Сталь 95х18 гост 5632 72
1.1. В зависимости от основных свойств стали и сплавы подразделяют на группы:
I - коррозионно-стойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой), межкристаллитной коррозии, коррозии под напряжением и др.;
II - жаростойкие (окалиностойкие) стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовых средах при температурах выше 550 °С, работающие в ненагруженном или слабонагруженном состоянии;
III - жаропрочные стали и сплавы, способные работать в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной стойкостью.
1.2. В зависимости от структуры стали подразделяют на классы:
мартенситный - стали с основной структурой мартенсита;
мартенситно-ферритный - стали, содержащие в структуре кроме мартенсита, не менее 10 % феррита;
ферритный - стали, имеющие структуру феррита (без αаустенито-мартенситный - стали, имеющие структуру аустенита и мартенсита, количество которых можно изменять в широких пределах;
аустенито-ферритный - стали, имеющие структуру аустенита и феррита (феррит более 10 %);
аустенитный - стали, имеющие структуру аустенита.
Подразделение сталей на классы по структурным признакам является условным и произведено в зависимости от основной структуры, полученной при охлаждении сталей на воздухе после высокотемпературного нагрева. Поэтому структурные отклонения причиной забракования стали служить не могут.
1.3. В зависимости от химического состава сплавы подразделяют на классы по основному составляющему элементу:
сплавы на железоникелевой основе;
сплавы на никелевой основе.
2. МАРКИ И ХИМИЧЕСКИЙ СОСТАВ
2.1. Марки и химический состав сталей и сплавов должны соответствовать указанным в табл. 1. Состав сталей и сплавов при применении специальных методов выплавки и переплава должен соответствовать нормам табл. 1, если иная массовая доля элементов не оговорена в стандартах или технических условиях на металлопродукцию. Наименования специальных методов выплавки и переплава приведены в примечании 7 табл. 1.
Массовая доля серы в сталях, полученных методом электрошлакового переплава, не должна превышать 0,015 %, за исключением сталей марок 10Х11Н23Т3МР (ЭП33), 03Х16Н15М3 (ЭИ844), 03Х16Н15М3Б (ЭИ844Б), массовая доля серы в которых не должна превышать норм, указанных в табл. 1 или установленных по соглашению сторон.
(Измененная редакция, Изм. № 1, 2, 3, 5, Поправка).
2.2. В готовой продукции допускаются отклонения по химическому составу от норм, указанных в табл. 1.
Предельные отклонения не должны превышать указанные в табл. 2, если иные отклонения, в том числе и по элементам, не указанным в табл. 2, не оговорены в стандартах или технических условиях на готовую продукцию.
(Измененная редакция, Изм. № 5).
2.3. В сталях и сплавах, не легированных титаном, допускается титан в количестве не более 0,2 %, в сталях марок 03Х18Н11, 03Х17Н14М3 - не более 0,05 %, а в сталях марок 12Х18Н9, 08Х18Н10, 17Х18Н9 - не более 0,5 %, если иная массовая доля титана не оговорена в стандартах или технических условиях на отдельные виды стали и сплавов.
По согласованию изготовителя с потребителем в сталях марок 03Х23Н6, 03Х22Н6М2, 09Х15Н8Ю1, 07Х16Н6, 08Х17Н5М3 массовая доля титана не должна превышать 0,05 %.
2.4. В сталях, не легированных медью, ограничивается остаточная массовая доля меди - не более 0,30 %.
По согласованию изготовителя с потребителем в стали марок 08Х18Н10Т, 08Х18Н12Т, 12Х18Н9Т, 12Х18Н10Т, 12Х18Н12Т, 12Х18Н9, 17Х18Н9 допускается присутствие остаточной меди не более 0,40 %.
Для стали марки 10Х14АГ15 остаточная массовая доля меди не должна превышать 0,6 %.
2.5. В хромистых сталях с массовой долей хрома до 20 %, не легированных никелем, допускается остаточный никель до 0,6 %, с массовой долей хрома более 20 % - до 1 %, а в хромомарганцевых аустенитных сталях - до 2 %.
2.6. В хромоникелевых и хромистых сталях, не легированных вольфрамом и ванадием, допускается присутствие остаточного вольфрама и ванадия не более чем 0,2 % каждого. В стали марок 05Х18Н10Т, 08Х18Н10Т, 17Х18Н9, 12Х18Н9, 12Х18Н9Т, 12Х18Н10Т, 12Х18Н12Т массовая доля остаточного молибдена не должна превышать 0,5 %; для предприятий авиационной промышленности в стали марок 05Х18Н10Т, 08Х18Н10Т, 12Х18Н9, 12Х18Н9Т, 12Х18Н10Т, 12Х18Н12Т массовая доля остаточного молибдена не должна превышать 0,3 %. В остальных сталях, не легированных молибденом, массовая доля остаточного молибдена не должна превышать 0,3 %.
По требованию потребителя стали марок 05Х18Н10Т, 08Х18Н10Т, 12Х18Н9, 17Х18Н9, 12Х18Н9Т, 12Х18Н10Т, 12Х18Н12Т изготовляются с остаточным молибденом не более 0,3 %, стали марок 05Х18Н10Т, 03Х18Н11, 03Х23Н6, 08Х18Н12Б, 08Х18Н12Т, 08Х18Н10Т - не более 0,1 %.
2.6.1. В сплавах на никелевой и железоникелевой основах, не легированных титаном, алюминием, ниобием, ванадием, молибденом, вольфрамом, кобальтом, медью, массовая доля перечисленных остаточных элементов не должна превышать норм, указанных в табл. 3.
2.3 - 2.6.1. (Измененная редакция, Изм. № 5).
2.7. В сталях и сплавах, легированных вольфрамом, допускается массовая доля остаточного молибдена до 0,3 %. По соглашению сторон допускается более высокая массовая доля молибдена при условии соответственного снижения вольфрама из расчета замены его молибденом в соотношении 2:1. В сплаве ХН60ВТ (ЭИ868) допускается остаточная массовая доля молибдена не более 1,5 %. В сплаве ХН38ВТ допускается остаточная массовая доля молибдена не более 0,8 %.
(Измененная редакция, Изм. № 3, 5).
Марка сталей и сплавов
Массовая доля элементов, %
1. Стали мартенситного класса
Бор не более 0,004
2. Стали мартенсито-ферритного класса
Бор не более 0,003
3 Стали ферритного класса
Церий не более 0,1 (расч.). Кальций не более 0,05 (расч.)
4. Стали аустенито-мартенситного класса
5. Стали аустенито-ферритного класса
6. Стали аустенитного класса
Бор не более 0,02
Бор не более 0,05; церий не более 0,02
Бор не более 0,03; церий не более 0,02
Бор не более 0,005; церий не более 0,03
00Х18Н10, ЭИ842, ЭП550
Азот 0,30 - 0,45; Бор не более 0,010
Бор не более 0,008
7. Сплавы на железоникелевой основе
Бор не более 0,020
Церий не более 0,05
Бор не более 0,005; азот 0,15 - 0,30
Барий не более 0,10 Церий не более 0,03
8. Сплавы на никелевой основе
Бор не более 0,01; церий не более 0,02; свинец не более 0,001
Бор не более 0,01
Бор не более 0,02; церий не более 0,02
Бор не более 0,01; церий не более 0,01
Бор не более 0,01; церий не более 0,02
Бор не более 0,01; церий не более 0,025
Бор не более 0,015; церий не более 0,020
Бор не более 0,005; церий не более 0,01
Бор 0,01 - 0,02; церий не более 0,01
Кобальт 4,0 - 6,0; бор не более 0,02; церий не более 0,02
Кобальт 11,0 - 13,0; бор не более 0,02; церий не более 0,02
Кобальт 12,0 - 16,0; бор не более 0,02
Бор не более 0,01 Церий не более 0,02 Свинец не более 0,001
1. В первой графе таблицы цифра, стоящая перед тире, обозначает порядковый номер класса стали (1 - 6) или вида сплавов (7 - 8); цифры после тире обозначают порядковые номера марок в каждом из классов стали или видов сплавов.
2. Химические элементы в марках стали обозначены следующими буквами: А - азот, В - вольфрам, Д - медь, М - молибден, Р - бор, Т - титан, Ю - алюминий, X - хром, Б - ниобий, Г - марганец, Е - селен, Н - никель, С - кремний, Ф - ванадий, К - кобальт, Ц - цирконий, ч - редкоземельные элементы. Буква У в обозначении сплава марки ХН77ТЮРУ предусматривает отличие по химическому составу по массовой доле углерода, титана и алюминия от сплава марки ХН77ТЮР.
Для сплава ХН65МВУ буква У предусматривает отличие по массовой доле углерода, кремния и железа от сплава ХН65МВ.
3. Наименование марок сталей состоит из обозначения элементов и следующих за ними цифр. Цифры, стоящие после букв, указывают среднее содержание легирующего элемента в целых единицах, кроме элементов, присутствующих в стали в малых количествах. Цифры перед буквенным обозначением указывают среднее или максимальное (при отсутствии нижнего предела) содержание углерода в стали в сотых долях процента. Букву А (азот) ставить в конце обозначения марки не допускается.
4. Наименование марок сплавов состоит только из буквенных обозначений элементов, за исключением никеля, после которого указываются цифры, обозначающие его среднее содержание в процентах.
5. В документации, утвержденной до введения в действие настоящего стандарта, допускается пользоваться ранее установленным обозначением марок сталей и сплавов. Во вновь разрабатываемой документации необходимо применять новое наименование. При необходимости прежнее обозначение указывают в скобках.
6. Знак «+» означает применение стали по данному назначению; знак «++» обозначает преимущественное применение, если сталь имеет несколько применений.
7. Стали и сплавы, полученные специальными методами, дополнительно обозначают через тире в конце наименования марки буквами: ВД - вакуумно-дуговой переплав, Ш - электрошлаковый переплав и ВИ - вакуумно-индукционная выплавка, ГР - газокислородное рафинирование, ВО - вакуумно-кислородное рафинирование, ПД - плазменная выплавка с последующим вакуумно-дуговым переплавом, ИД - вакуумно-индукционная выплавка с последующим вакуумно-дуговым переплавом, ШД - электрошлаковый переплав с последующим вакуумно-дуговым переплавом, ПТ - плазменная выплавка, ЭЛ - электронно-лучевой переплав, П - плазменно-дуговой переплав, ИШ - вакуумно-индукционная выплавка с последующим электрошлаковым переплавом, ИЛ - вакуумно-индукционная выплавка с последующим электронно-лучевым переплавом, ИП - вакуумно-индукционная выплавка с последующим плазменно-дуговым переплавом, ПШ - плазменная выплавка с последующим электрошлаковым переплавом, ПЛ - плазменная выплавка с последующим электронно-лучевым переплавом, ПП - плазменная выплавка с последующим плазменно-дуговым переплавом, ШЛ - электрошлаковый переплав с последующим электронно-лучевым переплавом, ШП - электрошлаковый переплав с последующим плазменно-дуговым переплавом, СШ - обработка синтетическим шлаком и ВП - вакуумно-плазменный переплав.
(Измененная редакция, Изм. № 5).
8. Указанное в таблице количество бора, бария и церия является расчетным и химическим анализом не определяется (за исключением случаев, специально оговоренных в стандартах или технических условиях).
9. Сплав марки ХН35ВТЮ (ЭИ787) при использовании вместо сплавов на никелевой основе поставляется с содержанием серы не более 0,010 %, фосфора - не более 0,020 %.
10. Сталь марки 55Х20Н4АГ9 (ЭП303) допускается поставлять с ниобием в количестве 0,40 - 1,00 %; в этом случае сталь маркируют 55Х20Н4АГ9Б (ЭП303Б).
11. Сплав марки ХН38ВТ (ЭИ703) допускается поставлять с ниобием в количестве 1,2 - 1,7 % вместо титана; в этом случае сталь маркируют ХН38ВБ (ЭИ703Б).
12. По соглашению сторон в стали марки 03Х18Н12-ВИ допускается содержание титана до 0,008 %.
13. По соглашению сторон допускается уточнение химического состава сталей и сплавов.
14. По соглашению сторон сплав марки ЭИ893 поставляется с содержанием углерода не более 0,06 %.
15. (Исключено, Изм. № 5).
16. Для стали марки 12Х18Н10Т, прокатываемой на полунепрерывных и непрерывных станах, содержание титана должно быть [5 (С - 0,02)] - 0,7 %, а отношение содержания хрома к никелю - не более 1,8.
17. Для сплава марок ХН77ТЮРУ (ЭИ437БУ) предельное отклонение по титану плюс 0,05 %.
Для сплава марки ХН77ТЮР допускаются предельные отклонения по титану плюс 0,1 %, по алюминию плюс 0,05 %.
18. В графе «Титан» табл. 1 в формуле определения содержания титана буква С обозначает количество углерода в стали.
19. Для сплава марки ХН55ВМТКЮ (ЭИ 929) допускается введение церия до 0,02 % по расчету.
20. В химическом составе сплава марки Н70МФВ допускается увеличение массовой доли углерода на плюс 0,005 % и кремния на плюс 0,02 %.
(Измененная редакция, Изм. № 1, 2, 3, 5).
21. В стали марки 10Х13Г18Д (ДИ-61) допускаются отклонения по содержанию марганца на плюс 0,5 %, хрома на плюс 0,5 % и меди на плюс 0,2 %.
(Введено дополнительно, Изм. № 5 ).
22. По согласованию изготовителя с потребителем в сталях марок 12Х18Н9, 17Х18Н9, 12Х18Н9Т, 12Х18Н10Т, 12Х18Н12Т, 08Х18Н10Т и 08Х18Н12Т установить массовую долю фосфора не более 0,040 %.
Сталь 95х18 гост 5632 72
Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте профессиональную справочную систему
«Техэксперт: Базовые нормативные документы» бесплатно
СТАЛИ ВЫСОКОЛЕГИРОВАННЫЕ И СПЛАВЫ
КОРРОЗИОННО-СТОЙКИЕ, ЖАРОСТОЙКИЕ И ЖАРОПРОЧНЫЕ
High-allоу steels аnd соrrosion-рrооf, heat-resisting
and hеаt trеаtеd аllоуs. Grades
____________________________________________________________________
Текст Сравнения ГОСТ 5632-2014 с ГОСТ 5632-72 см. по ссылке.
- Примечание изготовителя базы данных.
____________________________________________________________________
Дата введения 1975-01-01
1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР
И.Н.Голиков, д-р техн. наук (директор института), А.П.Гуляев, д-р техн. наук (руководитель работы), А.С.Каплан, канд. техн. наук (руководитель работы), О.И.Путимцева
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 27.12.72 N 2340
3. СТАНДАРТ РАЗРАБОТАН с учетом требований международных стандартов ИСО 683-13-85, ИСО 683-15-76, ИСО 683-16-76, ИСО 4955-83
Обозначение НТД, на который дана ссылка
Номер пункта, подпункта, перечисления, приложения
5. Ограничение срока действия снято по протоколу N 7-95 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-95)
6. ИЗДАНИЕ (ноябрь 1990 года) с Изменениями N 1, 2, 3, 4, 5, утвержденными в августе 1975 года, августе 1979 года, июне 1981 года, октябре 1986 года, июне 1989 года (ИУС 9-75, 10-79, 9-81, 12-86, 10-89), Поправками (ИУС 5-92, 7-93, 11-2001)
ВНЕСЕНЫ поправки, опубликованные в ИУС N 3, 2007 год, ИУС N 1, 2009 год
Поправки внесены изготовителем базы данных
Настоящий стандарт распространяется на деформируемые стали и сплавы на железоникелевой и никелевой основах, предназначенные для работы в коррозионно-активных средах и при высоких температурах.
К высоколегированным сталям условно отнесены сплавы, массовая доля железа в которых более 45%, а суммарная массовая доля легирующих элементов не менее 10%, считая по верхнему пределу, при массовой доле одного из элементов не менее 8% по нижнему пределу.
К сплавам на железоникелевой основе отнесены сплавы, основная структура которых является твердым раствором хрома и других легирующих элементов в железоникелевой основе (сумма никеля и железа более 65% при приблизительном отношении никеля к железу 1:1,5).
К сплавам на никелевой основе отнесены сплавы, основная структура которых является твердым раствором хрома и других легирующих элементов в никелевой основе (содержания никеля не менее 50%).
Стандарт разработан с учетом требований международных стандартов ИСО 683-13, ИСО 683-15, ИСО 683-16, ИСО 4955.
1. КЛАССИФИКАЦИЯ
мартенситно-ферритный - стали, содержащие в структуре, кроме мартенсита, не менее 10% феррита;
ферритный - стали, имеющие структуру феррита (без превращений);
аустенито-ферритный - стали, имеющие структуру аустенита и феррита (феррит более 10%);
Подразделение сталей на классы по структурным признакам является условным и произведено в зависимости от основной структуры, полученной при охлаждении сталей на воздухе после высокотемпературного нагрева. Поэтому структурные отклонения причиной забракования стали служить не могут.
2.1. Марки и химический состав сталей и сплавов должны соответствовать указанным в табл.1. Состав сталей и сплавов при применении специальных методов выплавки и переплава должен соответствовать нормам табл.1, если иная массовая доля элементов не оговорена в стандартах или технических условиях на металлопродукцию. Наименования специальных методов выплавки и переплава приведены в примечании 7 табл.1.
Сталь 95Х18 коррозионно-стойкая мартенситного класса
Закалка с 1010-1070 °C в масле или на воздухе и последующий низкий отпуск при 150-370 °C.
При контроле закаливаемости рекомендуется температура закалки 1050°C и 150-200 °C для стали 95X18. Для полного смягчения стали (~220 HB) рекомендуется отжиг при 880-920 °C с замедленным охлаждением (скорость охлаждения 25 °C/ч), для улучшения обрабатываемости при точении рекомендуется отжиг при 730-760 °C. Следует избегать отпуска при 450-600 °C, а также нагрева при закалке выше 1065 °C, вызывающего рост зерна, так как в обоих случаях наблюдается снижение ударной вязкости. [1]
Влияние температуры закалки на свойства стали 95X18
tзак, °C | Остаточный аустенит γ, % | Твердость HRC | Диаметр аустенитного зерна, мкм | Содержание хрома в твердом растворе, % |
900 | >1 | 47 | 18 | 9,5 |
1000 | — | 55 | 16 | — |
1050 | 17 | 58 | 40 | 11,0 |
1100 | 32 | 55 | — | 12,2 |
1150 | 76 | 40 | 35 | — |
1200 | — | 33 | 42 | — |
1250 | 93 | 26 | 63 | 16,4 |
Влияние продолжительности отпуска при 200 °C на твердость сортовой стали 95X18 после закалки с 1040-1060 °C [6]
Продолжительность отпуска, ч | Твердость HRC |
0 | 57,5 |
1 | 55,5 |
1,5 | 55 |
2 | 54 |
3 | 53 |
Влияние температуры отпуска на свойства стали 95X18 (закалка с 1040 °C) [1]
tзак, °C | Остаточный аустенит γ, % | Твердость HRC |
140 | 15 | 56 |
300 | 12 | 51 |
Механические свойства прутков стали 95X18 после различных режимов отжига и закалки [1]
Режим термической обработки | Твердость HB | σв, Н/мм 2 | σ0.2, Н/мм 2 | δ5 % | ψ, % |
Закалка с 1010-1065 °C в масле, охлаждение на воздухе | 60-62 HRC | — | — | — | — |
Закалка и отпуск при 150-379 °C | 55-60 HRC | — | — | — | — |
Неполный отжиг при 730-790 °C, 2-6 ч | 22-27 HRC | ≥880 | ≥770 | ≥12 | — |
Полный отжиг при 885-920 °C, 1-2 ч | 215-240 | ≥770 | ≥420 | ≥12 | ≥30 |
Механические свойства
Состояние поставки | σ0,2, МПа | σв, МПа | δ5, % | ψ, % | KCU, Дж/см 2 | Твердость HRCэ |
не менее | ||||||
Закалка с 1000-1050 °C в масле; отпуск при 200-300 °C, охл. на воздухе или в масле | — | — | — | — | — | Св. 56 |
Пруток. Полный отжиг при 885-920 °C, 1-2 ч | 420 | 770 | 15 | 30 | — | — |
Пруток. Неполный отжиг при 730-790 °C, 2-6 ч | 770 | 880 | 12 | 25 | — | 24-29 |
Подогрев 850-860 °C; закалка с 1000-1070 °C в масле или на воздухе; обработка холодом при 70-80 °C; отпуск при 150-160 °C, охл. на воздухе | — | 1980-2300 | — | — | 63 | Св. 5 |
Механические свойства в зависимости от температуры отпуска [3]
Механические свойства при повышенных температурах [3]
ПРИМЕЧАНИЕ. Закалка с 1050 °C в масле; обработка холодом при -70 °C; отпуск при 400 °C.
Предел выносливости [5]
Термообработка | σ-1, МПа |
Закалка с 1050 °C в масле; отпуск при 150 °C; твердость HRCэ 61 | 960 |
Механические свойства по ТУ [5]
Вид полуфабриката | ТУ | Состояние полуфабриката или контрольных образцов | НВ dотпмм не менее |
Прутки горячекатаные | ТУ 14-1-377-72 | Отпущенные или отожженные | 3,7 |
Механические свойства при комнатной температуре [5]
Вид полуфабриката | Состояние | σ0,2 | σв | δ | ψ | HRC |
кгс/мм 2 | % | |||||
Прутки | Термически обработанные по режиму: закалка с 1010-11б5 °C в масле или на воздухе | — | — | — | — | 60-62 |
Термически обработанные по режиму: закалка с 1010-1065 °C и отпуск при 150-370 °C | 190 | 200 | 2 | 10 | 55-60 |
ПРИМЕЧАНИЕ. После отпуска в интервале температур 450-600 °C сталь обладает наименьшим сопротивлением удару. Нагрев под закалку выше 1060°C вызывает рост зерна и снижает вязкость стали.
Жаростойкость [5]
Сталь устойчива против окисления в воздушной среде при температурах до 800°C.
Коэффициент термического линейного расширения [5]
Температура °C | αx10 6 1/град |
20-100 | 11,8 |
20-200 | 12,3 |
20-300 | 12,7 |
20-400 | 13,1 |
20-500 | 13,4 |
Температура °C | αx10 6 1/град * |
100-200 | 12,8 |
200-300 | 13,6 |
300-400 | 14,4 |
400-500 | 14,6 |
* После термической обработки по режиму: закалка с 1050°C (выдержка 45 мин) в масле, отпуск при 425°C (выдержка 1 час), охлаждение на воздухе.
Сталь 95Х18 конструкционная подшипниковая
Число 95 в обозначении стали 95Х18 указывает среднее содержание углерода в долях процента, т.е. среднее содержание углерода в стали 0,95%.
Буква Х указывает на то, что сталь легирована хромом, а цифра 18 за ней указывает, что среднее содержание хрома в стали 18%.
Зарубежные аналоги
Германия (DIN) | Евронормы (EN) | США (AISI, ASTM) | Япония JIS | Чехия (CSN) | Польша PN/H |
X105CrMol7 | 1.4125 | 440FSe | SUS440C | 17042 | H18 |
ВАЖНО. Возможность замены определяется в каждом конкретном случае только после оценки и сравнения свойств сталей
Вид поставки
- Поковка по ГОСТ 8479-76.
- Сортовой прокат ГОСТ 2590-88, ГОСТ 2591-88, ГОСТ 1133-71, ГОСТ 7417-75.
- Полоса ГОСТ 103-76.
- Заготовка квадратная ГОСТ 4693-77.
Характеристики и применение
Сталь 95Х18 является легированной высокохромистой нержавеющей сталью мартенситного (основная структура мартенсит) класса с высоким содержанием углерода, которая применяется как коррозионностойкая сталь и не применяется как жаростойкая и жаропрочная. Являясь высокохромистой сталью обладает хорошей кислотостойкостью и высокой окалиностойкостью (до 700-800 °С).[1]
Назначение
Подшипниковая сталь 95X18 применяется при изготовлении деталей к которым предъявляются требования высокой прочности и износостойкости и работающие при температуре до 500°С или подвергающиеся действию умеренных агрессивных сред (морской или речной воды, щелочных растворов, азотной и уксусной кислоты и др.), например:
- кольца,
- шарики и ролики подшипников,
- втулки,
- оси,
- стержни
Согласно ГОСТ 5632-2014 сталь 95Х18 также применяется при изготовлении шарикоподшипников высокой твердости для нефтяного оборудования и ножей высшего качества. Сталь применяется после заказлки с низким отпуском.
Согласно ГОСТ 5949-2014 сталь 95Х18 применяется для изготовления горячекатаной, кованой, калиброванной металлопродукции и металлопродукции со специальной отделкой поверхности.
Химический состав, % (ГОСТ 5632-2014)
Номер марки | Марка стали или сплава | Массовая доля элементов, % | ||||||||||||||
Обозначение (Условное обозначение) | C | Si | Mn | Cr | Ni | Ti | Al | W | Mo | Nb | V | Fe | S | P | Прочие | |
не более | ||||||||||||||||
1-20 | 95X18 (ЭИ229) | 0,90-1,00 | ≤0,80 | ≤0,80 | 17,00-19,00 | — | — | — | — | — | — | — | Осн. | 0,025 | 0,030 | — |
- В первой графе таблицы цифра, стоящая перед тире, обозначает порядковый номер класса стали (1-6) или вида сплавов (7-8); цифры после тире обозначают порядковые номера марок в каждом из классов стали или видов сплавов.
- Знак «-» означает, что массовая доля данного элемента не нормируется и не контролируется. В сталях, не легированных титаном, допускается массовая доля титана в соответствии с 6.3 ГОСТ 5632-2014.
Температура критических точек, °С [162 ]
Термообработка
ВАЖНО. Описанные рекомендации по термообработке указаны не конкретно для стали 95Х18, а для легированных высокохромистых сталей, которой и является сталь 95Х18, в целом.
Наиболее распространенным и рекомендуемым режимом термической обработки высокохромистой стали является отжиг при 760-780°С с последующим охлаждением на воздухе или вместе с печью. В результате такой термообработки сталь приобретает наиболее равновесную структуру в виде ферритокарбидной смеси, характеризующейся благоприятным сочетанием прочности и коррозионной стойкости. Иногда применяется также нагрев и выдержка стали при 850-900°С в течение нескольких часов с последующим быстрым охлаждением. При этом наблюдается растворение карбидов и несколько повышается пластичность.
Хромистая сталь характеризуется склонностью к отпускной хрупкости, поэтому после отпуска ее следует охлаждать быстро (в масле).
Твердость HB по Бринеллю (ГОСТ 5949-2018)
ПРИМЕЧАНИЕ.
Твердость НВ по Бринеллю указана для горячекатаной, кованой и калиброванной металлопродукциии, металлопродукции со специальной отделкой поверхности в термически обработанном (отожженном или отпущенном) состоянии.
Твердость HRC по Роквеллу (ГОСТ 5949-2018)
Марка стали | Рекомендуемый режим термической обработки | Твердость HRC, не менее |
95X18 (ЭИ229) | Закалка с температуры (1000-1050)°С, охлаждение в масле, отпуск при температуре (200-300) °С, охлаждение на воздухе или в масле | 55 |
ПРИМЕЧАНИЕ.
Твердость HRC по Роквеллу металлопродукции из стали марки 95X18 (ЭИ229), определяется на образцах, вырезанных из термически обработанных заготовок.
Условия применения стали 95Х18 для узла затвора арматуры (ГОСТ 33260-2015)
Материал | Температура рабочей среды, °С | Твердость | Дополнительные указания по применению | |
Наименование | Марка или тип | |||
Шарики | 95X18 ГОСТ 5632 | От -253 до 350 | 59…63 HRC HRC≥56 (для температуры≥300°С) | Для сред слабой агрессивности |
Условия применения стали 95Х18 для направляющих и резьбовых втулок (ГОСТ 33260-2015)
Материал | НД на поставку | Температура рабочей среды, °С | Дополнительные указания по применению | |
Наименование | Марка | |||
Сталь коррозионно- стойкая | 95X18 ГОСТ 5632 | Сортовой прокат ГОСТ 5949 | От -40 до 200 | Применяется для работы в условиях атмосферной коррозии и средах слабой агрессивности. Твердость втулок выбирается с учетом твердости шпинделя. |
Согласно ГОСТ 5949-2018 механические свойства металлопродукции из стали марки 95X18 (ЭИ229) не контролируют.
Технологические свойства
Температура ковки, °С: начала 1180, конца 850.
Обрабатываемость резанием Kv тв.спл = 0,86 и Kv б.ст = 0,35, металл отожженный НВ 212-217 и σ0,2 = 710 МПа.
Читайте также: