10Т. Используется при производстве трубопроводов.
- 12Х15Г9НД. Имеет в составе никель, марганец и медь, применяется для изготовления емкостей и трубопроводов для растворов с умеренной агрессивностью.
Мартенситы используются при производстве изделий для работы в агрессивных средах в условиях низкой или средней интенсивности. Упругость позволяет делать из такой коррозионностойкой стали пружины, фланцы, валы. Помимо этого, металл является материалом для режущих поверхностей в пищевой и химической промышленности.
Марки мартенситных сталей:
- 20Х13, 30Х13. Применяется при изготовлении бытовой техники.
- 14Х17Н2. Содержит в своем составе никель, может использоваться для производства компрессоров и иного оборудования, которое планируется эксплуатировать при низкой температуре и в агрессивных средах.
Ферриты встречаются в таких сферах:
- химическая и нефтехимическая отрасль;
- энергетика;
- тяжелое машино- и станкостроение;
- приборостроение;
- медицинское оборудование;
- производство бытовой техники;
- пищевая отрасль.
Речь идет о следующих типах коррозионностойких сталей:
- 08Х13. Подходит для изготовления кухонных приборов.
- 12Х13. Используется для создания емкостей, предназначенных для хранения и транспортировки спиртосодержащих жидкостей.
- 12Х17. Это коррозионностойкая и жаропрочная сталь, в резервуарах из которой при высоких температурах обрабатывают продукты питания.
Зарубежные марки коррозионностойких сталей
Стали марок AISI 201 и AISI 202 относятся к аустенитной группе сплавов.
Стоит пояснить, что аббревиатура расшифровывается как American Iron and Steel Institute или «Американский институт стали и сплавов». Названные металлы содержат хром, никель, марганец, медь, азот, за счет чего достигается высокая прочность изделий. Также материал хорошо поддается деформации и легко меняет форму.
Сбалансированный состав этих коррозионностойких сталей позволяет им выделяться на общем фоне высоким сопротивлением к появлению ржавчины.
AISI 201 и AISI 202 используют для производства домашних бытовых приборов, трубопроводов, строительных конструкций.
Разница между данными марками состоит в содержании дополнительных компонентов. В AISI 201 больше углерода, серы, марганца и меди, что обеспечивает высокую прочность, пластичность. Тогда как AISI 202 содержит больше никеля. Нужно отметить, что AISI 201 является улучшенным вариантом AISI 202, но обе марки сохраняют свои физические особенности даже при использовании изделий из них в умеренно агрессивной среде.
Существуют российские аналоги этих коррозионностойких сталей:
- AISI 201 можно заменить на 12Х15Г9НД;
- AISI 202 близок к 12Х17Г9АН4.
Марки стали серии 300 по химическому составу входят в аустенитную либо дуплексную группу сплавов. Тип нержавейки зависит от доли основных добавок, таких как углерод, никель, хром, титан. Немаловажно, что эта серия считается универсальной и популярна на рынке, так как обладает высокой прочностью, устойчивостью к износу и ржавчине.
Нюансы сварки коррозионностойких сталей
Коррозионностойкая сталь обладает такими качествами, как жаростойкость до +650 °C и жаропрочность в пределах +480…+500 °C. Подобные сплавы отличаются низкой теплопроводностью, из-за чего изготовленные из них конструкции нередко подвержены поводке и короблению. Тогда как окисление хрома приводит к формированию тугоплавкого шлака, который мешает сварке.
Для сваривания хромистых нержавеющих сталей выбирают мягкие тепловые режимы, что предполагает малую плотность тока, постоянный ток обратной полярности, то есть плюс крепится на электрод. Также важно обеспечить малую скорость охлаждения, иными словами, в процессе работы важно избегать сквозняков.
Коррозионностойкую сталь варят электродами с фтористокальциевыми покрытиями.
Мартенситы и сплавы, относящиеся к мартенситно-ферритному классу, предполагают закалку в зоне сварки в обычных условиях. Нужно понимать, что здесь высока вероятность появления трещин, особенно когда речь идет о толстостенных и жестких конструкциях.
Выбирая коррозионностойкую сталь, важно представлять дальнейшие условия ее эксплуатации, нагрузку, которую металл будет испытывать, и дополнительные свойства изделия. Если у вас есть сомнения, рекомендуется обратиться за рекомендацией к профессионалам.
Сталь для холодной обработки
Анализ применения инструментальной стали DIN 1.2379 для холодной обработки
Что такое инструментальная сталь?
Инструментальная сталь - это разновидность углеродистой легированной стали, которая хорошо подходит для изготовления инструментов, таких как ручные инструменты или штампы для станков. Ее твердость, устойчивость к истиранию и способность сохранять форму при повышенных температурах являются ключевыми свойствами этого материала. Инструментальная сталь обычно используется в термически обработанном состоянии, что обеспечивает повышенную твердость.
Виды инструментальной стали. Различные марки инструментальной стали включают:
Инструментальная сталь для холодной обработки
Инструментальная сталь для горячей обработки
Закалка в масле
Что такое инструментальная сталь для холодной обработки?
К инструментальным сталям для холодной обработки относятся стали серии О (закалка в масле), серии А (закалка в воздухе) и серии D (высокоуглеродистая хромистая). Это стали, используемые для резки или формирования материалов, находящихся при низких температурах. Эта группа обладает высокой прокаливаемостью и износостойкостью, средней вязкостью и сопротивлением тепловому размягчению. Они используются при производстве крупных деталей или деталей, требующих минимального искажения при закалке. Использование закалки в масле и закалки на воздухе помогает уменьшить деформацию, избегая высоких напряжений, вызванных более быстрой закалкой в воде. В этих сталях используется больше легирующих элементов, чем в сталях класса закалки в воде. Эти сплавы повышают прокаливаемость сталей, поэтому они требуют менее жесткого процесса закалки и, как следствие, менее склонны к образованию трещин. Они обладают высокой поверхностной твердостью и часто используются для изготовления лезвий ножей. Обрабатываемость закаленных в масле марок стали высокая, а высокоуглеродистых и хромистых - низкая.
Что такое сталь 1.2379?
Сталь 1.2379 - это высокоуглеродистая высокохромистая инструментальная сталь для холодной обработки с воздушной закалкой, поддающаяся термической обработке до 60-62 HRC. 1.2379 обладает превосходной износо- и абразивной стойкостью благодаря большому количеству карбидов в микроструктуре. Сталь 1.2379 широко используется в длительной холодной обработке, требующей очень высокой износостойкости и высокой прочности на сжатие. Она хорошо поддается обработке в отожженном состоянии и, как и другие инструментальные стали воздушной закалки, демонстрирует минимальную деформацию при термической обработке. Сталь 1.2379 выпускается в виде круглых, плоских и квадратных заготовок, не содержащих карб, а также в виде шлифованных плоских заготовок и буровых штанг.
Для чего используется сталь 1.2379?
Типичными областями применения стали 1. 2379 - это заготовительные, формовочные и обрезные штампы, калибры, резаки для продольной резки, изнашиваемые детали, плашки для ламинирования, резьбонакатные плашки, вытяжные плашки, ротационные режущие плашки, накатки, гибочные плашки, калибры, лезвия ножниц, шлифовальные инструменты, валки, детали машин, мастер-детали, компоненты инжекционных шнеков и наконечников, шовные валики, экструзионные матрицы, измельчители шин, измельчители лома, штамповочные матрицы, формовочные матрицы, пуансоны, формовочные валики, ножи, просекатели, ножницы, инструменты, измельчители лома, измельчители шин и т.д.
Почему стоит выбрать 1.2379?
Сталь D2 сохраняет свою твердость до температуры 425 °C (797 °F). Богатые хромом карбиды сплава в стали D2 создают превосходное сопротивление износу при скользящем контакте с другими металлическими или абразивными материалами. Эта сталь обладает высокой износостойкостью и создает прочный нож, который держит кромку. Суть стали 1.2379 - это высокоуглеродистая высокохромистая штамповая сталь для холодной обработки. Преимущество высокоуглеродистой стали в том, что она легко достигает высокой твердости после термообработки и обладает хорошей износостойкостью. Недостатком является то, что в ней легко образуются карбидные агрегаты. Это приводит к чрезвычайно высокой локальной твердости.
Применение стали 1.2379
Эта инструментальная сталь популярна среди инструментальщиков и используется в самых разных областях инструментального производства. Типичные области применения включают вырубку и заготовку штампов для листовой нержавеющей стали, латуни, меди, цинка и твердых абразивных материалов. Другие виды применения этой инструментальной стали включают штампы для глубокой вытяжки, штампы для обжимки, штампы для формовки, валки для формовки листового металла, ножницы для полосы и листа, включая летучие ножницы, дисковые ножницы для холоднокатаной полосы, обрезные плашки, резьбонакатные плашки, плашки для холодной экструзии, протяжки, калибры-пробки, калибры-кольца, мастер-ручки для холодной обработки пластмассовых форм, формы для резки пластмасс, специальные метчики, метчики для брейгель-болтов, вкладыши для кирпичных и плиточных форм.
Область применения - волочильные и гибочные инструменты, пластмассовые формы при переработке абразивных полимеров, машинные ножи, ножи для холодных ножниц, инструменты для холодной экструзии, резьбонакатные плашки, резьбонакатные валики, термоформовочные инструменты, режущие и штамповочные инструменты и фрезы. Как высокопроизводительная режущая сталь, она также может быть использована в высокопроизводительных режущих инструментах, таких как штампы и пуансоны.
характеристика стали 1.2379
высоколегированная сталь для сквозного упрочнения с умеренной обрабатываемостью; чрезвычайно износостойкая и малое коробление, хорошая стабильность размеров, вязкость и сквозная прокаливаемость
Масляная сталь для холодной обработки
Используется для литья форм для чеканки, форм для формовки, ножей для резки бумаги, прокатных станов
Хром-молибден-ванадиевая сталь с большой твердостью
Соответствуем требованиям и стандартам качества, Бережно доставляем товары в любую точку России
Читайте также: