Сталь аб 2 свойства
Кипящая сталь характеризуется резко неравномерным распределением серы и фосфора и, как следствие, возможностью образования горячих трещин при сварке и переходом металла в хрупкое состояние при отрицательных температурах. Поэтому, в противоположность спокойным и полуспокойным сталям, она для применения в ответственных сварных конструкциях не рекомендуется. Углеродистая сталь обычного качества по ГОСТ 380-71 поставляется в трех группах: А — в сварных конструкциях не используется (она не имеет химического анализа и поставляется по механическим свойствам); Б — поставляют по химическому составу; В — поставляют по химическому составу и механическим свойствам. Содержание вредных для сварки примесей в этих сталях колеблется: серы < 0,05%, фосфора < 0,04% (пример обозначения ВСтЗсп). Углеродистые качественные стали содержат пониженное количество серы, и иногда содержание марганца в них достигает 1% (поставка по ГОСТ 1050-79).
Низколегированные стали имеют большое количество марок, в качестве легирующих добавок применяют Mn. Si, Си, V, Nb и др. Яркими представителями этих сталей являются 10ХСНД (аог > 400 МПа) и 09Г2С (ад2 > 350 МПа). Химический состав и механические свойства некоторых наиболее употребляемых марок низкоуглеродистых и низколегированных сталей приведены в табл. 7.1 и 7.2.
Химически» состав некоторых марок низкоуілеролистых и мижолеч прованных сталей
Низкоуглеродистые обычные стали
Повышенное содержание марганца
Си до 0,65 Ni до 0,8 СгдоО.9
1. Содержание серы в группе егалей ВСт ко более 0,05%, в палях остальных трупп - не более 0,04%
2. Содержание фосфора не бодее 0,01%.
Механические свойства некоторых марок нилкоуглеродистых и низколегированных сталей
Механические свойства (не менее)
Широкое распространение в промышленности находят микро - легированные стали, применяемые для изготовления конструкций ответственного назначения. Они позволяют экономить легирующие элементы и при термомеханической и термообработке обеспечивают высокую прочность и сопротивляемость хрупкому разрушению металла. Обычно эти стали содержат < 0,2% углерода и легируются микродобавкам Al, Сг, Zг, V, Ті, Nb, Мо, В. Они
обеспечивают получение высоких значений прочности. Так, сталь 14Г2АФ имеет апг > 400 МПа и ав > 550 МПа, а сталь 12ГНЗМФА а, и > 600 МПа и ав > 700 МПа.
При малом содержании углерода эти стали обладают удовлетворительной свариваемостью. При сварке на больших погонных энергиях (>100 кДж/см) ударная вязкость металла ЗТВ несколько снижается из-за роста зерна и неблагоприятных фазовых превращений в металле ЗТВ.
В судостроении широко применяется ряд марок конструкционных высокопрочных сталей типа АБ. К ним относятся улучшаемые стали АБ, АБ1, АБ2. Наилучшее сочетание физико-металлургических и технологических свойств феррито-перлитных сталей АБ с пределом текучести 390 МПа и более достигается за счет закалки и высокого отпуска.
Хромоникельмолибденовая сталь марок АБ1 и АБ2 с максимальными значениями предела текучести соответственно 500 и 588 МПа легирована Cr, Mo, V, АІ, Са. После закалки и высокого отпуска в этих сталях формируется мелкодисперсная ферритная структура с карбидной фазой. С учетом обеспечения требований свариваемости содержание углерода в сталях типа АБ составляет 0,08. 0,1%. Для обеспечения чистоты этих сталей по содержанию сульфидных и окисных неметаллических включений содержание серы и фосфора в них ограничено соответственно 0,01 и 0,02%,
При сварке этих сталей пластическая деформация, возникающая при остывании шва, способствует повышению его предела текучести. Обычно обеспечение равнопрочности сварных соединений при сварке таких сталей затруднений не вызывает. Сварка на форсированных режимах, повышенной толщине металла однопроходным швом, низкие температуры — все это может привести к появлению закалочных структур на участке перегрева, полной и неполной перекристаллизации металла ЗТВ.
Низколегированные стали иногда поставляются в термообработанном состоянии (закалка для повышения прочностных свойств). При сварке таких сталей на участке рекристаллизации под действием высокого отпуска происходит разупрочнение металла. Эти затруднения преодолевают технологическими приемами. Так, термоупрочняемые стали рекомендуется сваривать длинными участками, а термически не упрочненные (отожженные), наоборот, короткими (во избежание закалки в ЗТВ).
С повышением погонной энергии растет ширина разупрочненной зоны рядом со швом, что ведет к снижению твердости металла в ней.
Это вызывается высокотемпературным нагревом и малыми скоростями охлаждения. В то же время в зоне могут присутствовать участки, где наиболее резко выражены явления перегрева и закалки; они представляют собой наиболее вероятные места с точки зрения образования холодных трещин.
При сварке короткими участками, по горячим, предварительно положенным проходам, скорость охлаждения всех зон соединения мала. Их структуры равновесны, и последующая термическая обработка не нужна. Только изредка, в особенных случаях, конструкция после сварки может быть подвергнута высокому отпуску для снятия остаточных напряжений и восстановления свойств металла в ЗТВ (нормализация сварных узлов, выполненных ЭШС).
Стойкость против образования горячих трещин в металле шва при сварке этих сталей удовлетворительна. Они в отдельных случаях возникают при содержании углерода более 0,2%, при сварке угловых швов и корневых проходов. Низкоуглеродистые и низколегированные стали хорошо свариваются всеми способами сварки плавления, как правило, без введения предварительного или сопутствующего подогрева.
Важным требованием, предъявляемым к сварным конструкциям из этих сталей, является обеспечение равнопрочности сварных соединений с основным металлом и отсутствие дефектов в сварном шве. Гарантией обеспечения этого требования и служит получение механических свойств металла шва и ЗТВ не ниже нижнего предела прочности соответствующих свойств основного металла. Геометрические размеры и формы шва должны соответствовать требованиям нормативной документации.
Механические свойства металла шва и сварного соединения определяются его структурой, которая зависит от химического состава стали, режимов сварки, предыдущей и последующей термообработки. Как правило, химический состав шва при сварке незначительно отличается от состава основного металла. Различие заключается лишь в стремлении уменьшить содержание углерода в шве с целью предупреждения структур закалочного характера; возможный недостаток прочности при этом компенсируется дополнительным подлегирова - нием металла шва кремнием и марганцем за счет проволоки, флюса или электродного покрытия.
Повышение скорости охлаждения металла шва также может приводить к повышению его прочности при одновременном снижении уровня пластичности и ударной вязкости. Скорость охлаждения металла шва определяется толщиной свариваемого металла, его физическими свойствами, конструкцией сварного соединения, режимами сварки и начальной температурой изделия.
СПОСОБ ПОВЫШЕНИЯ МЕХАНИЧЕСКИХ СВОЙСТВ СТАЛИ АБ2-1 ПРИ ОСУЩЕСТВЛЕНИИ ПРЯМОГО ЛАЗЕРНОГО ВЫРАЩИВАНИЯ МЕТАЛЛИЧЕСКИХ ЗАГОТОВОК Российский патент 2020 года по МПК B22F3/105 B33Y70/00 B33Y10/00
Изобретение относится к области металлургии, а именно к производству судостроительных материалов с высокой прочностью и хладостойкостью. Изобретение может быть использовано при создании материалов для изготовления изделий, предназначенных для эксплуатации в условиях Арктики и в других областях, требующих высоких механических свойств.
Одним из основных материалов для постройки элементов ответственных конструкций судов, подводных лодок, буровых и морских платформ, эксплуатируемых в условиях Арктики, служит сталь марки АБ2-1. Сталь АБ2-1 - высокопрочная сталь бейнитно-мартенситного класса, обладает сочетанием высокой прочности и ударной вязкости [1]. Известно большое количество исследований, посвященных изучению бейнита, включая кинетику образования структуры, кристаллографию, микроструктурную морфологию и связанные с ней механические свойства [2]. Широко распространен такой метод изготовления данных сталей, как выплавка с последующей прокаткой.
Недостатком указанного способа является многостадийность процесса с последующей термообработкой для получения конечных механических свойств, а также получение материала только листовой формы.
В качестве прототипа выбран патент №2439173 "Способ производства проката из высокопрочной хладостойкой стали" (опубл. 10.01.2012), он применим в том числе и для сталей типа АБ. Способ производства включает выплавку стали, непрерывную разливку на заготовки, нагрев слябов, предварительную и окончательную прокатку и ускоренное охлаждение, причем после нагрева слябы предварительно прокатывают с общей деформацией 50-70% в направлении, перпендикулярном оси сляба, а затем производят окончательную прокатку в области ниже температуры рекристаллизации при температуре 750-900°С с суммарной деформацией 65-80%, причем 30-40% от общей деформации приходится на прокатку в направлении, перпендикулярном оси раската, после чего прокат ускоренно охлаждают от температуры Аr3±20°С до температуры 400-600°С, а затем охлаждают замедленно до температуры 20-200°С со скоростью 0,05-0,15 град/с. Сталь выплавляют в кислородном конвертере. После выпуска металла производят его обработку в ковше и разливают на машине непрерывного литья заготовок. При внепечной обработке металла в ковше проводят окончательное раскисление, рафинирование, продувку нейтральным газом и модифицирующую обработку кальцием. Прокатку слябов размером 246×1550 мм на лист толщиной 24,5 мм производят на одноклетьевом реверсивном стане "5000".
В данном способе повышение прочностных свойств достигается за счет выполнения на последнем этапе принудительной термоциклической обработки заготовки. Недостатками указанного способа являются многостадийность процесса для получения конечных механических свойств, а также получение материала только листовой формы [4].
Техническим результатом предлагаемого способа является повышение механических свойств стали АБ2-1 при осуществлении прямого лазерного выращивания (ПЛВ) заготовок и расширение области ее применения в судовых и тяжелонагруженных конструкциях за счет возможности изготовления заготовок любой формы и толщины.
Для достижения указанного технического результата предлагается способ повышения механических свойств стали АБ2-1 при осуществлении прямого лазерного выращивания металлических заготовок, заключающийся в том, что на подложку, размещенную в рабочей герметичной камере, заполненной аргоном высокой чистоты до избыточного давления в пределах от 2 МПа до 5 МПа с содержанием остаточного кислорода не более 500 ppm, последовательно наносят слои металлического порошка из стали АБ2-1 фракции от 45 мкм до 200 мкм, подавая его посредством транспортного газа в зону осаждаемого металла через сопло установки для прямого лазерного выращивания с расходом транспортного газа от 10 л/мин до 40 л/мин и массовым расходом металлического порошка от 30 г/мин до 100 г/мин, изменяя при этом скорость перемещения сопла относительно подложки в пределах от 15 мм/с до 35 мм/с, шаг вертикального смещения слоев в пределах от 0,2 мм до 1 мм, шаг поперечного смещения слоев в пределах от 1,4 мм до 2 мм, и воздействуя на металлический порошок лазерным лучом мощностью в пределах от 2 кВт до 3 кВт, сфокусированным в пятно диаметром от 1 мм до 5 мм.
Технический результат достигается за счет естественной объемной термоциклической обработки заготовки, реализуемой при осуществлении прямого лазерного выращивания из металлического порошка из стали АБ2-1 на предлагаемых параметрах режима. Объемное термоциклирование приводит к получению бейнитной структуры в материале заготовки и, как следствие, повышению ее механических свойств. Технология ПЛВ позволяет регулировать объемное термоциклирование за счет задания параметров режима работы установки ПЛВ и контролировать процесс формирования бейнитной структуры, что обеспечивает получение структуры с требуемой морфологией и свойствами.
Возможная реализация способа осуществляется на технологическом комплексе на базе волоконного лазера. В процессе выращивания герметичную камеру заполняют аргоном высокой чистоты (не менее 99,99%) до избыточного давления 2 МПа. В камере после заполнения аргоном, содержание кислорода не должно превышать 500 ppm. Процесс ПЛВ осуществляется при следующих технологических параметрах: мощность излучения 2 кВт, скорость перемещения сопла относительно подложки 25 мм/с, диаметр пятна сфокусированного лазерного луча на поверхности подожки или предыдущего слоя 3 мм, массовый расход подаваемого порошка 30 г/мин, расход транспортного газа 10 л/мин. При этом шаг вертикального смещения сопла составляет 0,8 мм, а шаг поперечного смещения сопла - 0,2 мм.
Лазерный луч формирует на поверхности подложки или предыдущего слоя ванну расплава, в которую через сопло подается присадочный порошок. Сопло перемещается с заданной скоростью формируя одиночный валик. Слой формируется последовательным нанесением валиков с их частичным перекрытием в поперечном сечении. После завершения формирования слоя, сопло поднимается на заданный шаг вертикального смещения и процесс повторяется. В результате нанесения последующих слоев, предыдущие слои подвергаются повторному нагреву, что в массе всей заготовки приводит к термоциклированию материала и формированию метастабильных структурных составляющих, обладающих высокими механическими свойствами. Процесс охлаждения происходит в интервале температур со скоростью от 8 до 46°С/с, формируется преимущественно бейнитная структура материала заготовки.
Подтверждение формирования такой структуры и ее влияние на разрушение при механических испытаниях показано на рисунках: на Фиг. 1 - микроструктура материала заготовки, полученной предложенным способом, а именно, а) б) - бейнитная структура изображение с оптического микроскопа, в) - структура верхнего бейнита (ВБ) изображение со сканирующего электронного микроскопа, г) - структура гранулярного бейнита (ГБ) изображение со сканирующего электронного микроскопа; на Фиг. 2 - фрактограммы заготовки, полученной методом ПЛВ, после испытаний на растяжение; Фиг. 3 - фрактограммы заготовки, полученной методом ПЛВ, после испытаний на ударный изгиб.
В процессе охлаждения наплавляемых слоев при выращивании заготовки близкие к подложке слои имеют высокие скорости охлаждения. Это объясняется интенсивным теплоотводом в массивную подложку. Микроструктура данных слоев включает закалочные структуры и содержит преимущественно мартенсит, который может быть удален на этапе отделения заготовки от подложки. По мере удаления от подложки теплоотвод становится менее интенсивным и, как следствие, время охлаждения существенно больше. Это приводит к получению более благоприятной структуры наплавляемых слоев за счет объемного термоциклирования.
Для подтверждения заявленного способа были выращены образцы плоских стенок на указанных в примере возможной реализации способа параметрах режима ПЛВ, и проведены металлографические исследования шлифов полученных образцов, выполнены механические испытания. Экспериментально показано, что металл наплавляемых слоев успевает остыть перед наплавкой нового слоя. Автоподогрев от предыдущего слоя влияет на скорость охлаждения металла последующих слоев. Высокотемпературный однократный нагрев не вызывает изменения твердости, в то время как повторный нагрев до более низкой температуры приводит к снижению твердости. В процессе выращивания твердость циклически меняется в пределах 250-300 HV на расстоянии в интервале 0,7-0,8 мм, что свидетельствует о постоянном подогреве предыдущих слоев и протекающем термоциклировании. При этом области полученных плоских стенок, близкие к подложке, имеют более высокую твердость, что связано с большими скоростями охлаждения.
Протекающие термические циклы благоприятно сказываются на механических свойствах полученных заготовок. В таблице 1 приведено сравнение основных механических свойств сталей марки АБ2-1, получаемых традиционным способом [3] и методом ПЛВ.
Как видно из таблицы 1, образцы из материала АБ2-1 обладают повешенными механическими свойствами по сравнению с аналогами.
На Фиг. 2 представлены фрактограммы образцов, полученных методом ПЛВ, после испытаний на растяжение. В изломе образцов, полученных методом ПЛВ, присутствуют равноосные ямки, средний размер которых составляет 2,41 мкм. Характер разрушения вязкий. Количество волокнистой составляющей в изломе составляет 95%. В изломе после ударного изгиба обнаружены равноосные ямки, средний размер ямок 2,5 мкм (Фиг. 3). Оксиды отсутствуют. Характер разрушения вязкий. Количество волокнистой составляющей в изломе составляет 90%.
Заявляемое техническое решение позволяет решить поставленную задачу, используя метод ПЛВ изделий из сталей марки АБ2-1 и значительно повысить механические свойства полученных изделий без последующей термической и термодеформационной обработки. Преимущество метода от классических способов получения изделий, таких как литье, прокатка, заключается в сокращении технологических операций, за счет протекания термоциклирования в процессе выращивания и получения повышенных механических свойств. Данный метод позволяет получать высокоточные заготовки, а также готовые детали заранее заданной формы, толщины и размеров без использования дополнительных процессов термической, термодеформационной и других видов обработки, в отличие от традиционных способов изготовления изделий и листового проката (заготовок) [5, 6].
1. Горынин И.В., Рыбин В.В., Малышевский В.А., Хлусова Е.И., Нестерова Е.В., Орлов В.В., Калинин Г.Ю. Экономнолегированные стали с наномодифицированной структурой для эксплуатации в экстремальных условиях // Вопросы материаловедения. - 2008. №2 (54). - С.7-19.
2. Малахов Н.В., Мотовилина Г.Д., Хлусова Е.И., Казаков А.А. Структурная неоднородность и методы ее снижения для повышения качества конструкционных сталей // Вопросы материаловедения. - 2009. №3 (59). - С.52-64.
4. Голосиенко С.А., Мотовилина Г.Д., Хлусова Е.И. Влияние структуры, сформированной при закалке, на свойства высокопрочной хладостойкой стали при отпуске // Вопросы материаловедения. - 2008. №1 (53). - С. 32-44.
5. Turichin, G.A., Zemlyakov, E.V., Klimova, O.G., Babkin, K.D Hydrodynamic instability in high-speed direct laser deposition for additive manufacturing, Physics Procedia, Vol. 83, 2016, pp. 674-683.
6. Федюкин B.К. Термоциклическая обработка сталей и чугунов. - Л.: ЛГУ, 1977. - 144 с.
Похожие патенты RU2724210C1
- Туричин Глеб Андреевич
- Цибульский Игорь Александрович
- Корсмик Рудольф Сергеевич
- Сомонов Владислав Валерьевич
- Еремеев Алексей Дмитриевич
- Задыкян Григорий Григорович
- Цибульский Игорь Александрович
- Сомонов Владислав Валерьевич
- Корсмик Рудольф Сергеевич
- Еремеев Алексей Дмитриевич
- Туричин Глеб Андреевич
- Земляков Евгений Вячеславович
- Бабкин Константин Дмитриевич
- Вильданов Артур Маратович
- Головин Павел Андреевич
- Топалов Илья Константинович
- Пономарев Дмитрий Александрович
- Коршунов Владимир Александрович
- Родионов Александр Александрович
- Хорьков Павел Александрович
- Антонов Игорь Владимирович
- Удалов Валерий Михайлович
- Туричин Глеб Андреевич
- Земляков Евгений Вячеславович
- Бабкин Константин Дмитриевич
- Климова-Корсмик Ольга Геннадьевна
- Вильданов Артур Маратович
- Гущина Марина Олеговна
- Магеррамова Любовь Александровна
- Бабкин Константин Дмитриевич
- Климова-Корсмик Ольга Геннадьевна
- Туричин Глеб Андреевич
- Канург Жан-Франсуа
- Пик Орельен
- Веррье Паскаль
- Вьерстрат Рене
- Элинг Вольфрам
- Томмес Бернд
- Сыч Ольга Васильевна
- Орлов Виктор Валерьевич
- Хлусова Елена Игоревна
- Голосиенко Сергей Анатольевич
- Голубева Марина Васильевна
- Яшина Екатерина Александровна
- Мотовилина Галина Дмитриевна
- Галкин Виталий Владимирович
- Денисов Сергей Владимирович
- Стеканов Павел Александрович
- Орыщенко Алексей Сергеевич
- Хлусова Елена Игоревна
- Орлов Виктор Валерьевич
- Сувориков Виктор Александрович
- Скорохватов Николай Борисович
- Немтинов Александр Анатольевич
- Емельянов Александр Матвеевич
- Клюквин Михаил Борисович
- Корчагин Андрей Михайлович
- Тихонов Сергей Михайлович
- Моторин Виталий Анатольевич
- Махов Геннадий Александрович
- Оленин Михаил Иванович
- Горынин Владимир Игоревич
- Кабанов Евгений Борисович
- Бережко Борис Иванович
- Ованесьян Константин Константинович
- Митрошина Оксана Юрьевна
Иллюстрации к изобретению RU 2 724 210 C1
Реферат патента 2020 года СПОСОБ ПОВЫШЕНИЯ МЕХАНИЧЕСКИХ СВОЙСТВ СТАЛИ АБ2-1 ПРИ ОСУЩЕСТВЛЕНИИ ПРЯМОГО ЛАЗЕРНОГО ВЫРАЩИВАНИЯ МЕТАЛЛИЧЕСКИХ ЗАГОТОВОК
Изобретение относится к прямому лазерному выращиванию металлических заготовок из стали АБ2-1 с повышением ее механических свойств. На подложку, размещенную в рабочей герметичной камере, заполненной аргоном высокой чистоты до избыточного давления в пределах от 2 МПа до 5 МПа с содержанием остаточного кислорода не более 500 ppm, последовательно наносят слои металлического порошка из стали АБ2-1 фракции от 45 мкм до 200 мкм. Порошок подают посредством транспортного газа в зону осаждаемого металла через сопло установки для прямого лазерного выращивания с расходом транспортного газа от 10 л/мин до 40 л/мин и массовым расходом металлического порошка от 30 г/мин до 100 г/мин. Изменяют скорость перемещения сопла относительно подложки в пределах от 15 мм/с до 35 мм/с, шаг вертикального смещения слоев в пределах от 0,2 мм до 1 мм, шаг поперечного смещения слоев в пределах от 1,4 мм до 2 мм и воздействуют на металлический порошок лазерным лучом мощностью в пределах от 2 кВт до 3 кВт, сфокусированным в пятно диаметром от 1 мм до 5 мм. Обеспечивается получение судостроительных материалов с высокой прочностью и хладостойкостью для эксплуатации, в том числе в условиях Арктики. 3 ил., 1 табл.
Формула изобретения RU 2 724 210 C1
Способ прямого лазерного выращивания металлических заготовок из стали АБ2-1 с повышением ее механических свойств, характеризующийся тем, что на подложку, размещенную в рабочей герметичной камере, заполненной аргоном высокой чистоты до избыточного давления в пределах от 2 МПа до 5 МПа с содержанием остаточного кислорода не более 500 ppm, последовательно наносят слои металлического порошка из стали АБ2-1 фракции от 45 мкм до 200 мкм путем подачи его посредством транспортного газа в зону осаждаемого металла через сопло установки для прямого лазерного выращивания с расходом транспортного газа от 10 л/мин до 40 л/мин и массовым расходом металлического порошка от 30 г/мин до 100 г/мин, при этом изменяют скорость перемещения сопла относительно подложки в пределах от 15 мм/с до 35 мм/с, шаг вертикального смещения сопла в пределах от 0,2 мм до 1 мм, шаг поперечного смещения сопла в пределах от 1,4 мм до 2 мм и воздействуют на металлический порошок лазерным лучом мощностью в пределах от 2 кВт до 3 кВт, сфокусированным в пятно диаметром от 1 мм до 5 мм.
ak_12
В Таблице 2 масса в тоннах сталей разных марок использовавшихся для строительства кораблей тех или иных классов. К примеру для постройки авианосца типа "Нимиц" требовалось 1496 коротких тонн (одна короткая тонна - 907,18474 кг) стали типа HY-80, 21527 коротких тонн стали HY-100, примерно 22370 коротких тонн сталей HTS (предел текучести до 355 Н/мм 2 ) и MS.
В Таблице 3 оценка потребной массы (в коротких тоннах) сталей разных типов по толщинам (в дюймах) необходимой для строительства кораблей ВМС США по десятилетиям.
Стоит отметить что стали типов HY-80 и HY-100, сменившие в американском кораблестроении сталь STS, можно по характеристикам отнести к разряду конструкционных броневых сталей. Таким образом при строительстве корпус американского авианосца типа "Нимиц" использовалось чуть меньше 21 тыс. тонн (метрических) броневой стали.
Конструкционными аналогами американских сталей HY-80 и HY-100 оказались высокопрочные конструкционные стали марок АК-25 (предел текучести 588 Н/мм 2 ) и АК-27 (предел текучести 510 Н/мм 2 ) применявшиеся с конца 50-х для строительства прочных корпусов отечественных подводных лодок (АК-25) и корпусных конструкций боевых кораблей ВМФ СССР (АК-25, АК-27).
". В 1954 г. была создана первая корпусная сталь АК-25 и ее модификация с пределом текучести 600 Н/мм для строительства первой отечественной АПЛ в 1956 г. В США строительство первой АПЛ "Наутилус" было начато несколько ранее, но из стали с пределом текучести 350 Н/мм 2 . Строительство АПЛ из стали НY-80, близкой по прочности к нашей стали АК-25, было осуществлено в США только в 1959 г. При этом американская сталь существенно уступает нашей по свариваемости, требует предварительного и сопутствующего подогревов свариваемых кромок до 120-180°С, в то время как сталь АК-25 сваривается при обычных температурах. В короткие сроки сталь АК-25 была освоена на десятках металлургических заводов страны в виде листового, сортового, профильного проката, поковок, отливок. Общий объем ее производства составил около 2.5 млн. т. Сталь АК-25 оказалась прекрасным материалом не только для корпусов АПЛ первого поколения, но и для надводных авианесущих кораблей, в том числе крейсера "Варяг", с уникальной конструктивной защитой от всех видов зарубежного противокорабельного оружия. В последующем обстановка вынуждала создавать АПЛ с большой глубиной погружения. Концепция проектирования АПЛ связывает глубину погружения с удельной прочностью применяемых корпусных материалов. В этой связи перед институтом была поставлена задача разработать материалы с пределом текучести до 1200 Н/мм 2 . Это потребовало еще более широкого участия научных организаций в процессе создания передовых наукоемких технологий, технического перевооружения металлургических и судостроительных производств. Были получены новые стали с пределом текучести в 1.5-2 раза выше пределов текучести сталей АК-25 и НY-80, удалось обеспечить высокие пластичность, вязкость, взрывостойкость при практически такой же хорошей свариваемости. Из новых сталей построены серии новых АПЛ. По прочности (как в период разработки, так и в настоящее время) отечественные стали существенно превосходят стали США и других стран. По свариваемости наши стали также превосходят зарубежные аналоги. При этом следует отметить, что отечественные стали допускают сварку без подогрева при пределе текучести до 686 Н/мм 2 и только при большей прочности требуются либо предварительная просушка кромок при 40-50°С, либо при большой толщине листа подогрев до 80-120°С, в то время как американская сталь НY-80 с пределом текучести 560 Н/мм 2 нуждается в подогреве до 180°С. "
Для прочных корпусов отечественных атомных ПЛ второго поколения была использована конструкционная сталь АК-29, атомных ПЛ третьего поколения сталь АК-32 (предел текучести 980 Н/мм 2 ), АК-33 (предел текучести 784 Н/мм 2 ), АК-35, АК-36, АБ-2.
В американском кораблестроении в вопросе применения высокопрочных сталей сегодня наблюдается определённый откат назад. Капитан 3 ранга Б. Лодочкин "Выполнение программы строительства ПЛА типа "Виргиния" ВМС США":
". Наравне с мерами, направленными на удешевление субмарин и сокращение сроков их строительства, проводятся мероприятия, нацеленные на повышение их тактико-технических характеристик. При этом в некоторых случаях приходиться идти на разумный компромисс. Например, корпус ПЛА типа "Виргиния" выполнен из стали марки HY-80 вместо HY-100, как у ПЛА типа "Сивулф". Это снизило стоимость лодки, но в то же время уменьшило ее глубину погружения. "
При этом в последние десятилетия американские кораблестроители начали внедрение новых марок сталей HSLA-80 (заменяет сталь HY-80) и HSLA-100 (заменяет сталь HY-100) при строительстве надводных кораблей. Основное преимущество HSLA-80 и HSLA-100, это улучшение свариваемости в сравнении со сталями HY-80 и HY-100, обеспечивающее снижение трудоёмкости строительства. "Implementation of HLSA-100 Steel in Aircraft Carrier Construction - CVN 77":
". High Strength Low Alloy (HSLA)-l00 steel was developed to be less sensitive to hydrogen embrittlement than High Yield (HY)-1OO steel. The primary benefits sought through the use of this new steel were savings in energy, labor, and scheduling that would result from reduced preheat for welding. This paper reviews the overall efforts required to implement the use of HSLA-1OO steel during CVN 74 aircraft carrier construction. It discusses the engineering and design effort required to incorporate a new material on a vessel midway through construction. Also included is a discussion of the development of an implementation plan which ensures successful welding procedure qualification, production welding, and inspection of HSLA-1OO welds. "
Читайте также: